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Abstract. Discovering and composing individual Web Services into more com-
plex yet new and more useful Web Processes is an important challenge. In this 
paper, we present three techniques for (semi) automatically composing Web 
Services into Web Processes by using their ontological descriptions and rela-
tionships to other services. In Interface-Matching Automatic composition 
technique, the possible compositions are obtained by checking semantic simi-
larities between interfaces of individual services. Then these compositions are 
ranked considering their Quality of Services (QoS) and an optimum composi-
tion is selected. In Human-Assisted composition the user selects a service from 
a ranked list at certain stages. We also address automatic compositions in a 
Peer-to-Peer network. 
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1. Introduction 

In recent years, a large number of Web Services (WSs) have emerged with the 
rapid development of the Internet. The Web is now evolving into a distributed 
device of computation from a collection of information resources [Fensel02a]. 
Furthermore, the need for composing existing WSs into more complex ser-
vices is also increasing, mainly because new and more useful solutions can be 
achieved. In general, this is a result of complex and increasing user demands 
and inability of a single WS to achieve a user’s goals by itself. For example, a 
traveler who wants to make a hotel reservation and find a French restaurant 
less than three miles from the hotel may either utilize some services that s/he 
already knows or try to find the services by looking them up in a keyword-
based search engine (e.g., expedia.com or google.com) or in a WSs registry 
(e.g., a UDDI (Universal Description, Discovery and Integration) registry). 
Also, composition of discovered services and enabling data-flow among them 



(e.g., the hotel address is needed as input to a restaurant locator service) are 
usually done manually, which is highly inconvenient, especially for very 
complex compositions.  

The problem lies with the fundamental abstractions used to model WSs and 
methods to compose these services using these abstractions. In more complex 
examples of scientific data exploration through service compositions, even 
tens or hundreds of data collection services can be involved in a composition 
(e.g., a search involving gene banks). In that case an automatic composition 
can help in reducing query formulation and execution time enormously.  

In general, there are four different dimensions for a service composition 
(Figure 1): (i) degree of user involvement in a composition specification, (ii) 
whether the composition is based on templates, (iii) dynamicity (i.e., adapta-
tion) of the composition, and again, (iv) degree of user involvement in the 
adaptation of the composition [Cardoso03 & Srivastava03]. In the first dimen-
sion, a composition can be defined fully by a user by including control and 
data-flow information besides the individual services making the composite 
service. In contrast, in an automatic composition, the user is not involved but 
instead the application generates control and data-flow. This is very challeng-
ing due to the difficulty of mapping user needs to a collection of correlated 
services where their interim outputs can satisfy one another’s input require-
ments and final deliverable meets the user demands. Besides, in both user-
defined and automatic composition techniques, either actual service instances 
or service templates can be used. In the latter, the individual service instances 
are searched and integrated automatically at execution time for a given plan 
[Chandrasekaran03]. In a dynamic composition, the composition itself can be 
adapted mainly because of Quality of Services (QoS) requirements at run-
time. Also, a composition may not be defined at design-time but can be as-
sembled dynamically at execution time. Finally, some hybrid methods such as 
semi-automatic compositions and semi-automatic adaptations are also possi-
ble.  

This work aims for reducing the complexity and time needed to generate, 
and execute a composition and improve its efficiency by selecting the best 
possible services available using automatic Interface–Matching Automatic 
(IMA) and Human-Assisted (HA) composition techniques. IMA composition 
has no predefined template and the user is not involved in the composition 
specification. In contrast, the user is greatly involved in the HA composition 
specification and adaptation based on predefined templates.  

 



 
 

Figure 1: A Classification of Web Service Composition Techniques 

1.1 Contributions 

We developed a collection of ontology-driven Web services composition 
techniques. In IMA composition technique, the possible compositions are 
obtained by checking semantic similarities between interfaces of individual 
services with neither any predefined template nor user involvement in specifi-
cation and adaptation. An optimum composition which can best satisfy the 
user’s needs considering quality (or other attributes that the user may be con-
cerned about) is selected. However, our experiments show that without func-
tionality constraints, IMA technique is more appropriate for information-
retrieval services (i.e., not world-altering services). That is, services that al-
ways return relatively simple results based on the user-supplied inputs 
[Zhang03 & Arpinar04]. This is mainly due to the fact that Web services with 
the same interface could perform different functions. There are also many 
earlier efforts in composition of software components using pipe-filter meth-
ods [Mao01]. Our contribution is that we developed a shortest-path algorithm 
to address a more complicated problem in which the services might have mul-
tiple I/O (input and output) parameters. This technique also takes Quality of 
Service (QoS) of WSs into account to find a best quality composition (e.g., 
with minimum cost) as described later. Furthermore, using the ontological 
techniques, we can successfully compose services even when their interfaces 
are not exactly matched syntactically.  

However, complex services can not be located precisely and composed se-
quentially merely considering the interfaces. For example, flight booking and 
hotel reservation services, where the user’s request is based on not only the 
inputs and outputs, but also on the QoS (e.g., service quality rate in DAML-S 
[DAML-S Coalition02]), functionality, service name, geographic regions, etc. 
As the number of various services increases, the task of selection of an ade-



quate service quickly becomes tedious. Therefore, new techniques are needed 
to help users in finding, filtering, and composing these services.  

