
Ontology-Driven Web Services Composition Platform

I. Budak Arpinar, Ruoyan Zhang, Boanerges Aleman-Meza, and Angela Maduko

Large Scale Distributed Information Systems (LSDIS) Lab,
Computer Science Department, University of Georgia,

Athens, GA 30602-7404, USA
{budak,boanerg,ruoyan,maduko}@cs.uga.edu

Abstract. Discovering and composing individual Web Services into more com-
plex yet new and more useful Web Processes is an important challenge. In this
paper, we present three techniques for (semi) automatically composing Web
Services into Web Processes by using their ontological descriptions and rela-
tionships to other services. In Interface-Matching Automatic composition
technique, the possible compositions are obtained by checking semantic simi-
larities between interfaces of individual services. Then these compositions are
ranked considering their Quality of Services (QoS) and an optimum composi-
tion is selected. In Human-Assisted composition the user selects a service from
a ranked list at certain stages. We also address automatic compositions in a
Peer-to-Peer network.

Keywords: Web Services, Discovery, Composition, Ontology

1. Introduction

In recent years, a large number of Web Services (WSs) have emerged with the
rapid development of the Internet. The Web is now evolving into a distributed
device of computation from a collection of information resources [Fensel02a].
Furthermore, the need for composing existing WSs into more complex ser-
vices is also increasing, mainly because new and more useful solutions can be
achieved. In general, this is a result of complex and increasing user demands
and inability of a single WS to achieve a user’s goals by itself. For example, a
traveler who wants to make a hotel reservation and find a French restaurant
less than three miles from the hotel may either utilize some services that s/he
already knows or try to find the services by looking them up in a keyword-
based search engine (e.g., expedia.com or google.com) or in a WSs registry
(e.g., a UDDI (Universal Description, Discovery and Integration) registry).
Also, composition of discovered services and enabling data-flow among them

(e.g., the hotel address is needed as input to a restaurant locator service) are
usually done manually, which is highly inconvenient, especially for very
complex compositions.

The problem lies with the fundamental abstractions used to model WSs and
methods to compose these services using these abstractions. In more complex
examples of scientific data exploration through service compositions, even
tens or hundreds of data collection services can be involved in a composition
(e.g., a search involving gene banks). In that case an automatic composition
can help in reducing query formulation and execution time enormously.

In general, there are four different dimensions for a service composition
(Figure 1): (i) degree of user involvement in a composition specification, (ii)
whether the composition is based on templates, (iii) dynamicity (i.e., adapta-
tion) of the composition, and again, (iv) degree of user involvement in the
adaptation of the composition [Cardoso03 & Srivastava03]. In the first dimen-
sion, a composition can be defined fully by a user by including control and
data-flow information besides the individual services making the composite
service. In contrast, in an automatic composition, the user is not involved but
instead the application generates control and data-flow. This is very challeng-
ing due to the difficulty of mapping user needs to a collection of correlated
services where their interim outputs can satisfy one another’s input require-
ments and final deliverable meets the user demands. Besides, in both user-
defined and automatic composition techniques, either actual service instances
or service templates can be used. In the latter, the individual service instances
are searched and integrated automatically at execution time for a given plan
[Chandrasekaran03]. In a dynamic composition, the composition itself can be
adapted mainly because of Quality of Services (QoS) requirements at run-
time. Also, a composition may not be defined at design-time but can be as-
sembled dynamically at execution time. Finally, some hybrid methods such as
semi-automatic compositions and semi-automatic adaptations are also possi-
ble.

This work aims for reducing the complexity and time needed to generate,
and execute a composition and improve its efficiency by selecting the best
possible services available using automatic Interface–Matching Automatic
(IMA) and Human-Assisted (HA) composition techniques. IMA composition
has no predefined template and the user is not involved in the composition
specification. In contrast, the user is greatly involved in the HA composition
specification and adaptation based on predefined templates.

Figure 1: A Classification of Web Service Composition Techniques

1.1 Contributions

We developed a collection of ontology-driven Web services composition
techniques. In IMA composition technique, the possible compositions are
obtained by checking semantic similarities between interfaces of individual
services with neither any predefined template nor user involvement in specifi-
cation and adaptation. An optimum composition which can best satisfy the
user’s needs considering quality (or other attributes that the user may be con-
cerned about) is selected. However, our experiments show that without func-
tionality constraints, IMA technique is more appropriate for information-
retrieval services (i.e., not world-altering services). That is, services that al-
ways return relatively simple results based on the user-supplied inputs
[Zhang03 & Arpinar04]. This is mainly due to the fact that Web services with
the same interface could perform different functions. There are also many
earlier efforts in composition of software components using pipe-filter meth-
ods [Mao01]. Our contribution is that we developed a shortest-path algorithm
to address a more complicated problem in which the services might have mul-
tiple I/O (input and output) parameters. This technique also takes Quality of
Service (QoS) of WSs into account to find a best quality composition (e.g.,
with minimum cost) as described later. Furthermore, using the ontological
techniques, we can successfully compose services even when their interfaces
are not exactly matched syntactically.

However, complex services can not be located precisely and composed se-
quentially merely considering the interfaces. For example, flight booking and
hotel reservation services, where the user’s request is based on not only the
inputs and outputs, but also on the QoS (e.g., service quality rate in DAML-S
[DAML-S Coalition02]), functionality, service name, geographic regions, etc.
As the number of various services increases, the task of selection of an ade-

quate service quickly becomes tedious. Therefore, new techniques are needed
to help users in finding, filtering, and composing these services.

At the beginning of service composition, a user may have a vague idea of
the composite service that s/he is seeking. Another possibility is that an avail-
able composite template may not satisfy the user, who wants to add or remove
some tasks in the original plan if necessary. In addition, service selection and
composition are not only determined by the constraints on service description
(e.g., interface), functionality properties and the service output values to be
returned at run-time need to be considered. For example, consider a trip plan-
ning service composition example. A user often prefers a flight service that
provides the cheapest flight ticket, which, however, could only be known after
comparing the output ticket prices of a set of services. Furthermore, even the
type of transportation service in the composition could be determined by the
dynamic information provided by other services, such as parking fee or taxi
rate if s/he is considering traveling by either flight or rental car. Thus depend-
ing on requirements on service descriptions and dynamic information supplied
by the services, a customization and dynamic composition with more human
involvement may be needed for many applications. A preliminary technique
to have a run-time control over the composition is the introduction of an
XOR-split in the control-flow to filter out undesired services (e.g., in price
selection). An XOR-split is used to select only one of the several execution
branches, which satisfies an associated condition.

