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Abstract 
 

Discovering and assembling individual Web Services 
into more complex yet new and more useful Web 
Processes is an important challenge. In this paper, we 
present techniques for (semi) automatically composing 
Web Services into Web Processes by using their 
ontological descriptions and relationships to other 
services. In Interface-Matching Automatic composition 
technique, the possible compositions are obtained by 
checking semantic similarities between interfaces of 
individual services. Then these compositions are ranked 
and an optimum composition is selected. In Human-
Assisted composition the user selects a service from a 
ranked list at certain stages. We also address automatic 
compositions in a Peer-to-Peer network. 
 
 
1. Introduction 
 

In recent years, a growing number of Web Services 
(WSs) have emerged as the Internet develops at a fast 
rate. The Web is now evolving into a distributed device 
of computation from a collection of information resources 
[5]. Furthermore, the need for composing existing WSs 
into more complex services is also increasing, mainly 
because new and more useful solutions can be achieved. 
In general, this is a result of complex and increasing user 
demands and inability of a single WS to achieve a user’s 
goals by itself. Hence, a collection of interacting WSs is 
more likely to accomplish these goals. Currently, users 
either utilize some services that they know already or find 
those services by looking it up in a keyword-based search 
engine (e.g., expedia.com or google.com) or by looking it 
up in a WSs registry (e.g., a UDDI – Universal 
Description, Discovery and Integration registry). Also, 
composition of discovered services and enabling data-
flow among them are usually done manually, which are 
highly inconvenient, especially for more complex 
compositions. The problem lies with the fundamental 
abstractions used to model WSs, and methods to compose 

these services using these abstractions. In more complex 
examples of service compositions, even hundreds of data 
collection services can be involved in a composition (e.g., 
a search involving gene banks). In those cases, (semi) 
automatic composition can help in reducing composition 
generation and also execution time substantially.  

Our service composition research aims for reducing 
the complexity and time needed to generate, and execute 
a composition and improve its efficiency by selecting the 
best possible services available at current time. In general, 
there are four different dimensions for a service 
composition: (i) degree of user involvement in a 
composition specification, (ii) whether the composition is 
based on templates, (iii) dynamicity (i.e., adaptation) of 
the composition, and again (iv) degree of user 
involvement in the adaptation of the composition (see 
Figure 1 - right-most branch is a replica of the tree rooted 
at User-defined node). In the first dimension, a 
composition can be defined fully by a user including its 
control and data-flow besides the individual services 
making the composite service. In contrast, a user is not 
involved in an automatic composition where the system 
defines control and data-flow. This is very challenging 
due to difficulties of mapping user needs to a collection 
of correlated services where their interim outputs can 
satisfy each other’s input requirements and final 
deliverable meets the user demands. Besides that, in both 
of user-defined or automatic composition techniques 
either actual service instances or service templates can be 
used. In the latter, the individual service instances are 
searched and integrated automatically at execution time 
for a given plan [4]. In a dynamic composition, the 
composition itself can be adapted mainly because of 
(Quality of Service) QoS requirements at run-time. Also, 
a composition may not be defined at design-time but can 
be assembled dynamically at execution time. Finally, 
some hybrid methods such as semi-automatic 
compositions and semi-automatic adaptations are also 
possible. 

This paper primarily focuses on the automatic 
composition techniques. These techniques use a WSs 
ontology and a process ontology to discover semantic 



matches among user demands and service outputs besides 
semantic composability of services. In Semantic Web, 
interface, capabilities and effects of a service can be 
encoded in unambiguous, machine understandable form 
[8] using a WS ontology. 

 

 
Figure 1. A classification of composition techniques 
 
In Ontology-driven Web Services Composition 

Platform, the requirements of a composite service are 
specified by a user as a set of inputs (to the composite 
service), and a set of expected outputs (from the 
composite service) [16]. The WS composition aims to 
generate and execute a composite service that produces 
the expected outputs by combining existing individual 
services using their semantic descriptions. We present 
different approaches including a Human-Assisted (HA) 
composition, where a human is consulted at certain stages 
of a composition, where more than one alternative is 
possible. Interface–Matching Automatic (IMA) 
composition uses semantic matching of interface 
definitions of complimentary services to generate a 
composition. 