At the beginning of service composition, a user may have a vague idea of 
the composite service that s/he is seeking. Another possibility is that an avail-
able composite template may not satisfy the user, who wants to add or remove 
some tasks in the original plan if necessary. In addition, service selection and 
composition are not only determined by the constraints on service description 
(e.g., interface), functionality properties and the service output values to be 
returned at run-time need to be considered. For example, consider a trip plan-
ning service composition example. A user often prefers a flight service that 
provides the cheapest flight ticket, which, however, could only be known after 
comparing the output ticket prices of a set of services. Furthermore, even the 
type of transportation service in the composition could be determined by the 
dynamic information provided by other services, such as parking fee or taxi 
rate if s/he is considering traveling by either flight or rental car. Thus depend-
ing on requirements on service descriptions and dynamic information supplied 
by the services, a customization and dynamic composition with more human 
involvement may be needed for many applications. A preliminary technique 
to have a run-time control over the composition is the introduction of an 
XOR-split in the control-flow to filter out undesired services (e.g., in price 
selection). An XOR-split is used to select only one of the several execution 
branches, which satisfies an associated condition. 

The Human-Assisted (HA) composition technique targets applications 
which require frequent human-intervention for an acceptable composition. 
The goal of this technique is to build a composition pathway (i.e., map) in-
crementally in a customized way. This is a complementary technique to IMA 
that guides the users for selecting proper service instances described in 
DAML-S (version 0.9), and allows users to create a customized composite 
service plan.  

In this paper, we intend to address the following issues:  
1. Exploiting Semantic Web and Web Service Ontologies to bridge the 

concept gaps in interface parameters and other parts of descriptions of 
services. Basically, there are four types of semantics for Web Services: 
(i) data/information semantics, (ii) functional/operational semantics, 
(iii) execution semantics, and (iv) QoS semantics [Sheth03]. Our 
framework mainly uses the former two semantics and intends to support 
users in the selection of service classes and instances by matching ser-
vice interfaces and attributes. 

2. Ranking and filtering of composable services (a notion capturing if two 
services are interoperable, i.e., if they have complementary I/O inter-
faces and functionalities) at certain intervention points by the user. This 
also considers a semantic user profile and output values for filtering 
large numbers of service instances. 



3. Automatically adjusting a composite service plan by removing the non-
relevant services or adding the services suggested by the system if their 
I/O matches semantically.  

 
Currently, descriptions of many WSs are contained in a single central registry, 
such as UDDI. Using emergent Peer-to-Peer (P2P) computing techniques, this 
registry can be moved from its centralized nature to a distributed one. With 
decentralization, problems of availability, reliability and scalability can be 
addressed. This, for example, can enable service providers to choose any par-
ticular registry in which their services would be listed. This might be benefi-
cial in situations where competitors do not want to be listed in the same regis-
try. Thus, we also briefly present a P2P Automatic (PPA) composition tech-
nique.  

The rest of the paper is organized as follows: In Section 2, we review the 
related research. Section 3 briefly describes the system architecture. IMA, 
HA, and PPA composition techniques are described in Sections 4, 5, and 6 
respectively. Section 7 concludes the paper, and outlines the future work. 

2. Related Work 

This work aims to generate a composite service plan out of semantically de-
scribed existing services. The WS composition is related to many efforts. 
These include the WS specification, discovery, composition and execution 
techniques.  

2.1 Web Service Description 

The service specification methods help software systems to capture capabili-
ties of WSs. In general, these specification methods are based on either indus-
try-oriented standardization efforts, or academia-oriented WS ontologies. 
UDDI and Web Services Description Language (WSDL) are current industry 
standards developed for e-commerce. The services are described according to 
an XML schema which is defined in the UDDI specification and registered by 
the service providers along with keywords for their categorizations. There-
fore, UDDI does not provide a semantic search rather it depends on a prede-
fined categorization of WSs through keywords. In complimentary roles, 
WSDL and Simple Object Access Protocol (SOAP) describe WSs as a set of 
endpoints (or ports) operating on messages, and a protocol for exchange of 
these messages between the services, respectively. Also, some industry stan-
dards have been emerging to represent data and control-flow, and transac-



tional properties among a collection of services. Business Process Modeling 
Language, XLANG, Web Services Flow Language (WSFL), and Business 
Process Execution Language for Web Services (BPEL4WS) can be mentioned 
in this category.  

The semantic approach for WS specifications includes Web Service Model-
ing Framework (WSMF) in which an ontology provides the terminology used 
[Fensel02b]. DAML-S (recently evolved to OWL-S) specifies three main 
components for each service: service-profile, process-model and service-
grounding. A service profile is the core element of a DAML-S specification, 
and involves semantic descriptions of service interfaces and functions 
[DAML-S Coalition02]. The process-model provides information about how 
the service works, and the service grounding describes how an agent can ac-
cess the service. Other techniques have attempted to add semantics to existing 
services by providing mappings between WSDL, UDDI definitions and do-
main ontologies (e.g., METEOR-S [Sivashanmugam03a, Patil04a]).  

In this work, we primarily focus on the collection of inputs, and outputs for 
composition and leaving pre-condition, and effect (i.e., post-condition) ori-
ented composition as a future work. 