The Human-Assisted (HA) composition technique targets applications
which require frequent human-intervention for an acceptable composition.
The goal of this technique is to build a composition pathway (i.e., map) in-
crementally in a customized way. This is a complementary technique to IMA
that guides the users for selecting proper service instances described in
DAML-S (version 0.9), and allows users to create a customized composite
service plan.

In this paper, we intend to address the following issues:
1. Exploiting Semantic Web and Web Service Ontologies to bridge the

concept gaps in interface parameters and other parts of descriptions of
services. Basically, there are four types of semantics for Web Services:
(i) data/information semantics, (ii) functional/operational semantics,
(iii) execution semantics, and (iv) QoS semantics [Sheth03]. Our
framework mainly uses the former two semantics and intends to support
users in the selection of service classes and instances by matching ser-
vice interfaces and attributes.

2. Ranking and filtering of composable services (a notion capturing if two
services are interoperable, i.e., if they have complementary I/O inter-
faces and functionalities) at certain intervention points by the user. This
also considers a semantic user profile and output values for filtering
large numbers of service instances.

3. Automatically adjusting a composite service plan by removing the non-
relevant services or adding the services suggested by the system if their
I/O matches semantically.

Currently, descriptions of many WSs are contained in a single central registry,
such as UDDI. Using emergent Peer-to-Peer (P2P) computing techniques, this
registry can be moved from its centralized nature to a distributed one. With
decentralization, problems of availability, reliability and scalability can be
addressed. This, for example, can enable service providers to choose any par-
ticular registry in which their services would be listed. This might be benefi-
cial in situations where competitors do not want to be listed in the same regis-
try. Thus, we also briefly present a P2P Automatic (PPA) composition tech-
nique.

The rest of the paper is organized as follows: In Section 2, we review the
related research. Section 3 briefly describes the system architecture. IMA,
HA, and PPA composition techniques are described in Sections 4, 5, and 6
respectively. Section 7 concludes the paper, and outlines the future work.

2. Related Work

This work aims to generate a composite service plan out of semantically de-
scribed existing services. The WS composition is related to many efforts.
These include the WS specification, discovery, composition and execution
techniques.

2.1 Web Service Description

The service specification methods help software systems to capture capabili-
ties of WSs. In general, these specification methods are based on either indus-
try-oriented standardization efforts, or academia-oriented WS ontologies.
UDDI and Web Services Description Language (WSDL) are current industry
standards developed for e-commerce. The services are described according to
an XML schema which is defined in the UDDI specification and registered by
the service providers along with keywords for their categorizations. There-
fore, UDDI does not provide a semantic search rather it depends on a prede-
fined categorization of WSs through keywords. In complimentary roles,
WSDL and Simple Object Access Protocol (SOAP) describe WSs as a set of
endpoints (or ports) operating on messages, and a protocol for exchange of
these messages between the services, respectively. Also, some industry stan-
dards have been emerging to represent data and control-flow, and transac-

tional properties among a collection of services. Business Process Modeling
Language, XLANG, Web Services Flow Language (WSFL), and Business
Process Execution Language for Web Services (BPEL4WS) can be mentioned
in this category.

The semantic approach for WS specifications includes Web Service Model-
ing Framework (WSMF) in which an ontology provides the terminology used
[Fensel02b]. DAML-S (recently evolved to OWL-S) specifies three main
components for each service: service-profile, process-model and service-
grounding. A service profile is the core element of a DAML-S specification,
and involves semantic descriptions of service interfaces and functions
[DAML-S Coalition02]. The process-model provides information about how
the service works, and the service grounding describes how an agent can ac-
cess the service. Other techniques have attempted to add semantics to existing
services by providing mappings between WSDL, UDDI definitions and do-
main ontologies (e.g., METEOR-S [Sivashanmugam03a, Patil04a]).

In this work, we primarily focus on the collection of inputs, and outputs for
composition and leaving pre-condition, and effect (i.e., post-condition) ori-
ented composition as a future work.

2.2 Semantic Web Service Discovery and Composition

Semantic WS discovery related work includes [Cardoso03], which describes
how to evaluate a degree of similarity between a service template and an ac-
tual service instance by measuring the syntactic, operational, and semantic
similarity. Among the state-of-the-art discovery systems, the project DReggie
adds reasoning modules to carry out the semantic matching process for dis-
covering DAML described Web Services [Chakraborty01]. Unlike other dis-
covery approaches on the basis of WS interfaces, [Klein01] explored ways to
search services according to the functionality requirements, and proposed
Process Query Language (PQL) to search process models from a process on-
tology. [McIlraith01, McIlraith02] presented a method to compose WSs by
applying logical inferencing techniques on pre-defined plan templates. Their
technique focuses on the process-centric description of service as actions that
are applicable in states. Some earlier efforts also emphasized the need for
semantic representations of state, actions, and goals for composing services
[Srivastava03].

The main concept behind service composition is not new in Computer Sci-
ence. Earlier, software composition techniques aimed to find a good combina-
tion of components that responds to the client specific requirements by match-
ing requested properties with provided properties [Zaremski97]. One ap-
proach for finding a suitable composition is to delegate the responsibility for
solving certain requirements posed on a component to other components after

fulfilling it partially [Sora01]. Similarly, our interface-matching mechanism
(IMA) propagates requirements (that are set of a user’s expected outputs) to
corresponding WSs in an incremental way. [Mao01] proposes a composition
path, which is a sequence of operators that computes data, and connectors that
provide data transport between operators. The search for possible operators to
construct a sequence is based on the shortest-path algorithm on the graph of
operator space. However, [Mao01] only considered two kinds of services –
operator and connector with one input and one output parameter (which is the
simplest case for a service composition) and did not take semantics into the
account.

In the instance composition category, SWORD uses a rule-based expert
system to determine if a plan of composite service can be built out of existing
services [Ponnekanti02]. It mainly focuses on the composition of information
provider services (i.e., not world-altering services), and (like [Mao01]) it does
not address the input and output mismatch problem. In our approach, services
can have more than one input and output parameters, and their interfaces may
not match syntactically. We address semantic matching of parameters in the
different composition methods proposed. Furthermore, some related work has
identified types of semantic matchmaking [Palucci02] as well as partial
matching [Constantinescu03].

