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ABSTRACT 

Most present day search engines have a deterministic behavior in 
the sense that they return the same search results for all users who 
submit the same query at a certain time. They do not take the 
userʼs interests and preferences into account in the retrieval 
process. Integrating user context in the retrieval process can help 
deliver more targeted search results, thereby providing a 
personalized search experience to the user. Personalizing web 
search involves the process of identifying user interests during 
interaction with the user, and then using that information to 
deliver results that are more relevant to the user. In this paper, we 
present our approach to personalizing web search on a mobile 
device (iPhone). Our approach involves building an ontological 
model of user interests on the userʼs mobile device based on his 
interaction with web search results. Personalization of search 
results is achieved by re-ranking search results returned by a 
standard search engine (Yahoo) based on proximity to the userʼs 
interest model. The ability to recognize user interests in a 
completely non-invasive way and the accuracy of personalized 
results are some of the major advantages of our approach. 
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1. INTRODUCTION 
Today, internet search engines have become an indispensable part 
of our lives. People today are able to find all sorts of information 
instantly from almost anywhere. The exceedingly difficult nature 
of the problem of understanding user intent and matching it with 
the worldʼs accumulated knowledge stored on the World Wide 
Web has attracted large scale research and development efforts 
from the academia as well as the industry. In the recent years, we 
have also seen an explosive growth in mobile devices. The 
modern cell phones are significantly better than the oneʼs from a 
few years ago. Mobile Internet has quickly become part of the 
consumer media experience for millions of people. More people 
are searching the web while they are on the move. 
 
Although the capabilities of Internet search engines are 
incrementally improving, there are several challenges facing the 
search engines. One challenge is the problem of irrelevant search 
results. Irrelevant search results usually arise due to short, 
ambiguous queries or semantic level mismatches. Examples 
include “apple”, “Pascal”, “match”, “conductor” etc. all of which 
can have different meanings depending on context. Another cause 
for irrelevant results is the one-size-fits-all approach taken by 
most existing search engines, where an identical query from 

different users in different contexts will generate the same set of 
results for all users. These search engines return a list of search 
results based on a userʼs query but ignore the userʼs specific 
interests, search context and individual differences in information 
needs. As a result, a user may have to go through many irrelevant 
results before finding the desired information. Mobile web search 
introduces new challenges not present in traditional web search. 
The input modes are inherently limited due to the small size of the 
device itself and the network connectivity is often not comparable 
to the Internet speeds on computers. Mobile users are likely to be 
on the go when searching for information and the attention span 
of the users is significantly lower than in traditional web search on 
computers. Furthermore, the user is unlikely to sift through a lot 
of search results to get to the desired page due to his short 
attention span. It is therefore very important to get the desired 
search results in the top positions to avoid waste of time and effort 
for the user. 
 
Personalization techniques that incorporate user interests and 
preferences into the search may address some of these issues. 
Personalization broadly involves the process of learning a profile 
of user interests. Personalization of web search usually involves 
filtering or re-ranking the results returned from a standard search 
engine, or directly incorporating user interests into the retrieval 
process itself to present personalized results. Given a query, a 
personalized search can provide different results for different 
users or even different results for the same user in different 
contexts. Web search personalization has two main dimensions:  

1. How can precise information about userʼs interests be 
collected and represented? 

2. How can this information be used to deliver personalized 
search results? 

In this work, we present our approach to personalizing web search 
in a mobile environment. As a case study, we chose Appleʼs 
iPhone as the mobile platform to implement our work. Our main 
goal is to identify userʼs interests based on the web pages he 
visits, and deliver personalized web search results by utilizing the 
identified user interests. We learn and maintain implicitly an 
ontological profile of userʼs interests through passive observation 
of the userʼs click stream. The userʼs interest profile is stored 
locally on his mobile device and updated with every web page 
visit. Personalization is achieved by re-ranking standard web 
search results using the userʼs interest profile. 



2. BACKGROUND 
2.1 Web Directories 
Web Directories, also referred to as knowledge bases, are a 
popular means of organizing information resources on the web. A 
web directory is a repository of web pages that are organized in a 
hierarchical structure, usually like a tree or a directed acyclic 
graph (DAG). Each web page cataloged in a web directory is 
annotated with a short description by one of the editors of the 
directory. Many web directories have become available in recent 
years. The Librarianʼs Internet Index (LII) [2], The Internet Public 
Library (IPL) [3], Yahoo Web Directory [4] and the Open 
Directory Project (ODP) [5] are examples of general purpose web 
directories. These web directories catalog huge numbers of URLs 
organized in an elaborate hierarchy. Since the actual process of 
creating such ontologies can be a very tedious, most hierarchical 
classification systems utilize existing web directories as their 
predefined class hierarchies. 

2.1.1 Open Directory Project (ODP) 
In this work, we use the Open Directory Project (ODP) as our 
knowledge base. ODP is one of the largest collaborative efforts to 
manually annotate web pages and is widely regarded as “the 
largest human-edited directory of the web”. Currently ODP 
catalogues over 4.6 million URLs that have been categorized into 
nearly 600,000 categories by over 80,000 human editors. ODPʼs 
data structure is organized as a DAG. The textual data contained 
in the leaf nodes can be utilized as training data for the parent 
concept of the leaf node. Web directories like ODP cover most, if 
not all, information domains, and can therefore be used for 
representing user interests. Nodes at the top levels of the hierarchy 
represent broad user interests and the ones below them narrow 
down the scope of their ancestors. In this work, we select a subset 
of concepts from the top four levels of ODP for representing user 
interests. We focus on the top levels of the hierarchy since we 
believe that many search results can be usefully disambiguated at 
this level. 