2.2 Semantic Web Service Discovery and Composition 

Semantic WS discovery related work includes [Cardoso03], which describes 
how to evaluate a degree of similarity between a service template and an ac-
tual service instance by measuring the syntactic, operational, and semantic 
similarity. Among the state-of-the-art discovery systems, the project DReggie 
adds reasoning modules to carry out the semantic matching process for dis-
covering DAML described Web Services [Chakraborty01]. Unlike other dis-
covery approaches on the basis of WS interfaces, [Klein01] explored ways to 
search services according to the functionality requirements, and proposed 
Process Query Language (PQL) to search process models from a process on-
tology. [McIlraith01, McIlraith02] presented a method to compose WSs by 
applying logical inferencing techniques on pre-defined plan templates. Their 
technique focuses on the process-centric description of service as actions that 
are applicable in states. Some earlier efforts also emphasized the need for 
semantic representations of state, actions, and goals for composing services 
[Srivastava03]. 

The main concept behind service composition is not new in Computer Sci-
ence. Earlier, software composition techniques aimed to find a good combina-
tion of components that responds to the client specific requirements by match-
ing requested properties with provided properties [Zaremski97]. One ap-
proach for finding a suitable composition is to delegate the responsibility for 
solving certain requirements posed on a component to other components after 



fulfilling it partially [Sora01]. Similarly, our interface-matching mechanism 
(IMA) propagates requirements (that are set of a user’s expected outputs) to 
corresponding WSs in an incremental way. [Mao01] proposes a composition 
path, which is a sequence of operators that computes data, and connectors that 
provide data transport between operators. The search for possible operators to 
construct a sequence is based on the shortest-path algorithm on the graph of 
operator space. However, [Mao01] only considered two kinds of services – 
operator and connector with one input and one output parameter (which is the 
simplest case for a service composition) and did not take semantics into the 
account.  

In the instance composition category, SWORD uses a rule-based expert 
system to determine if a plan of composite service can be built out of existing 
services [Ponnekanti02]. It mainly focuses on the composition of information 
provider services (i.e., not world-altering services), and (like [Mao01]) it does 
not address the input and output mismatch problem. In our approach, services 
can have more than one input and output parameters, and their interfaces may 
not match syntactically. We address semantic matching of parameters in the 
different composition methods proposed. Furthermore, some related work has 
identified types of semantic matchmaking [Palucci02] as well as partial 
matching [Constantinescu03]. 

2.3 Interactive and Adaptive Composition 

At present, academic approaches have been proposed to tackle the problems 
for personalization and filtering of WSs based on templates. An example is a 
trip planner, which is declared as a state chart, and the resulting composite 
services are executed by replacing the roles in the chart by selected individual 
services [Benatallah02]. Template-based composition techniques are also used 
in [Narayanan02], and the ICARIS project [Tosic01].  

Goal-oriented inferring and planning are used for services composition in 
the semantic Web community. However, none of the approaches has devel-
oped a satisfactory planning solution to the service composition so far 
[Srivastava03]. 

In [Sirin03], users select and filter the services by using a similar match-
making algorithm. In [Balke03], the services are selected by using the hard 
and soft constraint standards in a personalized composition. 

 [Ambite03] designs a constraint reasoning network to compute any user’s 
input change and produce the corresponding outputs to optimize the schedules 
for the trip based on the AI constraints reasoning technology. For a relatively 
fixed template, such as trip planner, generating a predefined constraints net-
work might be feasible in practice. For less widely used services, it may not 
be possible to have such a priori constraints network. Our process ontology 



which is explained later has a similar feature with the constraints reasoning 
network except the latter only links services or functions to produce the ex-
pected results while in the process ontology all services would be connected 
only if their inputs and outputs are matched. 

When the composite service plan is generated, a verification of the service 
logic is crucial for a successful execution. [Cheng02] presents an algorithm 
that checks the validity of the execution of services.  

Also our earlier work has classified possible composition system architec-
tures into three categories in the context of inter-organizational business proc-
esses, namely process portal, process vortex and dynamically trading proc-
esses [Sheth99].  

2.4 METEOR -S Framework 

The METEOR-S project at LSDIS at University of Georgia, has studied the 
use of emerging WSs and semantic Web technologies and research, to de-
velop semantic WS and process specification, WS discovery, and process 
composition [Patil04b, Cardoso02, Sivashanmugam03b].   

MWSAF (METER-S Web Service Annotation Framework) was designed 
to mark up WS descriptions with ontologies and develop algorithms to match 
and annotate WSDL files with relevant ontologies [Patil04a]. The METEOR-
S Web Services Discovery Infrastructure (MWSDI) provides a scalable infra-
structure for semantic publication and discovery of WSs [Verma04]. A spe-
cialized ontology called Registries Ontology maintains the relationship be-
tween all the domain and associates registries to them. Additionally, an algo-
rithm has been developed to find the WSs with proper interfaces and opera-
tional mechanisms for workflow generation [Cardoso02, Cardoso03].  

As part of the METEOR-S project, the MWSCF (METER-S Web Service 
Composition Framework) platform specifies an activity by means of a seman-
tic activity template then weights the overall ranking of services on the two 
dimensions: semantic matching and QoS criteria matching [Sivashan-
mugam03]. Our work has benefited from the METEOR-S techniques that are 
mentioned. For example, the similarity algorithm described in Section 4 is 
partially based on the algorithm in [Cardoso02].  

2.5 Peer-to-Peer Web Services Composition 

A system for declaratively composing and executing WSs dynamically in a 
Peer-to-Peer (P2P) network is presented in [Benatallah02]. The concept of a 
service community is used to provide an abstraction from actual service pro-
viders so that any WS with the functionality described by the service commu-



nity can be a member of that community, regardless of its service domain. 
However in this work, we focus on how semantic WSs hosted by nodes in a 
P2P network can be grouped in order to reduce the search space during dis-
covery and composition of WSs. Host peers of WSs are automatically 
grouped into service communities, where a service community refers to a 
group of WSs in a given domain, determined by a globally shared domain 
ontology.  