2.3 Interactive and Adaptive Composition

At present, academic approaches have been proposed to tackle the problems
for personalization and filtering of WSs based on templates. An example is a
trip planner, which is declared as a state chart, and the resulting composite
services are executed by replacing the roles in the chart by selected individual
services [Benatallah02]. Template-based composition techniques are also used
in [Narayanan02], and the ICARIS project [Tosic01].

Goal-oriented inferring and planning are used for services composition in
the semantic Web community. However, none of the approaches has devel-
oped a satisfactory planning solution to the service composition so far
[Srivastava03].

In [Sirin03], users select and filter the services by using a similar match-
making algorithm. In [Balke03], the services are selected by using the hard
and soft constraint standards in a personalized composition.

 [Ambite03] designs a constraint reasoning network to compute any user’s
input change and produce the corresponding outputs to optimize the schedules
for the trip based on the AI constraints reasoning technology. For a relatively
fixed template, such as trip planner, generating a predefined constraints net-
work might be feasible in practice. For less widely used services, it may not
be possible to have such a priori constraints network. Our process ontology

which is explained later has a similar feature with the constraints reasoning
network except the latter only links services or functions to produce the ex-
pected results while in the process ontology all services would be connected
only if their inputs and outputs are matched.

When the composite service plan is generated, a verification of the service
logic is crucial for a successful execution. [Cheng02] presents an algorithm
that checks the validity of the execution of services.

Also our earlier work has classified possible composition system architec-
tures into three categories in the context of inter-organizational business proc-
esses, namely process portal, process vortex and dynamically trading proc-
esses [Sheth99].

2.4 METEOR -S Framework

The METEOR-S project at LSDIS at University of Georgia, has studied the
use of emerging WSs and semantic Web technologies and research, to de-
velop semantic WS and process specification, WS discovery, and process
composition [Patil04b, Cardoso02, Sivashanmugam03b].

MWSAF (METER-S Web Service Annotation Framework) was designed
to mark up WS descriptions with ontologies and develop algorithms to match
and annotate WSDL files with relevant ontologies [Patil04a]. The METEOR-
S Web Services Discovery Infrastructure (MWSDI) provides a scalable infra-
structure for semantic publication and discovery of WSs [Verma04]. A spe-
cialized ontology called Registries Ontology maintains the relationship be-
tween all the domain and associates registries to them. Additionally, an algo-
rithm has been developed to find the WSs with proper interfaces and opera-
tional mechanisms for workflow generation [Cardoso02, Cardoso03].

As part of the METEOR-S project, the MWSCF (METER-S Web Service
Composition Framework) platform specifies an activity by means of a seman-
tic activity template then weights the overall ranking of services on the two
dimensions: semantic matching and QoS criteria matching [Sivashan-
mugam03]. Our work has benefited from the METEOR-S techniques that are
mentioned. For example, the similarity algorithm described in Section 4 is
partially based on the algorithm in [Cardoso02].

2.5 Peer-to-Peer Web Services Composition

A system for declaratively composing and executing WSs dynamically in a
Peer-to-Peer (P2P) network is presented in [Benatallah02]. The concept of a
service community is used to provide an abstraction from actual service pro-
viders so that any WS with the functionality described by the service commu-

nity can be a member of that community, regardless of its service domain.
However in this work, we focus on how semantic WSs hosted by nodes in a
P2P network can be grouped in order to reduce the search space during dis-
covery and composition of WSs. Host peers of WSs are automatically
grouped into service communities, where a service community refers to a
group of WSs in a given domain, determined by a globally shared domain
ontology.

 [Schlosser02] presents a P2P infrastructure for Semantic WSs discovery
(without addressing services composition). Peers are grouped into ontological
concept clusters in a Cayley graph based structure, with the clusters organized
into hyper-cubes, so that queries can be sent to only those peers that are po-
tentially able to answer them. When a query is routed to a concept cluster, the
query is broadcasted to all peers within the cluster in order to discover a peer
that can answer the query. On the contrary, we have the concept of master
peers for each service community. Since the master peer has information
about all the peers within a community, it can determine which peers can an-
swer the query, thereby minimizing the amount of communication amongst
peers in that community. Furthermore, the infrastructure of [Schlosser02] does
not take into consideration quality of service metrics. In our approach, the
master peer for each community can select a peer from amongst candidate
peers for a particular query based on its quality of service.

Other works such as [Hoschek02, Schmidt03, Banaei-Kashani04] focus on
web services discovery on a P2P paradigm. They do not however consider
how the WSs can be dynamically composed.

3. An Overview of System Architecture

3.1 Specification of Semantic Web Services and Queries

A semantic WS is a unit of composition that can be deployed independently,
and may be subject to composition by a third party on the Web. At the same
time, its interface, its process specification (i.e., its functionality) and its rela-
tions to other services are defined, and advertised in a machine-processable
form so it can be automatically discovered, composed, and invoked in new
complex WSs. The emerging semantic Web makes it possible to specify se-
mantics of a domain such as the terms and concepts of interest, their mean-
ings, relationships between them and the characteristics of the domain through
an ontology. In this work, we use DAML-S (version 0.9) WS ontology. A
service profile is the core element of a DAML-S specification, and it involves

semantic descriptions of service interfaces and functions. In this work, we
primarily focus on the collection of inputs, and outputs for composition.

A composite service query can be represented in a very similar way as a
service description in DAML-S. Like DAML-S template of services, the
query profile includes the description of the composite service and the inter-
face of the expected composite service, in which we define the output parame-
ters, output constraints, input parameters, and input constraints. The output
constraint specifies the requirements on the outputs by the user, such as the
properties of the output parameter. For example, the user can define price
properties, currency, etc. using a price ontology.

The second part of the query is about the functionality of the composite
service (part of our future research). The user can partially specify how the
composite service works and what kind of individual services would be ex-
pected. For example, a restaurant owner may want to find matching wines for
certain meals in her restaurant and learn the prices of these wines. To formu-
late a query s/he can specify a seafood type for a Food-Wine-Matching ser-
vice and expect the names and prices of matching wines.

