

Ontology-Driven Web Services Composition Platform

I. Budak Arpinar, Boanerges Aleman-Meza, Ruoyan Zhang, and Angela Maduko
LSDIS Lab,Computer Science Dept., University of Georgia

{budak, boanerg, ruoyan, maduko}@cs.uga.edu

Abstract

Discovering and assembling individual Web Services
into more complex yet new and more useful Web
Processes is an important challenge. In this paper, we
present techniques for (semi) automatically composing
Web Services into Web Processes by using their
ontological descriptions and relationships to other
services. In Interface-Matching Automatic composition
technique, the possible compositions are obtained by
checking semantic similarities between interfaces of
individual services. Then these compositions are ranked
and an optimum composition is selected. In Human-
Assisted composition the user selects a service from a
ranked list at certain stages. We also address automatic
compositions in a Peer-to-Peer network.

1. Introduction

In recent years, a growing number of Web Services
(WSs) have emerged as the Internet develops at a fast
rate. The Web is now evolving into a distributed device
of computation from a collection of information resources
[5]. Furthermore, the need for composing existing WSs
into more complex services is also increasing, mainly
because new and more useful solutions can be achieved.
In general, this is a result of complex and increasing user
demands and inability of a single WS to achieve a user’s
goals by itself. Hence, a collection of interacting WSs is
more likely to accomplish these goals. Currently, users
either utilize some services that they know already or find
those services by looking it up in a keyword-based search
engine (e.g., expedia.com or google.com) or by looking it
up in a WSs registry (e.g., a UDDI – Universal
Description, Discovery and Integration registry). Also,
composition of discovered services and enabling data-
flow among them are usually done manually, which are
highly inconvenient, especially for more complex
compositions. The problem lies with the fundamental
abstractions used to model WSs, and methods to compose

these services using these abstractions. In more complex
examples of service compositions, even hundreds of data
collection services can be involved in a composition (e.g.,
a search involving gene banks). In those cases, (semi)
automatic composition can help in reducing composition
generation and also execution time substantially.

Our service composition research aims for reducing
the complexity and time needed to generate, and execute
a composition and improve its efficiency by selecting the
best possible services available at current time. In general,
there are four different dimensions for a service
composition: (i) degree of user involvement in a
composition specification, (ii) whether the composition is
based on templates, (iii) dynamicity (i.e., adaptation) of
the composition, and again (iv) degree of user
involvement in the adaptation of the composition (see
Figure 1 - right-most branch is a replica of the tree rooted
at User-defined node). In the first dimension, a
composition can be defined fully by a user including its
control and data-flow besides the individual services
making the composite service. In contrast, a user is not
involved in an automatic composition where the system
defines control and data-flow. This is very challenging
due to difficulties of mapping user needs to a collection
of correlated services where their interim outputs can
satisfy each other’s input requirements and final
deliverable meets the user demands. Besides that, in both
of user-defined or automatic composition techniques
either actual service instances or service templates can be
used. In the latter, the individual service instances are
searched and integrated automatically at execution time
for a given plan [4]. In a dynamic composition, the
composition itself can be adapted mainly because of
(Quality of Service) QoS requirements at run-time. Also,
a composition may not be defined at design-time but can
be assembled dynamically at execution time. Finally,
some hybrid methods such as semi-automatic
compositions and semi-automatic adaptations are also
possible.

This paper primarily focuses on the automatic
composition techniques. These techniques use a WSs
ontology and a process ontology to discover semantic

matches among user demands and service outputs besides
semantic composability of services. In Semantic Web,
interface, capabilities and effects of a service can be
encoded in unambiguous, machine understandable form
[8] using a WS ontology.