 [Schlosser02] presents a P2P infrastructure for Semantic WSs discovery 
(without addressing services composition). Peers are grouped into ontological 
concept clusters in a Cayley graph based structure, with the clusters organized 
into hyper-cubes, so that queries can be sent to only those peers that are po-
tentially able to answer them. When a query is routed to a concept cluster, the 
query is broadcasted to all peers within the cluster in order to discover a peer 
that can answer the query. On the contrary, we have the concept of master 
peers for each service community. Since the master peer has information 
about all the peers within a community, it can determine which peers can an-
swer the query, thereby minimizing the amount of communication amongst 
peers in that community. Furthermore, the infrastructure of [Schlosser02] does 
not take into consideration quality of service metrics. In our approach, the 
master peer for each community can select a peer from amongst candidate 
peers for a particular query based on its quality of service.  

Other works such as [Hoschek02, Schmidt03, Banaei-Kashani04] focus on 
web services discovery on a P2P paradigm. They do not however consider 
how the WSs can be dynamically composed. 

3. An Overview of System Architecture 

3.1 Specification of Semantic Web Services and Queries 

A semantic WS is a unit of composition that can be deployed independently, 
and may be subject to composition by a third party on the Web. At the same 
time, its interface, its process specification (i.e., its functionality) and its rela-
tions to other services are defined, and advertised in a machine-processable 
form so it can be automatically discovered, composed, and invoked in new 
complex WSs. The emerging semantic Web makes it possible to specify se-
mantics of a domain such as the terms and concepts of interest, their mean-
ings, relationships between them and the characteristics of the domain through 
an ontology. In this work, we use DAML-S (version 0.9) WS ontology. A 
service profile is the core element of a DAML-S specification, and it involves 



semantic descriptions of service interfaces and functions. In this work, we 
primarily focus on the collection of inputs, and outputs for composition.  

A composite service query can be represented in a very similar way as a 
service description in DAML-S. Like DAML-S template of services, the 
query profile includes the description of the composite service and the inter-
face of the expected composite service, in which we define the output parame-
ters, output constraints, input parameters, and input constraints. The output 
constraint specifies the requirements on the outputs by the user, such as the 
properties of the output parameter. For example, the user can define price 
properties, currency, etc. using a price ontology. 

The second part of the query is about the functionality of the composite 
service (part of our future research). The user can partially specify how the 
composite service works and what kind of individual services would be ex-
pected. For example, a restaurant owner may want to find matching wines for 
certain meals in her restaurant and learn the prices of these wines. To formu-
late a query s/he can specify a seafood type for a Food-Wine-Matching ser-
vice and expect the names and prices of matching wines.  

3.2 System Architecture  

The system architecture (Figure 2) involves three components (i) composer 
component, (ii) ontology and service storage component and (iii) extraction 
component. The storage component hosts the user profile, WS, process and 
domain ontologies. User profile records the history of each user’s usage of 
WSs. The service instances can be ranked based on their usage frequency (i.e., 
popularity). 

Ontology component includes domain ontologies (in OWL) that are spe-
cialized for description of parameters of the services. For example, an ontol-
ogy for food and drink related WSs specifies the sub-class and super-class 
relationships for the relevant entities and properties [Zhang04]. In this ontol-
ogy, Wine is defined as a subclass of the Alcohol that is the subclass of Drink. 
The properties of Wine include wine name, vintage, merchant location and 
price, etc. The user can specify the properties of Wine in a query and limit the 
range of the properties.  



 
 
 
 

Like domain ontologies, a WS ontology describes service hierarchies and a 
subclass of a service inherits the properties and functionality of its super-class 
service and extends it with its own attributes [Zhang04]. A process ontology 
involves a collection of services that are connected each other if their inter-
faces are matched semantically and built for improving the efficiency of com-
position algorithm (Figure 3). 
The query parser parses the query and sends the query object to the process 
composer, which searches for a sequence of services by navigating WS and 
process ontologies and returns a composite service with the optimal graph. It 
also generates the data-flow plan of the composite service and sends the plan 
for process execution and monitoring. 

When a service provider sends a registration request, a service extractor ex-
tracts service name (including its ID), text description, instance of relation-
ship, input/output information, etc. from the service profile and stores them in 
a services database. The process ontology is also updated by connecting the 
I/O parameters of the new service to other compatible service parameters. 
This helps in reducing the complexity of searching for services in an auto-
matic composition as mentioned earlier. If the services are described in UDDI 
schema, their profiles would be sent directly into a UDDI registry.  

Figure 2: An Overview of System Architecture



4. Interface-Matching Automatic (IMA) Composition  

IMA composition technique aims for generation of complex WS compositions 
automatically. This requires capturing user’s goals (i.e., expected outcomes), 
and constraints, and matching them with the best possible composition of 
existing services. Therefore, inputs and outputs of the composite service 
should match the user-supplied inputs, and expected outputs, respectively. 
Furthermore, the individual services placed earlier in the composition should 
supply appropriate outputs to the following services in an orchestrated way 
similar to an assembly line (i.e., pipe-and-filter) in a factory so they can ac-
complish the user’s goals.  

In IMA, we navigate the process ontology to find the sequences starting 
from the user’s input parameters and go forward by chaining services until 
they deliver the user’s expected output parameters. The composition termi-
nates when a set of WSs that matches all expected output parameters is found, 
or the system fails to generate such a composition of services.  