Currently, descriptions of many WSs are contained in 
a single central registry, such as UDDI. Using emergent 
Peer-to-Peer (P2P) computing techniques, this registry 
can be moved from its centralized nature to a distributed 
one. With decentralization, problems of availability, 
reliability and scalability can be addressed. This, for 
example, can enable service providers to choose any 
particular registry in which their services would be listed. 
This might be beneficial in situations where competitors 
don't want to be listed in the same registry. Thus, we also 
briefly present a P2P Automatic (PPA) composition 
technique. The rest of the paper is organized as follows: 
In Section 2, we review the related research. Section 3 
briefly describes the system architecture. IMA, HA, and 
PPA composition techniques are described in Sections 4, 
5, and 6 respectively. Section 7 concludes the paper, and 
outlines the future work. 
 
 
 

2. Related Work 
 
2.1. Web Services Specification 

 
The service specification methods help software 

systems to capture capabilities of WSs. In general, these 
specification methods are based on either industry-
oriented standardization efforts, or academia-oriented WS 
ontologies.  

UDDI and Web Services Description Language 
(WSDL) are current industry standards developed for e-
commerce. The services are described according to an 
XML schema, defined by the UDDI specification and 
registered by the service providers along with keywords 
for their categorizations. Therefore, a UDDI does not 
provide a semantic search rather it depends on a 
predefined categorization of WSs through keywords. In 
complimentary roles, WSDL and Simple Object Access 
Protocol (SOAP) describe WSs as a set of endpoints (or 
ports) operating on messages, and a protocol for 
exchange of these messages between the services 
respectively. Also, some other industry standards have 
been emerging to represent data and control-flow, and 
transactional properties among a collection of services. 
Business Process Modeling Language, XLANG, Web 
Services Flow Language (WSFL), and Business Process 
Execution Language for Web Services (BPEL4WS) can 
be mentioned in this category. However, many of the 
existing approaches for process modeling lack an 
adequate specification of the semantics of the process 
terminology, which leads to inconsistence of 
interpretations of the information. Process Specification 
Language is an attempt to resolve this issue by providing 
a process terminology [11]. 

The semantic approach for WS specifications includes 
DAML+OIL based DAML-S [1]. DAML-S specifies 
three main components for each service. A service-profile 
indicates the functions of the service, the process-model 
provides the information of how the service works, and 
the service grounding describes how an agent can access 
the service. Other techniques try to add semantics to 
existing services by providing mappings between WSDL, 
UDDI definitions and domain ontologies (e.g., 
METEOR-S [13]). 

 
2.2. Web Services Discovery and Composition 

 
WS discovery related work includes [3], which 

describes how to evaluate a degree of similarity between 
a service template and an actual service by measuring the 
syntactic, operational, and semantic similarity. Unlike 
other discovery approaches on the basis of WS interfaces, 
[7] explored ways to search services according to the 



functionality requirements, and proposed Process Query 
Language (PQL) to search process models from a process 
ontology. 

The main concept behind service composition is not 
new in computer science. Earlier, software composition 
techniques aimed to find a good combination of 
components that responds to the client specific 
requirements by matching requested properties with 
provided properties. One approach for finding a suitable 
composition is to delegate the responsibility for solving 
certain requirements posed on a component to other 
components after fulfilling it partially [14]. Similarly, our 
system propagates requirements (that are set of a user’s 
expected outputs) to corresponding WSs in an 
incremental way. 

Template-based composition techniques are used in 
[9], and ICARIS project [15]. SWORD uses a rule-based 
expert system to determine if a plan of composite service 
can be built out of existing services [10]. In [2], WSs are 
declaratively composed and then executed on a P2P 
environment. However, only the executions of the static 
composite services are carried out on a P2P environment, 
not the composition itself. [12] and [6] present different 
P2P infrastructures for WS discovery. 