Figure 1. A classification of composition techniques

In Ontology-driven Web Services Composition

Platform, the requirements of a composite service are
specified by a user as a set of inputs (to the composite
service), and a set of expected outputs (from the
composite service) [16]. The WS composition aims to
generate and execute a composite service that produces
the expected outputs by combining existing individual
services using their semantic descriptions. We present
different approaches including a Human-Assisted (HA)
composition, where a human is consulted at certain stages
of a composition, where more than one alternative is
possible. Interface–Matching Automatic (IMA)
composition uses semantic matching of interface
definitions of complimentary services to generate a
composition.

Currently, descriptions of many WSs are contained in
a single central registry, such as UDDI. Using emergent
Peer-to-Peer (P2P) computing techniques, this registry
can be moved from its centralized nature to a distributed
one. With decentralization, problems of availability,
reliability and scalability can be addressed. This, for
example, can enable service providers to choose any
particular registry in which their services would be listed.
This might be beneficial in situations where competitors
don't want to be listed in the same registry. Thus, we also
briefly present a P2P Automatic (PPA) composition
technique. The rest of the paper is organized as follows:
In Section 2, we review the related research. Section 3
briefly describes the system architecture. IMA, HA, and
PPA composition techniques are described in Sections 4,
5, and 6 respectively. Section 7 concludes the paper, and
outlines the future work.

2. Related Work

2.1. Web Services Specification

The service specification methods help software

systems to capture capabilities of WSs. In general, these
specification methods are based on either industry-
oriented standardization efforts, or academia-oriented WS
ontologies.

UDDI and Web Services Description Language
(WSDL) are current industry standards developed for e-
commerce. The services are described according to an
XML schema, defined by the UDDI specification and
registered by the service providers along with keywords
for their categorizations. Therefore, a UDDI does not
provide a semantic search rather it depends on a
predefined categorization of WSs through keywords. In
complimentary roles, WSDL and Simple Object Access
Protocol (SOAP) describe WSs as a set of endpoints (or
ports) operating on messages, and a protocol for
exchange of these messages between the services
respectively. Also, some other industry standards have
been emerging to represent data and control-flow, and
transactional properties among a collection of services.
Business Process Modeling Language, XLANG, Web
Services Flow Language (WSFL), and Business Process
Execution Language for Web Services (BPEL4WS) can
be mentioned in this category. However, many of the
existing approaches for process modeling lack an
adequate specification of the semantics of the process
terminology, which leads to inconsistence of
interpretations of the information. Process Specification
Language is an attempt to resolve this issue by providing
a process terminology [11].

The semantic approach for WS specifications includes
DAML+OIL based DAML-S [1]. DAML-S specifies
three main components for each service. A service-profile
indicates the functions of the service, the process-model
provides the information of how the service works, and
the service grounding describes how an agent can access
the service. Other techniques try to add semantics to
existing services by providing mappings between WSDL,
UDDI definitions and domain ontologies (e.g.,
METEOR-S [13]).

2.2. Web Services Discovery and Composition

WS discovery related work includes [3], which

describes how to evaluate a degree of similarity between
a service template and an actual service by measuring the
syntactic, operational, and semantic similarity. Unlike
other discovery approaches on the basis of WS interfaces,
[7] explored ways to search services according to the

functionality requirements, and proposed Process Query
Language (PQL) to search process models from a process
ontology.

The main concept behind service composition is not
new in computer science. Earlier, software composition
techniques aimed to find a good combination of
components that responds to the client specific
requirements by matching requested properties with
provided properties. One approach for finding a suitable
composition is to delegate the responsibility for solving
certain requirements posed on a component to other
components after fulfilling it partially [14]. Similarly, our
system propagates requirements (that are set of a user’s
expected outputs) to corresponding WSs in an
incremental way.

Template-based composition techniques are used in
[9], and ICARIS project [15]. SWORD uses a rule-based
expert system to determine if a plan of composite service
can be built out of existing services [10]. In [2], WSs are
declaratively composed and then executed on a P2P
environment. However, only the executions of the static
composite services are carried out on a P2P environment,
not the composition itself. [12] and [6] present different
P2P infrastructures for WS discovery.