The goal of this technique is to find a composition that produces the desired 
outputs within shortest execution time and better data-flow (i.e., better match-
ing of input and output parameters). If the service ontologies are complex and 
the number of services is large this can be a challenging task. The composi-
tion starts from the service that needs one or more of the input parameters 
given by the user. If this WS does not produce all of the expected outputs, 
more WSs need to be found to provide the expected outputs. This process 
continues until a sequence of WSs producing the expected composition out-
puts from the user’s inputs is found.  

Figure 3 shows a sample process ontology involving relations representing 
input and output parameter matching. Nodes represent services and edges 
connect services if the output of a service can be “feed-into” the input of a 
service. Edges shown with dashed lines connect parameters that do not match 
exactly yet are semantically equivalent. In the figure, different service outputs 
can feed into other service inputs. For example, Service 6 requires two input 
parameters, one of which can be provided by either Service 1 or Service 3 and 
the other comes from Service 4.  

 



 

Figure 3: A Process Ontology Example 
 

In an example scenario, the user provides input parameter S1i1 and expects 
the output S9o1 as indicated in the graph. The composition goal is to find a 
shortest sequence of services from Service 1 to Service 9. In this graph the 
source node SI and SF represent the virtual initial and final services respec-
tively, which are added for computing convenience. The weight of every edge 
is calculated using a function of quality rate and semantic similarity value. To 
assign weights using quality five generic QoS criteria can be used: (1) execu-
tion prices, (2) execution duration, (3) reputation, (4) reliability, and (5) avail-
ability [Zeng03].  

The trade-off formula weighting quality criteria versus similarity is defined 
by the following formula, with a user adjustable parameter λ: 

 
W = (1-λ) * quality rate + (λ) * similarity value. 

 
We considered four cases to check similarity (i.e., matching) of an output and 
input parameter from the same ontology: (1) if they are same, their similarity 
is maximal and weight of the corresponding edge is the smallest. (2) If the 
output parameter of the former service is subsumed by the input parameter of 
the succeeding service, this is the second best matching level. The similarity 
value depends on their distance in the ontology. (3) If the output parameter of 
the former service subsumes the input parameters of the succeeding service, 
the properties of the parameters could be partially satisfied. (4) When two 
parameters have no subsumption relation or they are from different ontolo-
gies, the similarity value can be obtained by using Tversky’s feature-based 
similarity model [Cardoso02], which is based on the idea that common fea-



tures increase the similarity of two concepts, while feature difference de-
creases the similarity.  

The composition technique aims to find an optimal composition of ser-
vices considering QoS and semantic matching of parameters as illustrated in 
Algorithm 1. We modified Bellman-Ford shortest-path dynamic programming 
algorithm to find the shortest sequence from initial stage at node SI to the 
termination node SF. In our graph representation some services need more 
than two incoming edges as input parameters. Therefore, we not only record 
distance for every node, but also we trace the distance of every path at every 
node. When all the required input parameters are available, a service can be 
executed. Therefore, the distance of every node is determined by the maxi-
mum value of distances of all the input parameters. For example, Service 3 
must have two incoming edges and therefore a distance value of Service 3 is 
determined by the maximum of S3i1 and S3i2 because Service 3 can be exe-
cuted only after both of these inputs are available (Figure 3). In a different 
case, when there is more than one incoming edge fitting for one input parame-
ter of a service, such as output of either Service 1 or 3 satisfies input of Ser-
vice 6, we choose the minimum distance of edges 3-6 and 1-6 as a distance 
associated with the input parameter of Service 6.  

 
01. procedure compose(usersinputs, usersoutputs) returns Boolean 
02. for times = 1 to N // in worst case, the algorithm needs to update distance of each                       
       service N times (N is the number of services) 
03.  for i = 1 to N // check each service 
04.  for iin = 1 to Nin // Nin is the number of inputs of service i 
05. for j = 1 to N // for each input of service i check each other   
        service 
06.  for jout = 1 to Nout // check each output of service j 
07.  Check the output jout of service j and the  
   input iin of service i to see whether they  
   are similar (connected); if similar find the  
   degree of their similarity 
08. end 
09 end 
10. Find the shortest distance to iin of service i (minimum of all  
 available paths to iin) 
11. end 
12. Find the shortest distance for service i (if outputs of service i need all  
 inputs then its is the maximum distance of all inputs plus its quality) 
13. end 
14. If all required usersoutputs are obtained then return true 
15. end 

Algorithm 1: IMA Composition Algorithm 
 



The complexity of Algorithm 1 is Ο(N3.Nin.Nout) where N is the number of 
available services and Nin and Nout are number of inputs and outputs per WS 
respectively. However this complexity can be improved by pre-processing 
WSs to gather similarity and distance information prior to WS composition. 

Furthermore, obtaining quality rates of WSs is a challenging task. For this 
purpose we adopt a WS quality model similar to one proposed in [Sheng03] 
which is based on a set of quality criteria that are in inherent to WSs in gen-
eral such as execution price, execution duration, reputation, reliability, and 
availability. The overall quality rate is an average of these individual rates. 
New criteria can be added to this quality model if needed. However our work 
does not propose any particular model for calculating these rates and mainly 
rely on service providers for advertising execution price, duration, and inquir-
ing about availability of particular WSs. Calculating reliability and reputation 
rates usually need analyzing historical data and user feedback respectively. 
[Sheng03] provides more details about how to obtain these quality rates. 