3.2 System Architecture

The system architecture (Figure 2) involves three components (i) composer
component, (ii) ontology and service storage component and (iii) extraction
component. The storage component hosts the user profile, WS, process and
domain ontologies. User profile records the history of each user’s usage of
WSs. The service instances can be ranked based on their usage frequency (i.e.,
popularity).

Ontology component includes domain ontologies (in OWL) that are spe-
cialized for description of parameters of the services. For example, an ontol-
ogy for food and drink related WSs specifies the sub-class and super-class
relationships for the relevant entities and properties [Zhang04]. In this ontol-
ogy, Wine is defined as a subclass of the Alcohol that is the subclass of Drink.
The properties of Wine include wine name, vintage, merchant location and
price, etc. The user can specify the properties of Wine in a query and limit the
range of the properties.

Like domain ontologies, a WS ontology describes service hierarchies and a
subclass of a service inherits the properties and functionality of its super-class
service and extends it with its own attributes [Zhang04]. A process ontology
involves a collection of services that are connected each other if their inter-
faces are matched semantically and built for improving the efficiency of com-
position algorithm (Figure 3).
The query parser parses the query and sends the query object to the process
composer, which searches for a sequence of services by navigating WS and
process ontologies and returns a composite service with the optimal graph. It
also generates the data-flow plan of the composite service and sends the plan
for process execution and monitoring.

When a service provider sends a registration request, a service extractor ex-
tracts service name (including its ID), text description, instance of relation-
ship, input/output information, etc. from the service profile and stores them in
a services database. The process ontology is also updated by connecting the
I/O parameters of the new service to other compatible service parameters.
This helps in reducing the complexity of searching for services in an auto-
matic composition as mentioned earlier. If the services are described in UDDI
schema, their profiles would be sent directly into a UDDI registry.

Figure 2: An Overview of System Architecture

4. Interface-Matching Automatic (IMA) Composition

IMA composition technique aims for generation of complex WS compositions
automatically. This requires capturing user’s goals (i.e., expected outcomes),
and constraints, and matching them with the best possible composition of
existing services. Therefore, inputs and outputs of the composite service
should match the user-supplied inputs, and expected outputs, respectively.
Furthermore, the individual services placed earlier in the composition should
supply appropriate outputs to the following services in an orchestrated way
similar to an assembly line (i.e., pipe-and-filter) in a factory so they can ac-
complish the user’s goals.

In IMA, we navigate the process ontology to find the sequences starting
from the user’s input parameters and go forward by chaining services until
they deliver the user’s expected output parameters. The composition termi-
nates when a set of WSs that matches all expected output parameters is found,
or the system fails to generate such a composition of services.

The goal of this technique is to find a composition that produces the desired
outputs within shortest execution time and better data-flow (i.e., better match-
ing of input and output parameters). If the service ontologies are complex and
the number of services is large this can be a challenging task. The composi-
tion starts from the service that needs one or more of the input parameters
given by the user. If this WS does not produce all of the expected outputs,
more WSs need to be found to provide the expected outputs. This process
continues until a sequence of WSs producing the expected composition out-
puts from the user’s inputs is found.

Figure 3 shows a sample process ontology involving relations representing
input and output parameter matching. Nodes represent services and edges
connect services if the output of a service can be “feed-into” the input of a
service. Edges shown with dashed lines connect parameters that do not match
exactly yet are semantically equivalent. In the figure, different service outputs
can feed into other service inputs. For example, Service 6 requires two input
parameters, one of which can be provided by either Service 1 or Service 3 and
the other comes from Service 4.

Figure 3: A Process Ontology Example

In an example scenario, the user provides input parameter S1i1 and expects
the output S9o1 as indicated in the graph. The composition goal is to find a
shortest sequence of services from Service 1 to Service 9. In this graph the
source node SI and SF represent the virtual initial and final services respec-
tively, which are added for computing convenience. The weight of every edge
is calculated using a function of quality rate and semantic similarity value. To
assign weights using quality five generic QoS criteria can be used: (1) execu-
tion prices, (2) execution duration, (3) reputation, (4) reliability, and (5) avail-
ability [Zeng03].

The trade-off formula weighting quality criteria versus similarity is defined
by the following formula, with a user adjustable parameter λ:

W = (1-λ) * quality rate + (λ) * similarity value.

We considered four cases to check similarity (i.e., matching) of an output and
input parameter from the same ontology: (1) if they are same, their similarity
is maximal and weight of the corresponding edge is the smallest. (2) If the
output parameter of the former service is subsumed by the input parameter of
the succeeding service, this is the second best matching level. The similarity
value depends on their distance in the ontology. (3) If the output parameter of
the former service subsumes the input parameters of the succeeding service,
the properties of the parameters could be partially satisfied. (4) When two
parameters have no subsumption relation or they are from different ontolo-
gies, the similarity value can be obtained by using Tversky’s feature-based
similarity model [Cardoso02], which is based on the idea that common fea-

tures increase the similarity of two concepts, while feature difference de-
creases the similarity.

The composition technique aims to find an optimal composition of ser-
vices considering QoS and semantic matching of parameters as illustrated in
Algorithm 1. We modified Bellman-Ford shortest-path dynamic programming
algorithm to find the shortest sequence from initial stage at node SI to the
termination node SF. In our graph representation some services need more
than two incoming edges as input parameters. Therefore, we not only record
distance for every node, but also we trace the distance of every path at every
node. When all the required input parameters are available, a service can be
executed. Therefore, the distance of every node is determined by the maxi-
mum value of distances of all the input parameters. For example, Service 3
must have two incoming edges and therefore a distance value of Service 3 is
determined by the maximum of S3i1 and S3i2 because Service 3 can be exe-
cuted only after both of these inputs are available (Figure 3). In a different
case, when there is more than one incoming edge fitting for one input parame-
ter of a service, such as output of either Service 1 or 3 satisfies input of Ser-
vice 6, we choose the minimum distance of edges 3-6 and 1-6 as a distance
associated with the input parameter of Service 6.