3. An Overview of System Architecture

A Semantic WS is a unit of composition that can be
deployed independently, and may be subject to
composition by a third party on the Web [17]. At the
same time, it is defined, and advertised in a machine-
processable form through an ontology so it can be
automatically discovered, composed, and invoked in new
and complex Web processes. A WSs ontology describes
the interfaces of the services and the relationships among
them. Like domain ontologies, a service inherits
properties and functionality of its parent service in WSs
ontology. In our platform we use the DAML-S WS
ontology, and complement it with a process ontology
describing process-oriented features of services. The
latter includes relationships among services such as
semantic matches among the input and output parameters
of services.

A composite service query is represented in a very
similar way as a service description in DAML-S. The
query includes the interface of the expected composite
service, in which a user can define output parameters,
output constraints, input parameters, and their constraints.

The system architecture is composed of two categories
of components: querying and composition components,
and ontology and service storage components as
illustrated in Figure 2. When a service with DAML-S
description sends a registration request, a service

extractor retrieves the information from the service
profile and stores it in a services database. If the services
are described in UDDI schema, their profile would be
sent directly into a UDDI registry. The remaining
components are responsible from analyzing the query,
searching and composing the WSs. Once the process
composer generates data and control-flow for a process, it
sends them to the process execution component.

Figure 2. An overview of system architecture

4. Interface-Matching Automatic (IMA)
Composition

IMA composition technique aims for generation of
complex WS compositions automatically. In IMA,
individual services placed earlier in the composition
should supply appropriate outputs to the following
services in an orchestrated way similar to an assembly
line (i.e., pipe-and-filter) in a factory so they can
accomplish the user’s goals.

In IMA, WSs and process ontologies are navigated to
find the sequences starting from the user’s input
parameters and go forward by chaining services until they
deliver the user’s expected outputs. The composition
starts from the service that needs one or more of the input
parameters given by the user. If this WS does not produce
all of the expected outputs, more WSs need to be found to
provide the expected outputs. This algorithm aims to find
a composition that has the best QoS (e.g., shortest
execution time) and the best matching of input and output
parameters.

For example, in a simple scenario a user inputs a
seafood type, and expects matching wine prices (Figure
3). Both Wine (S1) and World Wine (S2) services are

food-wine matching services which output the name of
matching wines with the food type given by the user.
Wine Price Information (S3) and Beverage Price
Information (S4) services provide the prices of
corresponding wines or beverages.

Figure 3. Seafood-based wine price composition

In the process ontology, interface relationships of

services can be represented as a directed graph by
matching input and output parameters (see Figure 3).
Nodes represent services and edges connect services if
the output of a service can be “feed into” the input of
another service. Dashed-line edges represent parameters
that are semantically equivalent (but not an exact match).
We consider four cases to check equivalence (i.e.,
similarity matching) of an output and an input parameter:
(1) if they are same, their similarity is maximal. For
example, the output parameter of S1 matches exactly with
the input parameter of S3 (smallest similarity value is
1.0). (2) If an output parameter of the former service
subsumes the input parameter of the succeeding service,
this is the second best matching level. For example, the
output of S4 (beverage price) subsumes the expected
output parameter (wine price). The similarity value
depends on a normalized distance between these terms in
the ontology [16]. (3) If the output parameter of the
former service is subsumed by the input parameter of the
succeeding service, the requirements of a parameter could
be partially satisfied. That applies to the relationship
between S1 and S4. (4) When two parameters have no
subsumption relation or they are from different ontologies
(e.g., output and input of S2 and S3 respectively, which
are defined in ontologies O3 and O1), the similarity value
can be obtained by using Tversky’s feature-based
similarity model [3], which is based on the idea that
common features increase the similarity of two concepts,
while feature differences decrease the similarity.