 

 

Figure 4: An IMA Composition Example (λ =0.3) 

4.1 Automatic Composition Examples 

Figure 4 illustrates a composition result with the given process ontology of 
Figure 3. ‘q’ is the quality rate of a service and ‘d’ is the distance from start 
service to this service. Note that the input and output parameters are assigned 
integer numbers. The smaller difference of two integers means the associated 
I/O parameters are more similar semantically. In this example, the input pa-



rameter for the composition is the input of Service 1 (4), the expected output 
is the output of Service 9 (114), and λ is 0.3. The shortest distance from Ser-
vice 1 to 9 is 6.0. Note that Service 8 feeds one of the inputs of Service 9 
rather than Service 6. And Service 6 selects the input from Service 1 instead 
of Service 3. The selected composition is illustrated with solid directional 
edges between the services. 

 
If we change λ to 0.7 this means the quality rate has less weight in matching 
function. The composition with shortest distance is shown with solid lines in 
Figure 5. The shortest distance from Service 1 to 9 is 9.0. In this case, Service 
6 is the input provider for Service 9 rather than Service 8. 
 

 
 

Figure 5: An IMA Composition Example (λ =0.7) 
 

Figure 6 presents a practical example which we tested for the validity of pro-
posed IMA composition technique. Forster, Berry and Wine Answers are 
three Food-Wine Matching services that provide the matching wine given 
food type or recipe. Wine Searcher, Internet Wine and K. L. Wine return the 
wine prices to the user given the wine name. The Converter service can con-
vert a wine price in US dollars to Franc currency. Recipe service always pre-
sents a seasonal recipe if the user inputs the food name, such as beef.   

 



 
 

Figure 6: Food-Wine Matching Service Composition (λ =0.2) 
 

Assume that the user inputs a seafood name and awaits the matching wine 
prices in Franc. All of three services accept such seafood as inputs. When λ is 
0.2 and I/O similarity has a low priority, the shortest path is Forster  Wine 
Searcher  Converter (shown with solid line in Figure 6). The Berry match-
ing service has the exact input parameter as the user’s input, and Forster takes 
food as input, that is the super-class of the seafood. That is regarded as a sec-
ond best matching in our approach. 

 
Figure 7: Food-Wine Matching Service Composition (λ =0.8) 

 



When we increase λ to 0.8 that means we place more weight to similarity 
matching. The optimal sequence is shown in Figure 7. The shortest path is 
Berry  Internet Wines  Converter. The reason is that Internet Wines has a 
bad quality rate (5), but it has a good matching degree. Therefore, when λ is 
large and we pay more attention to the quality rate, Internet Wines is not a 
good choice. K. L. Wine is another service that can produce the expected re-
sult and it is adjacent to the food-matching services. The absence of this ser-
vice is due to low similarity degree. The output of preceding service is Wine 
and K. L. Wine only accepts French Wine that is the subclass of the Wine and 
cannot meet the I/O requirement.  
 As illustrated in this section λ enables users to adjust relative importance 
of interface matching and QoS for a composition. Although we did not con-
duct extensive experiments for selecting good λ values in different situations 
we can provide some general guidelines here. We believe that a perfect inter-
face matching is essential for successful enactment of a WS composition. 
Thus we don’t advise using smaller values of λ (e.g., λ < 0.5). In situations 
where there is minimal information about QoS characteristics of WSs even 
greater values of λ (e.g., 0.8 ≤ λ) can be used.  

5. Human-Assisted (HA) Composition 

The goal of HAA composition is to help users in selecting appropriate WSs, 
and build a composition incrementally. The first step is to consider all inputs 
by semantically matching them with all WSs that take one or more of them as 
input. A list of these WSs is provided to the user with the WSs ranked based 
on their similarity matching score. The user can select WSs s/he considers 
best for the desired composition. Furthermore, to facilitate a better selection 
process, each listed WS includes a description of its functionality as well as 
the output(s) it produces. Then the system determines whether all output pa-
rameters of the desired composition are produced by the services selected so 
far. If that is the case, the composition is completed. Otherwise the interactive 
composition process continues with more stages, or can be terminated by the 
user. Figure 8 shows the first stage of a composition for a vacation trip ar-
rangement, where the user has selected two WSs so far. 

For the second stage, a new set of input parameters is generated by the 
system. This set includes the input parameters considered and also includes all 
outputs of the WSs selected by the user. The user is given the option to dis-
card elements in this new set of input parameters that may no longer be 
needed. The user may also mark some of the new input as “optional”. This 
helps in the ranking of the list of WSs that will be shown to the user in subse-
quent stages. The list of ranked results is grouped by input parameters to fa-



cilitate selection when the list is large. In the example of Figure 8, Restaurant 
Style, Restaurant Place, Hotel Place, and Hotel Rate are no longer considered 
as inputs in next stages. The inputs Check-in and Check-out dates and Per-
sonal information are still considered; outputs Restaurant Location, Hotel 
Location, and Hotel Name from the selected services are now considered as 
inputs in next stages; and output Restaurant Name from one of the selected 
services is no longer considered as input (unless stated otherwise by the user), 
because it satisfies an output parameter Restaurant Name. The smaller dashed 
box highlights the new set of inputs for the next stage, and in this way the 
composition problem has been reduced. Figure 8 also shows the second and 
final stage of the composition. 
 