01. procedure compose(usersinputs, usersoutputs) returns Boolean
02. for times = 1 to N // in worst case, the algorithm needs to update distance of each
 service N times (N is the number of services)
03. for i = 1 to N // check each service
04. for iin = 1 to Nin // Nin is the number of inputs of service i
05. for j = 1 to N // for each input of service i check each other
 service
06. for jout = 1 to Nout // check each output of service j
07. Check the output jout of service j and the
 input iin of service i to see whether they
 are similar (connected); if similar find the
 degree of their similarity
08. end
09 end
10. Find the shortest distance to iin of service i (minimum of all
 available paths to iin)
11. end
12. Find the shortest distance for service i (if outputs of service i need all
 inputs then its is the maximum distance of all inputs plus its quality)
13. end
14. If all required usersoutputs are obtained then return true
15. end

Algorithm 1: IMA Composition Algorithm

The complexity of Algorithm 1 is Ο(N3.Nin.Nout) where N is the number of
available services and Nin and Nout are number of inputs and outputs per WS
respectively. However this complexity can be improved by pre-processing
WSs to gather similarity and distance information prior to WS composition.

Furthermore, obtaining quality rates of WSs is a challenging task. For this
purpose we adopt a WS quality model similar to one proposed in [Sheng03]
which is based on a set of quality criteria that are in inherent to WSs in gen-
eral such as execution price, execution duration, reputation, reliability, and
availability. The overall quality rate is an average of these individual rates.
New criteria can be added to this quality model if needed. However our work
does not propose any particular model for calculating these rates and mainly
rely on service providers for advertising execution price, duration, and inquir-
ing about availability of particular WSs. Calculating reliability and reputation
rates usually need analyzing historical data and user feedback respectively.
[Sheng03] provides more details about how to obtain these quality rates.

Figure 4: An IMA Composition Example (λ =0.3)

4.1 Automatic Composition Examples

Figure 4 illustrates a composition result with the given process ontology of
Figure 3. ‘q’ is the quality rate of a service and ‘d’ is the distance from start
service to this service. Note that the input and output parameters are assigned
integer numbers. The smaller difference of two integers means the associated
I/O parameters are more similar semantically. In this example, the input pa-

rameter for the composition is the input of Service 1 (4), the expected output
is the output of Service 9 (114), and λ is 0.3. The shortest distance from Ser-
vice 1 to 9 is 6.0. Note that Service 8 feeds one of the inputs of Service 9
rather than Service 6. And Service 6 selects the input from Service 1 instead
of Service 3. The selected composition is illustrated with solid directional
edges between the services.

If we change λ to 0.7 this means the quality rate has less weight in matching
function. The composition with shortest distance is shown with solid lines in
Figure 5. The shortest distance from Service 1 to 9 is 9.0. In this case, Service
6 is the input provider for Service 9 rather than Service 8.

Figure 5: An IMA Composition Example (λ =0.7)

Figure 6 presents a practical example which we tested for the validity of pro-
posed IMA composition technique. Forster, Berry and Wine Answers are
three Food-Wine Matching services that provide the matching wine given
food type or recipe. Wine Searcher, Internet Wine and K. L. Wine return the
wine prices to the user given the wine name. The Converter service can con-
vert a wine price in US dollars to Franc currency. Recipe service always pre-
sents a seasonal recipe if the user inputs the food name, such as beef.

Figure 6: Food-Wine Matching Service Composition (λ =0.2)

Assume that the user inputs a seafood name and awaits the matching wine
prices in Franc. All of three services accept such seafood as inputs. When λ is
0.2 and I/O similarity has a low priority, the shortest path is Forster Wine
Searcher Converter (shown with solid line in Figure 6). The Berry match-
ing service has the exact input parameter as the user’s input, and Forster takes
food as input, that is the super-class of the seafood. That is regarded as a sec-
ond best matching in our approach.

Figure 7: Food-Wine Matching Service Composition (λ =0.8)

When we increase λ to 0.8 that means we place more weight to similarity
matching. The optimal sequence is shown in Figure 7. The shortest path is
Berry Internet Wines Converter. The reason is that Internet Wines has a
bad quality rate (5), but it has a good matching degree. Therefore, when λ is
large and we pay more attention to the quality rate, Internet Wines is not a
good choice. K. L. Wine is another service that can produce the expected re-
sult and it is adjacent to the food-matching services. The absence of this ser-
vice is due to low similarity degree. The output of preceding service is Wine
and K. L. Wine only accepts French Wine that is the subclass of the Wine and
cannot meet the I/O requirement.
 As illustrated in this section λ enables users to adjust relative importance
of interface matching and QoS for a composition. Although we did not con-
duct extensive experiments for selecting good λ values in different situations
we can provide some general guidelines here. We believe that a perfect inter-
face matching is essential for successful enactment of a WS composition.
Thus we don’t advise using smaller values of λ (e.g., λ < 0.5). In situations
where there is minimal information about QoS characteristics of WSs even
greater values of λ (e.g., 0.8 ≤ λ) can be used.

5. Human-Assisted (HA) Composition

The goal of HAA composition is to help users in selecting appropriate WSs,
and build a composition incrementally. The first step is to consider all inputs
by semantically matching them with all WSs that take one or more of them as
input. A list of these WSs is provided to the user with the WSs ranked based
on their similarity matching score. The user can select WSs s/he considers
best for the desired composition. Furthermore, to facilitate a better selection
process, each listed WS includes a description of its functionality as well as
the output(s) it produces. Then the system determines whether all output pa-
rameters of the desired composition are produced by the services selected so
far. If that is the case, the composition is completed. Otherwise the interactive
composition process continues with more stages, or can be terminated by the
user. Figure 8 shows the first stage of a composition for a vacation trip ar-
rangement, where the user has selected two WSs so far.

For the second stage, a new set of input parameters is generated by the
system. This set includes the input parameters considered and also includes all
outputs of the WSs selected by the user. The user is given the option to dis-
card elements in this new set of input parameters that may no longer be
needed. The user may also mark some of the new input as “optional”. This
helps in the ranking of the list of WSs that will be shown to the user in subse-
quent stages. The list of ranked results is grouped by input parameters to fa-

cilitate selection when the list is large. In the example of Figure 8, Restaurant
Style, Restaurant Place, Hotel Place, and Hotel Rate are no longer considered
as inputs in next stages. The inputs Check-in and Check-out dates and Per-
sonal information are still considered; outputs Restaurant Location, Hotel
Location, and Hotel Name from the selected services are now considered as
inputs in next stages; and output Restaurant Name from one of the selected
services is no longer considered as input (unless stated otherwise by the user),
because it satisfies an output parameter Restaurant Name. The smaller dashed
box highlights the new set of inputs for the next stage, and in this way the
composition problem has been reduced. Figure 8 also shows the second and
final stage of the composition.