The overall edge weights are calculated using a
function of QoS (e.g., execution time of the source
service of an edge and semantic similarity value between
input and output parameters. As a matter of fact, other
factors can be considered in computing weight of edges,
such as reliability, security, and other properties of
services. Relative weights of these factors (λ) can be
defined by a user as follows:

W = (λ) * execution time + (1-λ) * similarity value.

For example, the weight of edge <S2,S4> is 1.2 + 1 in

Figure 3, which means that similarity value of Wine: O3
and Beverage: O1 is 1.2 and execution time of S2 is 1
unit.

We use a shortest-path dynamic programming
algorithm based on Bellman-Ford’s algorithm to find the
shortest sequence between two special nodes representing
initial and final services. In a traditional directed graph,
only one incoming edge and one outgoing edge can be
selected for every node in the shortest path. However,
services may need more than one incoming edge as input
parameters in a composition. Furthermore, a service can
be executed only when all the required input parameters
are available. Therefore, the distance of every node is
determined by the maximum value of weights of all the
incoming edges into a service node. In a different case,
when there is more than one alternatives for one input
parameter of a service then we choose the minimum
weight as a distance associated with this input parameter.
The algorithm running time is O(n3), and if λ is set to
different values by the user, different shortest paths can
be obtained in IMA composition technique [16].

Figure 4. Stages of an interactive composition

5. Human-Assisted (HA) Composition

The goal of HAA composition is to help users in
selecting appropriate WSs, and build a composition
incrementally. The first step is to consider all inputs by
semantically matching them with all WSs that take one or
more of them as input. A list of these WSs is provided to
the user with the WSs ranked based on their similarity
matching score. The user can select WSs s/he considers
best for the desired composition. Furthermore, to
facilitate a better selection process, each listed WS
includes a description of its functionality as well as the
output(s) it produces. Then the system determines
whether all output parameters of the desired composition

Restaurant
style

Restaurant
place

Hotel
place

Hotel
rate

Check-in and
Check-out
 dates

Personal
information

Restau-
rant

lookup

Hotel
lookup

Map

Hotel
Confirma-
tion

Restaurant
Name

Hotel
location

Restaurant location

Hotel
name

F i r s t s t a g e New set of inputs
for next stage

Hotel
Reserva-

tion

Yahoo
Map

Second s t a g e

are produced by the services selected so far. If that is the
case, the composition is completed. Otherwise the
interactive composition process continues with more
stages. Figure 4 shows the first stage of a composition for
a trip arrangement, where the user has selected two WSs.

For the second stage, a new set of input parameters is
generated by the system. This set includes the input
parameters considered and also includes all outputs of the
WSs selected by the user. The user is given the option to
discard elements in this new set of input parameters that
may no longer be needed. The user may also mark some
of the new input as “optional”. This helps in the ranking
of the list of WSs that will be shown to the user in
subsequent stages. The list of ranked results is grouped by
input parameters to facilitate selection when the list is
large. In the example of Figure 4, Restaurant style,
Restaurant place, Hotel place, and Hotel rate are no
longer considered as inputs in next stages. The inputs
Check-in and Check-out dates and Personal information
are still considered; outputs Restaurant location, Hotel
location, and Hotel name from the selected services are
now considered as inputs in next stages; and output
Restaurant name from one of the selected services is no
longer considered as input (unless stated otherwise by the
user), because it satisfies an output parameter Restaurant
name. The shaded box highlights the new set of inputs for
the next stage, and in this way the composition problem
has been reduced. Figure 4 also shows the second and
final stage of the composition (only two stages were
needed to complete this composition example).

6. Peer-To-Peer Automatic Composition

In a Peer-to-Peer (P2P) network, each peer can
provide some WSs, and they can be grouped into
communities based on the domain(s) for which they
provide services. When a peer provides more than one
WS for different domains, it becomes a member of
different communities. The structure of the communities
adheres to that of the ontology, so that where the ontology
is hierarchical, the communities then have a hierarchical
structure. Each community has both a master and backup
peers. The master peer in each community maintains a list
of the masters and back up peers for every other
community, and backup peers have a replica of this list.