 
3. An Overview of System Architecture 
 

A Semantic WS is a unit of composition that can be 
deployed independently, and may be subject to 
composition by a third party on the Web [17]. At the 
same time, it is defined, and advertised in a machine-
processable form through an ontology so it can be 
automatically discovered, composed, and invoked in new 
and complex Web processes. A WSs ontology describes 
the interfaces of the services and the relationships among 
them. Like domain ontologies, a service inherits 
properties and functionality of its parent service in WSs 
ontology. In our platform we use the DAML-S WS 
ontology, and complement it with a process ontology 
describing process-oriented features of services. The 
latter includes relationships among services such as 
semantic matches among the input and output parameters 
of services.  

A composite service query is represented in a very 
similar way as a service description in DAML-S. The 
query includes the interface of the expected composite 
service, in which a user can define output parameters, 
output constraints, input parameters, and their constraints.  

The system architecture is composed of two categories 
of components: querying and composition components, 
and ontology and service storage components as 
illustrated in Figure 2. When a service with DAML-S 
description sends a registration request, a service 

extractor retrieves the information from the service 
profile and stores it in a services database. If the services 
are described in UDDI schema, their profile would be 
sent directly into a UDDI registry. The remaining 
components are responsible from analyzing the query, 
searching and composing the WSs. Once the process 
composer generates data and control-flow for a process, it 
sends them to the process execution component. 

 
Figure 2. An overview of system architecture 

 
4. Interface-Matching Automatic (IMA) 
Composition  
 

IMA composition technique aims for generation of 
complex WS compositions automatically. In IMA, 
individual services placed earlier in the composition 
should supply appropriate outputs to the following 
services in an orchestrated way similar to an assembly 
line (i.e., pipe-and-filter) in a factory so they can 
accomplish the user’s goals. 

In IMA, WSs and process ontologies are navigated to 
find the sequences starting from the user’s input 
parameters and go forward by chaining services until they 
deliver the user’s expected outputs. The composition 
starts from the service that needs one or more of the input 
parameters given by the user. If this WS does not produce 
all of the expected outputs, more WSs need to be found to 
provide the expected outputs. This algorithm aims to find 
a composition that has the best QoS (e.g., shortest 
execution time) and the best matching of input and output 
parameters. 

For example, in a simple scenario a user inputs a 
seafood type, and expects matching wine prices (Figure 
3). Both Wine (S1) and World Wine (S2) services are 



food-wine matching services which output the name of 
matching wines with the food type given by the user. 
Wine Price Information (S3) and Beverage Price 
Information (S4) services provide the prices of 
corresponding wines or beverages. 

 
Figure 3. Seafood-based wine price composition 
 
In the process ontology, interface relationships of 

services can be represented as a directed graph by 
matching input and output parameters (see Figure 3). 
Nodes represent services and edges connect services if 
the output of a service can be “feed into” the input of 
another service. Dashed-line edges represent parameters 
that are semantically equivalent (but not an exact match). 
We consider four cases to check equivalence (i.e., 
similarity matching) of an output and an input parameter: 
(1) if they are same, their similarity is maximal. For 
example, the output parameter of S1 matches exactly with 
the input parameter of S3 (smallest similarity value is 
1.0). (2) If an output parameter of the former service 
subsumes the input parameter of the succeeding service, 
this is the second best matching level. For example, the 
output of S4 (beverage price) subsumes the expected 
output parameter (wine price). The similarity value 
depends on a normalized distance between these terms in 
the ontology [16]. (3) If the output parameter of the 
former service is subsumed by the input parameter of the 
succeeding service, the requirements of a parameter could 
be partially satisfied. That applies to the relationship 
between S1 and S4. (4) When two parameters have no 
subsumption relation or they are from different ontologies 
(e.g., output and input of S2 and S3 respectively, which 
are defined in ontologies O3 and O1), the similarity value 
can be obtained by using Tversky’s feature-based 
similarity model [3], which is based on the idea that 
common features increase the similarity of two concepts, 
while feature differences decrease the similarity. 