Figure 8: Stages of an Interactive Composition

6. Peer-To-Peer Automatic Composition

In this section, we present our techniques for automatic WS composition in a
Peer-to-Peer (P2P) network, where the peers all share the same ontology.

6.1 Communities

In a P2P network, each peer can provide some WSs, where each WS serves a
particular domain. Each peer is a member of at least one community. A com-
munity of peers refers to a group of peers that provide services for the same
domain. The structure of the communities adheres to that of the ontology, so
that where the ontology is hierarchical, the communities have a hierarchical
structure. For example, if in the ontology there is a concept motel which is
sub-concept of another concept hotel, then there would be motel and hotel

communities, with the former being a sub-community of the latter. Each com-
munity has both a master peer and a backup peer. The master peer in each
community maintains a list of the masters and backup peers of other commu-
nities, and backup peers have a replica of this list.

6.2 Evolution of the Network

Our P2P network evolves in two different dimensions (Figure 9): (1) the first
dimension is based on the domain for which the services are provided; (2) the
second dimension is based on input-output matching relationships amongst
the peers’ services. (The second dimension is not depicted in Figure 9). For
the first dimension, each master peer maintains a list of all peers within its
community with the services they provide as well as the input and output pa-
rameters they accept and generate, respectively. For the second dimension,
peers become involved in a predecessor-successor relationships. The succes-
sor peer always takes note of this relationship for the progression of the
composition process, as we shall see later in Section 6.3.

Figure 9: Ontology-driven P2P Network
(Different shapes indicate different domains; thick lines indicate communi-

cation lines between super peers (denoted by *, backup peers are denoted by
**))

Consequently, the network is structured in such a way that peers with similar
functionality are grouped together with all peers taking cognizance of data
dependencies. The following explains how the network evolves in both di-
mensions (using the example in Figure 9).

 (1) Initially there is only one peer (P1) in the network; when P2 contacts
P1 to join the network, they determine based on their common ontol-
ogy, what domains they provide services for, in this case “Flight” and

“Hotel” respectively. Since they are the first peers for these domains,
they automatically become the master peers and record this in their
lists. P3 contacts P2 to join the network, as before, based on the
common ontology, P2 determines that P3 is in the “Flight” domain.
Since P2 is itself a master of its domain it determines which peer to
redirect P3 to (in this case P1). P3 then contacts P1 and records that
P1 is its master. Since P3 is the only other peer in the community be-
sides P1, it is automatically made the back up peer for this domain.
This self-organizing network can also handle situations where a peer
about to join the network contacts a non-master/back up peer as oc-
curs when P5 joins the network, or where peers form different sub-
communities within a community (e.g., P6 is a master for “Motel”
sub-community of “Hotel” services).

(2) As each peer joins the network, its master queries other master peers
of different communities to determine if there is any peer in their
community for which the new peer’s output matches any of their in-
put or for which their output matches any of the new peer’s input. In
the first case, the new peer becomes a “predecessor” of any such peer
and in the second case it becomes a “successor” of any such peer. If
such a peer exists, the master peer in the community of the successor
peer notifies it about this association. Thus, a directed graph with in-
put/output compatibility is maintained.

6.3 Web Services Composition Technique

In this section, we describe our techniques for discovering and composing
WSs in the P2P network as illustrated in Algorithm 2. We assume that each
user query for a composite service specifies the expected functionality of the
service as described in Section 3.1. When a peer (initiator peer) receives a
request from a user for a particular service or service composition, if it is not
the master of its community, it forwards the request to the master in its com-
munity. Then, the master of the initiator peer determines the candidate com-
munities for the query and then relays the request to the master peers of these
communities. These masters then determine which services in their commu-
nity provide all or some of the expected outputs of the user, what inputs these
services require and their host peers. If there are several candidate WSs
(peers) for a particular service, one of them is chosen either randomly, or
based on some quality of service criteria if any exists.

01. procedure compose(usersinputs, usersoutputs) returns Boolean
02. if initiatorpeer not domain master

03. forward request to its domain master
04. boolean reply = true
04. for domainMasters = each domain master of candidate communities
06. reply = reply & domainMaster.checkComposeable(userinputs, useroutputs)
05. if reply == true
06. return true

01. procedure checkComposeable(usersinputs,usersoutputs) returns Boolean
02. if mycommunityoutputs == any of the usersoutputs
03. boolean composeableViaMe = true
04. aCandidatePeer = one peer producing any of the usersoutputs
 // with greatest QoS
05. composeableViaMe = checkComposeable(aCandidatePeer, aMaster
 Peer.usersInputs) & composeableViaMe;
06. if composeableViaMe is false and all candidate peers have been tried
07. return false else return true

01. procedure checkComposeable(peer, usersinputs) returns Boolean
02. if userinputs contains all peers inputs
03. return true
04. else if peer does not have dependencies on all needed inputs // successor peer
05. return false
06. else
07. boolean canCompose = true
08. for predecessorPeer = 1 to # of my predecessor peers for the inputs I need
09. canCompose = canCompose & checkComposeable(predecessorPeer,
 usersinputs)
10. return canCompose

Algorithm 2: P2P Composition Algorithm

In general, composition of WSs is possible only when there are data depend-
encies amongst the individual services. In other words, the output(s) of some
WSs has to match the input(s) of at least one WS. In our P2P network, these
data dependencies have been captured by the predecessor-successor relation-
ships amongst peers as mentioned earlier. Discovery of peers that can partici-
pate in the composition amounts to traversing these predecessor-successor
relationships, beginning with the peer(s) producing the user’s outputs, up to
those accepting the inputs (provided by the user) required for the composition.
This is possible because as we mentioned in section 6.2, each successor peer
knows its predecessor peer(s). For example, in Figure 10 the user sends the
request with input a,b,c,d,e,f and output x,y,z to Peer 13 (P13). P13 forwards
this request to its master P7, which then determines based on the ontology to
forward this request to P1 and P2. These master peers then look up in their
table which peers within their community provide some or all of the expected
outputs. P2 determines that P10 and P5 are candidates for the composition.
Since the input g of P10 does not match any of the inputs provided by the

user, P10 contacts P4, its predecessor peer. P4 then matches its inputs with
those provided by the user. In this case, there is a match so this predecessor-
successor traversal ends. Also, P7 determines that P15 can participate in the
composition. The actual composition then starts with P4, P15, P5 and then
P10.