Figure 5 depicts such an ontology-driven P2P network.
This network evolves in two different dimensions: (1) the
first dimension is based on the domain for which the
services are provided, and (2) the second is based on
input-output matching relationships amongst the peers’
services (the second dimension is not depicted in Figure
5). The master peers (for (1)) maintain the list of all peers
within their communities with the services they provide

as well as the input and output parameters they accept and
generate respectively. In this way, the network is
structured in such a way that peers with similar
functionality and data dependencies are grouped together
in different dimensions. The following explains how the
network evolves in dimensions 1 and 2 (using the
example in Figure 5).

(1) Initially there’s only one peer (P1) in the network;
when P2 contacts P1 to join the network, they determine
based on their common ontology, what domains they
provide services for, in this case “Flight” and “Hotel”
respectively. Since they are the first peers for these
domains, they automatically become the master peers and
record this in their lists. P3 contacts P2 to join the
network, as before, based on the common ontology, P2
determines that P3 is in the “Flight” domain. Since P2 is
itself a master of its domain it determines which peer to
redirect P3 to, in this case P1. P3 then contacts P1 and
then records that P1 is its master. Since P3 is the only
other peer in the community besides P1, it is
automatically made the back up peer for this domain. This
self-organizing network can also handle situations where
a peer about to join the network contacts a non-
master/back up peers as occurs when P5 joins the network
or where peers form different sub-communities within a
community (e.g., P6 is a master for “Motel” sub-
community of “Hotel” services).

(2) As each peer joins the network, its master queries
all the other masters of different communities to
determine if there is any peer in their community for
which the new peer’s output matches any of their input or
for which their output matches any of the new peer’s
input. In the first case, the new peer becomes a
“predecessor” of any such peer and in the second case it
becomes a “successor” of any such peer. If such a peer
exists, the master of the new peer notifies it about this
association.

Figure 5. Ontology-driven P2P network. Different

shapes indicate different domains; thick lines indicate
communication lines between super peers (denoted by *,
backup peers are denoted by **).

When any of the peers receives a request by the user
for a particular service or service composition, this peer
passes this request with the input and expected output
provided by the user to its master. The master peer
determines based on the common ontology, which
communities need to be contacted to process the user’s
request and forwards it to the master peers of the
participating communities. When all the masters of the
participating communities have received the inputs and
outputs provided by the user, they determine which
services in their community provide all or some of the
expected outputs for the user and what inputs these
services require.

The peers that would participate in the composition are
then discovered by traversing a series of predecessor and
successor relationships amongst the peers, starting from
the peer(s) producing the user’s outputs to the peers
accepting the inputs (provided by the user) required for
the composition. For example, in Figure 6 the user sends
the request with input a,b,c,d,e,f and output x,y,z to P13.
P13 forwards this request to its master P7, which then
determines based on the ontology to forward this request
to Peers 1 and 2. These master peers then determine
which peers within their community provide some or all
of the expected outputs. P2 determines that P10 and P5
would participate in the composition. Since the input of
P10 (g) does not match any of the inputs provided by the
user, P10 contacts P1, the master of the community to
which its predecessor P4 belongs. P1 matches the input of
P4 with those provided by the user. In this case, there is a
match so this master/slave traversal ends. P7 determines
that P15 would participate in the composition. Actual
composition then starts with P4, P15, P5 and then P10.

Figure 6. Example of P2P-based composition

7. Conclusions and Future Work

Today’s search engines and knowledge discovery tools
help users to locate relevant documents and assemble
relevant knowledge for effective decision-making
respectively, and improve their capabilities continuously
using semantics. Similarly, users need new tools to help

them discover and assemble services into processes for
easier and better quality workflow executions given
increasing number and complexity of WSs. In this paper
we illustrate some techniques for (semi) automatic
composition of semantic WSs. However, some interesting
technical problems still lie ahead. For example, users may
need to compose services based on their internal
computations when their profiles may not convey
adequate semantics to differentiate them. We plan to
consider validation of the composition based on pre- and
post-condition semantics. Besides, a layered (e.g., top-
down) composition methodology can help users in an
interactive composition.