The overall edge weights are calculated using a 
function of QoS (e.g., execution time of the source 
service of an edge and semantic similarity value between 
input and output parameters. As a matter of fact, other 
factors can be considered in computing weight of edges, 
such as reliability, security, and other properties of 
services. Relative weights of these factors (λ) can be 
defined by a user as follows: 

 
W = (λ) * execution time + (1-λ) * similarity value. 
 
For example, the weight of edge <S2,S4> is 1.2 + 1 in 

Figure 3, which means that similarity value of Wine: O3 
and Beverage: O1 is 1.2 and execution time of S2 is 1 
unit. 

We use a shortest-path dynamic programming 
algorithm based on Bellman-Ford’s algorithm to find the 
shortest sequence between two special nodes representing 
initial and final services. In a traditional directed graph, 
only one incoming edge and one outgoing edge can be 
selected for every node in the shortest path. However, 
services may need more than one incoming edge as input 
parameters in a composition. Furthermore, a service can 
be executed only when all the required input parameters 
are available. Therefore, the distance of every node is 
determined by the maximum value of weights of all the 
incoming edges into a service node. In a different case, 
when there is more than one alternatives for one input 
parameter of a service then we choose the minimum 
weight as a distance associated with this input parameter. 
The algorithm running time is O(n3), and if λ is set to 
different values by the user, different shortest paths can 
be obtained in IMA composition technique [16]. 

 
Figure 4. Stages of an interactive composition 

 
5. Human-Assisted (HA) Composition 
 

The goal of HAA composition is to help users in 
selecting appropriate WSs, and build a composition 
incrementally. The first step is to consider all inputs by 
semantically matching them with all WSs that take one or 
more of them as input. A list of these WSs is provided to 
the user with the WSs ranked based on their similarity 
matching score. The user can select WSs s/he considers 
best for the desired composition. Furthermore, to 
facilitate a better selection process, each listed WS 
includes a description of its functionality as well as the 
output(s) it produces. Then the system determines 
whether all output parameters of the desired composition 
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are produced by the services selected so far. If that is the 
case, the composition is completed. Otherwise the 
interactive composition process continues with more 
stages. Figure 4 shows the first stage of a composition for 
a trip arrangement, where the user has selected two WSs. 

For the second stage, a new set of input parameters is 
generated by the system. This set includes the input 
parameters considered and also includes all outputs of the 
WSs selected by the user. The user is given the option to 
discard elements in this new set of input parameters that 
may no longer be needed. The user may also mark some 
of the new input as “optional”. This helps in the ranking 
of the list of WSs that will be shown to the user in 
subsequent stages. The list of ranked results is grouped by 
input parameters to facilitate selection when the list is 
large. In the example of Figure 4, Restaurant style, 
Restaurant place, Hotel place, and Hotel rate are no 
longer considered as inputs in next stages. The inputs 
Check-in and Check-out dates and Personal information 
are still considered; outputs Restaurant location, Hotel 
location, and Hotel name from the selected services are 
now considered as inputs in next stages; and output 
Restaurant name from one of the selected services is no 
longer considered as input (unless stated otherwise by the 
user), because it satisfies an output parameter Restaurant 
name. The shaded box highlights the new set of inputs for 
the next stage, and in this way the composition problem 
has been reduced. Figure 4 also shows the second and 
final stage of the composition (only two stages were 
needed to complete this composition example). 
 
6. Peer-To-Peer Automatic Composition 
 

In a Peer-to-Peer (P2P) network, each peer can 
provide some WSs, and they can be grouped into 
communities based on the domain(s) for which they 
provide services. When a peer provides more than one 
WS for different domains, it becomes a member of 
different communities. The structure of the communities 
adheres to that of the ontology, so that where the ontology 
is hierarchical, the communities then have a hierarchical 
structure. Each community has both a master and backup 
peers. The master peer in each community maintains a list 
of the masters and back up peers for every other 
community, and backup peers have a replica of this list. 

Figure 5 depicts such an ontology-driven P2P network. 
This network evolves in two different dimensions: (1) the 
first dimension is based on the domain for which the 
services are provided, and (2) the second is based on 
input-output matching relationships amongst the peers’ 
services (the second dimension is not depicted in Figure 
5). The master peers (for (1)) maintain the list of all peers 
within their communities with the services they provide 

as well as the input and output parameters they accept and 
generate respectively. In this way, the network is 
structured in such a way that peers with similar 
functionality and data dependencies are grouped together 
in different dimensions. The following explains how the 
network evolves in dimensions 1 and 2 (using the 
example in Figure 5). 