Figure 10: Example of P2P-based Composition

(super-peers are denoted by *)

6.4 Evaluation

For proof of concept, we have simulated our P2P composition technique. A
peer is represented by a Java object, each identified by a peerId. We randomly
assigned WSs from different service domains to peers, and experimented with
different numbers of peers, each time, observing the time taken for the evolu-
tion of the network. For each number of peers tested, we supplied two types
of queries for composite services, namely composeable and non-composeable
queries. We observed the time taken for the discovery of the services for the
composition for the first type of queries. For the second type of queries, we
observed the amount of time it took to report that the requested service could
not be composed. The simulation was carried out using an Intel Pentium IV
processor with 2.66GHz processor speed and 512MB RAM.

As shown in Table 1 and Figure 11, as the number of peers increased, the
time taken for the network evolution time naturally increased. However, the
times taken to run the composeable queries were approximately the same.
This is so because all peers keep an index of which peers it depends on for
any input. As such, irrespective of the number of peers in the network, it

should take approximately the same amount of time to determine if the re-
quested service can be composed, since only the peers that can potentially
answer the query are contacted. On the other hand, for the non-composeable
queries, the amount of time taken to discover that the requested service can
not be composed increased proportionally with the number of peers. This is so
because as the number of peers increased, the number of peers within a com-
munity also increased. Consequently, the number of candidate peers for each
query also increased. In the first of the two types of queries (composeable
queries), an early termination of the back-tracking to candidate peers is possi-
ble. For a candidate peer, an early termination of its predecessor/successor
relationships is also possible. However, in the second type (non-
composeable), the back-tracking does not terminate until all candidate peers
have been contacted and all predecessor/successor relationships for all candi-
date peers have been traversed. Consequently, as the number of peers in the
network increased, the latter type of query took more time than the former
type.

Table 1: Simulation Results for P2P Network Evolution and

WS Composition

 Elapsed Time (Secs)
Number of

Peers
Evolution

Time(Secs) Composeable
Not Compose-

able
100 0.06 0.01 0.01
500 0.33 0 0.03

1000 1.723 0.01 0.18
2000 9.534 0 1.632
5000 181.571 0.01 41.49

0
20
40
60
80

100
120
140
160
180
200

100 500 1000 2000 5000

Number of Peers

Evolution Time(Secs)

Composeable

Not Composeable

Figure 11: Simulation Results in Graph Format

7. Conclusions and Future Work

Today’s search engines and knowledge discovery tools help users to locate
relevant documents and assemble relevant knowledge for effective decision-
making respectively. Similarly, users need new tools to help them discover
and assemble WSs into processes for easier and better quality workflow exe-
cutions given increasing number and complexity of WSs. In this paper, we
illustrate three techniques for (semi) automatic composition of WSs by ex-
ploiting semantics provided by ontological description of inputs and outputs
of the services. In Interface-Matching Automatic composition, the different
services are put together to generate a set of expected outputs from the user.
Our approach finds an optimal composition based on factors of semantic
matching of inputs/outputs and QoS criteria (adjustable by users).

Human-Assisted composition follows the approach of iteratively compos-
ing the service by making use of filtering and ranking based on user-provided
constraints. Factors such as geographic location, quality rate, cost, etc. can be
taken into consideration at each stage besides the semantic matching of in-
puts/outputs.

The third technique presented deals with WSs composition in a P2P envi-
ronment by utilizing master-peers of the network. The peers are (logically)
organized in a dimension based on the domain(s) of the service(s) they pro-
vide. A second dimension keeps relationships of compatible semantic in-
put/output matches among the peers’ WSs regardless of the domain. This
allows for a dependency (directed) graph organization that resembles that of
our Interface-Matching technique.

For testing proposed techniques, collections of synthetically generated
WSs in various domains such as travel planning, wine suggestion etc. are
used. However real world applications of the proposed techniques are possible
in these and other domains, such as bioinformatics to automatically compose
WSs to integrate multiple genetics databases and applications and discover
interactions among proteins [Kochut03].

Some interesting technical problems still lie ahead. For example, users may
need to compose services based on their internal computations when their
profiles may not convey adequate semantics to differentiate them. We plan to
consider validation of the composition based on pre- and post-condition se-
mantics.

References

[Ambite2003] J. Ambite, G. Barish, Craig A. Knoblock, M. Muslea, J. Oh, and S.
Minton. Getting from Here to There: Interactive Planning and Agent
Execution for Optimizing Travel. The Fourteenth Innovative Applica-
tions of Artificial Intelligence Conference (IAAI), Edmonton, Alberta,
Canada, 2002.

[Arpinar04] I. B. Arpinar, R. Zhang, B. Aleman, and A. Maduko. Ontology-Driven
Web Services Composition. IEEE E-Commerce Technology, July 6-9,
2004, San Diego, CA.

[Balke03] W. Balke, and M. Wagner. Towards Personalized Selection of Web
Services. WWW 2003, May 20-24, 2003, Budapest, Hungry.

[Banaei-
Kashani04]

F. Banaei-Kashani, C. Chen, and C. Shahabi. WSPDS: Web Services
Peer-to-peer Discovery Services. The 2004 International Symposium
on Web Services and Applications, Las Vegas, NV.

[Benatallah02] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative Compo-
sition and Peer-to-Peer Provisioning of Dynamic Web Services. IEEE
Intl. Conf. on Data Eng., San Jose, 2002.

[Cardoso02] J. Cardoso. Quality of Service and Semantic Composition of Work-
flows. Ph.D. Dissertation. Department of Computer Science, University
of Georgia, Athens, GA, 2002.

[Cardoso03] J. Cardoso, and A. Sheth. Semantic e-Workflow Composition, Journal
of Intel. Info. Sys., 2003.

[Chakraborty01] D. Charkraborty, F. Perich, S. Avancha, and A. Joshi. DReggie: A
smart Service Discovery Technique for E-Commerce Applications.
20th Symposium on Reliable Distributed Systems (SRDS). New Or-
leans. October, 2001.