 
Figure 8: Stages of an Interactive Composition 

6. Peer-To-Peer Automatic Composition 

In this section, we present our techniques for automatic WS composition in a 
Peer-to-Peer (P2P) network, where the peers all share the same ontology. 

6.1 Communities 

In a P2P network, each peer can provide some WSs, where each WS serves a 
particular domain. Each peer is a member of at least one community. A com-
munity of peers refers to a group of peers that provide services for the same 
domain. The structure of the communities adheres to that of the ontology, so 
that where the ontology is hierarchical, the communities have a hierarchical 
structure. For example, if in the ontology there is a concept motel which is 
sub-concept of another concept hotel, then there would be motel and hotel 



communities, with the former being a sub-community of the latter. Each com-
munity has both a master peer and a backup peer. The master peer in each 
community maintains a list of the masters and backup peers of other commu-
nities, and backup peers have a replica of this list. 

6.2 Evolution of the Network 

Our P2P network evolves in two different dimensions (Figure 9): (1) the first 
dimension is based on the domain for which the services are provided; (2) the 
second dimension is based on input-output matching relationships amongst 
the peers’ services. (The second dimension is not depicted in Figure 9). For 
the first dimension, each master peer maintains a list of all peers within its 
community with the services they provide as well as the input and output pa-
rameters they accept and generate, respectively. For the second dimension, 
peers become involved in a predecessor-successor relationships. The succes-
sor peer always takes note of this relationship for the progression of the 
composition process, as we shall see later in Section 6.3.  
 

 
 

Figure 9: Ontology-driven P2P Network  
(Different shapes indicate different domains; thick lines indicate communi-

cation lines between super peers (denoted by *, backup peers are denoted by 
**)) 

 
Consequently, the network is structured in such a way that peers with similar 
functionality are grouped together with all peers taking cognizance of data 
dependencies. The following explains how the network evolves in both di-
mensions (using the example in Figure 9).  

 (1) Initially there is only one peer (P1) in the network; when P2 contacts 
P1 to join the network, they determine based on their common ontol-
ogy, what domains they provide services for, in this case “Flight” and 



“Hotel” respectively. Since they are the first peers for these domains, 
they automatically become the master peers and record this in their 
lists. P3 contacts P2 to join the network, as before, based on the 
common ontology, P2 determines that P3 is in the “Flight” domain. 
Since P2 is itself a master of its domain it determines which peer to 
redirect P3 to (in this case P1). P3 then contacts P1 and records that 
P1 is its master. Since P3 is the only other peer in the community be-
sides P1, it is automatically made the back up peer for this domain. 
This self-organizing network can also handle situations where a peer 
about to join the network contacts a non-master/back up peer as oc-
curs when P5 joins the network, or where peers form different sub-
communities within a community (e.g., P6 is a master for “Motel” 
sub-community of “Hotel” services). 

(2) As each peer joins the network, its master queries other master peers 
of different communities to determine if there is any peer in their 
community for which the new peer’s output matches any of their in-
put or for which their output matches any of the new peer’s input. In 
the first case, the new peer becomes a “predecessor” of any such peer 
and in the second case it becomes a “successor” of any such peer. If 
such a peer exists, the master peer in the community of the successor 
peer notifies it about this association. Thus, a directed graph with in-
put/output compatibility is maintained. 

 

6.3 Web Services Composition Technique 

In this section, we describe our techniques for discovering and composing 
WSs in the P2P network as illustrated in Algorithm 2. We assume that each 
user query for a composite service specifies the expected functionality of the 
service as described in Section 3.1. When a peer (initiator peer) receives a 
request from a user for a particular service or service composition, if it is not 
the master of its community, it forwards the request to the master in its com-
munity. Then, the master of the initiator peer determines the candidate com-
munities for the query and then relays the request to the master peers of these 
communities. These masters then determine which services in their commu-
nity provide all or some of the expected outputs of the user, what inputs these 
services require and their host peers. If there are several candidate WSs 
(peers) for a particular service, one of them is chosen either randomly, or 
based on some quality of service criteria if any exists.  

 
01. procedure compose(usersinputs, usersoutputs) returns Boolean 
02. if initiatorpeer not domain master 



03.  forward request to its domain master 
04. boolean reply = true 
04. for domainMasters = each domain master of candidate communities 
06.  reply = reply & domainMaster.checkComposeable(userinputs,  useroutputs) 
05. if reply == true  
06.  return true  
 
01. procedure checkComposeable(usersinputs,usersoutputs) returns Boolean 
02. if mycommunityoutputs == any of the usersoutputs 
03. boolean composeableViaMe = true 
04.  aCandidatePeer = one peer producing any of the usersoutputs  
                  // with greatest QoS   
05.  composeableViaMe = checkComposeable(aCandidatePeer, aMaster   
  Peer.usersInputs) & composeableViaMe; 
06.  if composeableViaMe is false and all candidate peers have been tried 
07.   return false  else return true 
      
01. procedure checkComposeable(peer, usersinputs) returns Boolean 
02. if userinputs contains all peers inputs 
03.  return true 
04. else if peer does not have dependencies on all needed inputs  // successor peer 
05.  return false 
06. else 
07.  boolean canCompose = true 
08.  for predecessorPeer = 1 to # of my predecessor peers for the inputs I need 
09.   canCompose = canCompose & checkComposeable(predecessorPeer,  
   usersinputs) 
10.  return canCompose 