8. References

[1] A. Ankolenkar, M. Burstein, et al., “DAML-S: Web Service
Description for the Semantic Web”, The First International
Semantic Web Conference, Stanford, 2001.

[2] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu,
“Declarative Composition and Peer-to-Peer Provisioning of
Dynamic Web Services”, IEEE Intl. Conf. on Data Eng., San
Jose, 2002.

[3] J. Cardoso, and A. Sheth. “Semantic e-Workflow
Composition”, Journal of Intelligent Information Systems, 2003.

[4] S. Chandrasekaran, J. Miller, G. Silver, B. Arpinar, and A.
Sheth, “Performance Analysis and Simulation of Composite
Web Services”, Electronic Markets: The Intl. Journal of
Electronic Commerce and Business Media, 13(2), 2003.

[5] D. Fensel, and C. Bussler, “Semantic Web Enabled Web
Services”, 2nd Annual Diffuse Conference, Brussels, Belgium,
January 2002.

[6] W. Hoschek, “Peer to Peer Grid Databases for Web Services
Discovery”, Grid Computing: Making the Global Infrastructure
a Reality Ed(s): F. Berman, G. Fox, and T. Hey, Nov. 2002,
Wiley.

[7] M. Klein, and A. Bernstein, “Searching for Services on the
Semantic Web Using Process Ontologies”, International
Semantic Web Working Symposium, August 2001.

[8] S. McIlraith, T. C. Son, and H. Zeng, “Semantic Web
Services”, IEEE Intelligent. Systems, March/April 2001.

[9] S. Narayanan, and S. A. Mcllraith, “Simulation, Verification
and Automated Composition of Web Services”, 11th Intl. WWW
Conference, Honolulu, 2002.

[10] S. R. Ponnekanti, and A. Fox, “SWORD: A Developer
Toolkit for Building Composite Web Services”, 11th WWW
Conference, Honolulu, 2002.

P20

P3

P4
input output
a,b g

P1
P10
input output
g x

P5
input output
c,d,e z

P17

P2

P7

P13

P15
input output
a,e,f y User

input output
a,b,c,d,e,f x,y,z

P9

[11] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell,
and J. Lee, The Process Specification Language (PSL):
Overview and Version 1.0 Specification, NISTIR 6459,
National Institute of Standards and Technology, Gaithersburg,
MD, 2000.

[12] M. Schlosser, M. Sintek, S. Decker, and W. Neijdl, “A
Scalable and Ontology-Based P2P Infrastructure for Semantic
Web Services”, 2nd IEEE Intl. Conf. on Peer-to-Peer
Computing, 2002.

[13] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,
“Adding Semantics to Web Services Standards”, Intl. Conf. on
Web Services, Las Vegas NV, June 2003.

 [14] I. Sora, and F. Matthijs, “Automatic Composition of
Software Systems from Components with Anonymous
Dependencies”, Technical Report CW 314, Leuven, Belgium,
May 2001.

 [15] V. Tosic, D. Mennie, and B. Pagurek, “On Dynamic
Service Composition and its Applicability to E-business
Software Systems”, Workshop on OO Business Sol. ECOOP,
Budapest, Hungary, 2001.

[16] R. Zhang, I. B. Arpinar, and B. Aleman-Meza, “Automatic
Composition of Semantic Web Services”, Intl. Conf. on Web
Services, Las Vegas NV, June 2003.

[17] R. Zhang, Ontology-Driven Web Services Composition,
MS Thesis, Department of Computer Science, University of
Georgia, April 2004.