[Chandra03] S. Chandrasekaran, J. Miller, G. Silver, I.B. Arpinar, and A. Sheth.
Performance Analysis and Simulation of Composite Web Services.
Electronic Markets: The Intl. Journal of Electronic Commerce and
Business Media, 13(2), 2003.

[Cheng02] Z. Cheng, M. P. Singh and M. A. Vouk. Composition Constraints for
Semantic Web Services. In Proceedings of the International Workshop
Real World RDF and Semantic Web Applications, 2002.

[DAML-S Coali- A. Ankolenkar, M. Burstein, et. Al. DAML-S: Web Service Descrip-

tion03] tion for the Semantic Web. The First International Semantic Web
Conference, Stanford, 2001.

[Fensel02a] D. Fensel, C. Bussler. Semantic Web Enabled Web Services. 2nd
Annual Diffuse Conference, Brussels, Belgium, January 2002.

[Fensel02b] D. Fensel, C. Bussler, Y. Ding, and B. Omelayenko. The Web Service
Modeling Framework WSMF. Electronic Commerce Research and
Applications, 1(2), 2002.

[Hoschek02] W. Hoschek. Peer to Peer Grid Databases for Web Services Discovery,
Grid Computing: Making the Global Infrastructure a Reality” Ed(s): F.
Berman, G. Fox, and T. Hey, Nov. 2002, Wiley.

[Klein01] M. Klein, and A. Bernstein. Searching for Services on the Semantic
Web Using Process Ontologies. International Semantic Web Working
Symposium, August 2001.

[Kochut03] K. Kochut, J. Arnold, A. Sheth, J. Miller, E. Kraemer, I. B. Arpinar,
and J. Cardoso, IntelliGEN: A Distributed Workflow System for Dis-
covering Protein-Protein Interactions, International Journal of Distrib-
uted and Parallel Databases (DAPD), Special issue on Bioinformatics, ,
Volume 13, No. 1, January 2003.

[McIlraith01] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE
Intel. Sys. March/April 2001.

[McIlraith02] S. MaIlraith, and T. C. Son. Adapting golog for composition of seman-
tic Web services. In Proc. KRR, 482-493.

[Narayanan02] S. Narayanan, and S. A. Mcllraith. Simulation, Verification and Auto-
mated Composition of Web Services. 11th Intl. WWW Conference,
Honolulu, 2002.

[Palucci02] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic
Matching of Web Services Capabilities. The First Intl Semantic Web
Conference, Sardinia (Italy), June, 2002.

[Patil04a] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S Web
Service Annotation Framework, Proceeding of the World Wide Web
Conference, July 2004.

[Patil04b] A. Patil. METEOR-S Web Service Annotation Framework. Master
Thesis, Computer Science, University of Georgia, 2004.

[Ponnekanti02] S. R. Ponnekanti, and A. Fox. SWORD: A Developer Toolkit for
Building Composite Web Services. 11th WWW Conference, Honolulu,
2002.

[Schlosser02] M. Schlosser, M. Sintek, S. Decker, and W. Neijdl. A Scalable and
Ontology-Based P2P Infrastructure for Semantic Web Services. 2nd
IEEE Intl. Conf. on Peer-to-Peer Computing, 2002.

[Schmidt03] C. Schmidt and M. Parashar. A Peer-to-Peer Approach to Web Service
Discovery, World Wide Web Journal, Vol. 7, Issue 2, June 2004.

[Sheng03] Q. Sheng, B. Benatallah, L. Zheng, M. Dumas, J. Kalagnanam, Quality
Driven Web Services Composition, The 12th International World Wide
Web Conference Proceedings, Eds. Yih-Farn Robin Chen, Laslo
Kovacs, Steve Lawrence, ACM, New York, USA, 2003, pp. 411 - 421

[Sheth99] A. Sheth, W. M. P. Van Der Aalst, and I. B. Arpinar. Processes Driving
the Networked Economy: Process Portals, Process Vortexes, and Dy-
namically Trading Processes. IEEE Concurrency Journal, pp. 18-31,
July-September 1999.

[Sheth03] A. Sheth. Semantic Web Process Lifecycle: Role of Semantics in An-
notation, Discovery, Composition and Orchestration, invited talk at

WWW 2003 Workshop on E-Services and the Semantic Web, Buda-
pest, Hungary, May 20, 2003.

[Sirin03] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web
services using semantic descriptions. Web Services: Modeling, Archi-
tecture and Infrastructure workshop in conjunction with ICEIS2003,
April 2003.

[Sivashan-
mugam03a]

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding Seman-
tics to Web Services Standards, Intl. Conf. on Web Services, Las Ve-
gas NV, June 2003.

[Sivashan-
mugam03b]

K. Sivashanmugam. The METEOR-S Framework for Semantic Web
Process Composition. Master Thesis, Computer Science, University of
Georgia, 2003.

[Sora01] I. Sora, and F. Matthijs. Automatic Composition of Software Systems
from Components with Anonymous Dependencies, Technical Report
CW 314, Leuven, Belgium, May 2001.

[Srivastava03] B. Srivastava, and J. Koehler. Web Service Composition – current
solutions and open problems. ICAPS 2003 Workshop on Planning for
Web Services, Trento, Italy, June, 2003.

[Tosic01] V. Tosic, D. Mennie, and B. Pagurek. On Dynamic Service Composi-
tion and Its Applicability to E-business Software Systems. Workshop
on OO Business Sol. ECOOP, Budapest, Hungary, 2001.

[Verma04] K.Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J.
Miller. METEOR–S WSDI: A Scalable Infrastructure of Registries for
Semantic Publication and Discovery of Web Services. Journal of In-
formation Technology and Management (to appear, 2004).

[Zeng03] L. Zeng, B. Benatallah, and M. Dumas. Quality Driven Web Services
Composition. WWW2003, May 20-24, 2003, Budapest, Hungary.

[Zhang03] R. Zhang, I. B. Arpinar, and B. Aleman-Meza. Automatic Composition
of Semantic Web Services. Intl. Conf. on Web Services, Las Vegas
NV, June 2003.

[Zhang04] R. Zhang, Ontology-Driven Web Services Composition, MS Thesis,
Department of Computer Science, University of Georgia, April 2004.