(1) Initially there’s only one peer (P1) in the network; 
when P2 contacts P1 to join the network, they determine 
based on their common ontology, what domains they 
provide services for, in this case “Flight” and “Hotel” 
respectively. Since they are the first peers for these 
domains, they automatically become the master peers and 
record this in their lists. P3 contacts P2 to join the 
network, as before, based on the common ontology, P2 
determines that P3 is in the “Flight” domain. Since P2 is 
itself a master of its domain it determines which peer to 
redirect P3 to, in this case P1. P3 then contacts P1 and 
then records that P1 is its master. Since P3 is the only 
other peer in the community besides P1, it is 
automatically made the back up peer for this domain. This 
self-organizing network can also handle situations where 
a peer about to join the network contacts a non-
master/back up peers as occurs when P5 joins the network 
or where peers form different sub-communities within a 
community (e.g., P6 is a master for “Motel” sub-
community of “Hotel” services). 

(2) As each peer joins the network, its master queries 
all the other masters of different communities to 
determine if there is any peer in their community for 
which the new peer’s output matches any of their input or 
for which their output matches any of the new peer’s 
input. In the first case, the new peer becomes a 
“predecessor” of any such peer and in the second case it 
becomes a “successor” of any such peer. If such a peer 
exists, the master of the new peer notifies it about this 
association. 

 

 
 
Figure 5. Ontology-driven P2P network. Different 

shapes indicate different domains; thick lines indicate 
communication lines between super peers (denoted by *, 
backup peers are denoted by **). 

 



When any of the peers receives a request by the user 
for a particular service or service composition, this peer 
passes this request with the input and expected output 
provided by the user to its master. The master peer 
determines based on the common ontology, which 
communities need to be contacted to process the user’s 
request and forwards it to the master peers of the 
participating communities. When all the masters of the 
participating communities have received the inputs and 
outputs provided by the user, they determine which 
services in their community provide all or some of the 
expected outputs for the user and what inputs these 
services require. 

The peers that would participate in the composition are 
then discovered by traversing a series of predecessor and 
successor relationships amongst the peers, starting from 
the peer(s) producing the user’s outputs to the peers 
accepting the inputs (provided by the user) required for 
the composition. For example, in Figure 6 the user sends 
the request with input a,b,c,d,e,f and output x,y,z to P13. 
P13 forwards this request to its master P7, which then 
determines based on the ontology to forward this request 
to Peers 1 and 2. These master peers then determine 
which peers within their community provide some or all 
of the expected outputs. P2 determines that P10 and P5 
would participate in the composition. Since the input of 
P10 (g) does not match any of the inputs provided by the 
user, P10 contacts P1, the master of the community to 
which its predecessor P4 belongs. P1 matches the input of 
P4 with those provided by the user. In this case, there is a 
match so this master/slave traversal ends. P7 determines 
that P15 would participate in the composition.  Actual 
composition then starts with P4, P15, P5 and then P10. 

 

 
Figure 6. Example of P2P-based composition 

 
7. Conclusions and Future Work 
 

Today’s search engines and knowledge discovery tools 
help users to locate relevant documents and assemble 
relevant knowledge for effective decision-making 
respectively, and improve their capabilities continuously 
using semantics. Similarly, users need new tools to help 

them discover and assemble services into processes for 
easier and better quality workflow executions given 
increasing number and complexity of WSs. In this paper 
we illustrate some techniques for (semi) automatic 
composition of semantic WSs. However, some interesting 
technical problems still lie ahead. For example, users may 
need to compose services based on their internal 
computations when their profiles may not convey 
adequate semantics to differentiate them. We plan to 
consider validation of the composition based on pre- and 
post-condition semantics. Besides, a layered (e.g., top-
down) composition methodology can help users in an 
interactive composition. 
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