Algorithm 2: P2P Composition Algorithm 
 
In general, composition of WSs is possible only when there are data depend-
encies amongst the individual services. In other words, the output(s) of some 
WSs has to match the input(s) of at least one WS. In our P2P network, these 
data dependencies have been captured by the predecessor-successor relation-
ships amongst peers as mentioned earlier. Discovery of peers that can partici-
pate in the composition amounts to traversing these predecessor-successor 
relationships, beginning with the peer(s) producing the user’s outputs, up to 
those accepting the inputs (provided by the user) required for the composition. 
This is possible because as we mentioned in section 6.2, each successor peer 
knows its predecessor peer(s). For example, in Figure 10 the user sends the 
request with input a,b,c,d,e,f and output x,y,z to Peer 13 (P13). P13 forwards 
this request to its master P7, which then determines based on the ontology to 
forward this request to P1 and P2. These master peers then look up in their 
table which peers within their community provide some or all of the expected 
outputs. P2 determines that P10 and P5 are candidates for the composition. 
Since the input g of P10 does not match any of the inputs provided by the 



user, P10 contacts P4, its predecessor peer. P4 then matches its inputs with 
those provided by the user. In this case, there is a match so this predecessor-
successor traversal ends. Also, P7 determines that P15 can participate in the 
composition. The actual composition then starts with P4, P15, P5 and then 
P10. 

 

 
Figure 10: Example of P2P-based Composition  

(super-peers are denoted by *) 

6.4 Evaluation 

For proof of concept, we have simulated our P2P composition technique. A 
peer is represented by a Java object, each identified by a peerId. We randomly 
assigned WSs from different service domains to peers, and experimented with 
different numbers of peers, each time, observing the time taken for the evolu-
tion of the network. For each number of peers tested, we supplied two types 
of queries for composite services, namely composeable and non-composeable 
queries. We observed the time taken for the discovery of the services for the 
composition for the first type of queries. For the second type of queries, we 
observed the amount of time it took to report that the requested service could 
not be composed. The simulation was carried out using an Intel Pentium IV 
processor with 2.66GHz processor speed and 512MB RAM.  

As shown in Table 1 and Figure 11, as the number of peers increased, the 
time taken for the network evolution time naturally increased. However, the 
times taken to run the composeable queries were approximately the same. 
This is so because all peers keep an index of which peers it depends on for 
any input. As such, irrespective of the number of peers in the network, it 



should take approximately the same amount of time to determine if the re-
quested service can be composed, since only the peers that can potentially 
answer the query are contacted. On the other hand, for the non-composeable 
queries, the amount of time taken to discover that the requested service can 
not be composed increased proportionally with the number of peers. This is so 
because as the number of peers increased, the number of peers within a com-
munity also increased. Consequently, the number of candidate peers for each 
query also increased. In the first of the two types of queries (composeable 
queries), an early termination of the back-tracking to candidate peers is possi-
ble. For a candidate peer, an early termination of its predecessor/successor 
relationships is also possible. However, in the second type (non-
composeable), the back-tracking does not terminate until all candidate peers 
have been contacted and all predecessor/successor relationships for all candi-
date peers have been traversed. Consequently, as the number of peers in the 
network increased, the latter type of query took more time than the former 
type. 

 
Table 1: Simulation Results for P2P Network Evolution and  

WS Composition 
 

  Elapsed Time (Secs) 
Number of 

Peers 
Evolution 

Time(Secs) Composeable 
Not Compose-

able 
100 0.06 0.01 0.01 
500 0.33 0 0.03 

1000 1.723 0.01 0.18 
2000 9.534 0 1.632 
5000 181.571 0.01 41.49 
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Figure 11: Simulation Results in Graph Format 

7. Conclusions and Future Work 

Today’s search engines and knowledge discovery tools help users to locate 
relevant documents and assemble relevant knowledge for effective decision-
making respectively. Similarly, users need new tools to help them discover 
and assemble WSs into processes for easier and better quality workflow exe-
cutions given increasing number and complexity of WSs. In this paper, we 
illustrate three techniques for (semi) automatic composition of WSs by ex-
ploiting semantics provided by ontological description of inputs and outputs 
of the services. In Interface-Matching Automatic composition, the different 
services are put together to generate a set of expected outputs from the user. 
Our approach finds an optimal composition based on factors of semantic 
matching of inputs/outputs and QoS criteria (adjustable by users).  

Human-Assisted composition follows the approach of iteratively compos-
ing the service by making use of filtering and ranking based on user-provided 
constraints. Factors such as geographic location, quality rate, cost, etc. can be 
taken into consideration at each stage besides the semantic matching of in-
puts/outputs. 

The third technique presented deals with WSs composition in a P2P envi-
ronment by utilizing master-peers of the network. The peers are (logically) 
organized in a dimension based on the domain(s) of the service(s) they pro-
vide. A second dimension keeps relationships of compatible semantic in-
put/output matches among the peers’ WSs regardless of the domain. This 
allows for a dependency (directed) graph organization that resembles that of 
our Interface-Matching technique.  



For testing proposed techniques, collections of synthetically generated 
WSs in various domains such as travel planning, wine suggestion etc. are 
used. However real world applications of the proposed techniques are possible 
in these and other domains, such as bioinformatics to automatically compose 
WSs to integrate multiple genetics databases and applications and discover 
interactions among proteins [Kochut03].  

Some interesting technical problems still lie ahead. For example, users may 
need to compose services based on their internal computations when their 
profiles may not convey adequate semantics to differentiate them. We plan to 
consider validation of the composition based on pre- and post-condition se-
mantics.  
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