2.2 Text Classification Using Rainbow 
We use the open source Rainbow text classification library [7] by 
Andrew McCallum at CMU as the “kernel” of our text 
classification module. The Rainbow Text Classifier, is perhaps the 
most well known and most downloaded text classifier today. It 
supports a number of text classification methods for classifying 
text into a set of topics. Rainbow must be trained before using it 
for classification. This involves creating a model of a set of 
training documents. The training set is read in as directories (one 
per category) containing text files that serve as examples for those 
categories. Once Rainbow is trained, it can be set up as a server 
that received classification requests over a port. After a model is 
learnt from the training set, classification can be performed using 
one of the many classification methods supported by Rainbow ( 
Näıve Bayes, Term Frequency - Inverse Document 
Frequency (TFIDF), probabilistic indexing, k-nearest neighbor 
and support vector machines (SVMs)). 

In this work, we train the rainbow classifier on a subset of the first 
four levels of the ODP categories and set the classifier to be run as 
a continuous background server process. The classifier listens for 
document classification requests over a port. 

2.3 Yahoo BOSS API  
Yahoo BOSS (Build Your Own Search Service) is an open 
platform that offers programmatic access to the Yahoo Search 
indices via an API. As of this writing, the Yahoo BOSS API is 
offered free of charge to developers. There is no limit to the 
number of queries that can be made. However, a maximum of 50 
search results can be fetched per query. The search API allows 
developers to specify the start position of search results. So 
fetching the top 500 search results for a query would involve 
sending 10 API requests, starting with a start position of 0 and 
incrementing the start position by 50 with each request. We use 
the BOSS Mashup Framework [8] -- a Python library provided by 
Yahoo to access the Yahoo search results. We note that other 
search engine APIs can be used for retrieving standard search 
results, in pace of Yahoo API. We decided to use the Yahoo API 
mainly because it provides us access to “key terms” for each 
search result. Key terms are keywords Yahoo's search index has 
assigned to a page. It is a finite list of words that explain what a 
document is about and allow for better categorization. The key 
terms are obtained by Yahoo based on each termʼs frequency, and 
positional attributes in the document. Key terms are particularly 
useful in our work, as they save us valuable post-processing time, 
which would otherwise be required for processing result pages 
and obtaining the key words representing each page. For the 
purpose of classifying web search results, we consider the 
combination of key terms, title and snippet of each search result as 
sufficient information for representing what the web page is 
about. 

3. METHODOLOGY 
In the previous sections, we gave some background about the 
Open Directory Project [5], text classification, and Rainbow text 
classification library [7]. In this section, we present our 
methodology to put these components together for personalizing 
web search on a mobile device. 

 

3.1 Programmatically Accessing ODP 
We start with a MySQL database dump of ODP, published in [1]. 
The MySQL dump provides us a convenient SQL interface to the 
entire ODP hierarchy. The database contains several tables that 
together capture all the information in the ODP hierarchy. We 
query the database using a Java program that connects to the 
database through a MySQL JDBC connector. Using the Java 
program, we create a directory structure on the local file system 
that replicates the ODP hierarchy. The procedure for doing this is 
shown in fig (1). The output of the procedure is a directory 
structure where each directory represents a concept. Each 
directory contains subdirectories representing its sub-concepts, 
and a Super Document containing the title and description of 
every web page categorized under that concept. 

 
PROCEDURE: CREATE_ODP_STRUCTURE 
For every category C in the ODP hierarchy: 
    path <--- path of C in the ODP hierarchy 
    numSubTopics <--- Number of subcategories of C 
    numLinks <--- Number of web pages under C 
    if numSubTopics == 0 AND numLinks == 0 
        Ignore category C 
    else  
        Create directory for category C at location ‘path’ 
        if numLinks > 0 



            Create Super Document SDc 
            For every web page W categorized under C:                     

Add the Title & Description of W to SDc 
Save SDc in C’s directory 

Fig 1: Procedure to replicate ODP on a local drive 
 

3.2 Removing Structural Noise from ODP 
However elaborate knowledge repositories are, they contain 
concepts that are detrimental to feature generation [6]. These 
include concepts too deep in the hierarchy, or having too few 
textual objects to build a representative attribute vector. In [6], 
they have identified potential sources of noise in ODP. In our 
work, we use their findings to prune the Top/World, Top/Adult, 
Top/Kids_And_Teens and Top/Regional branches of ODP: 

 
3.3 Training a Text Classifier on ODP 
As discussed in section 2.2, we use the Rainbow text classification 
library to train a flat multi-label text classifier on a subset of 
categories from the top four levels of ODP. We first flatten the top 
four levels of ODP, i.e., bring all categories from those levels 
under a common parent. We therefore carefully remove all the 
categories that do not make sense individually. The text classifier 
is central to our personalization system. Sub-optimal classification 
results will lead to an inaccurate user model, which may 
eventually cause irrelevant search results to be returned to the 
user. We therefore designed a number of experiments around the 
text classifier. These experiments and their results are shown in 
section 5. In this section, we present our approaches for training a 
classifier. 

 
APPROACH I: 

1. Select a subset 'S' of concepts from ODP to be used in 
user modeling. 

a. S = {C1, C2, C3, C4, C5, C6 ...... Cn} 
2. Since the concepts in S are from different levels in 

ODP, flatten them, i.e., move them (along with their 
sub-trees) to a common level. This is done because we 
need to train a flat classifier over categories in S. 

 

 
 
3. Train the text classifier, using all textual documents 

under a concept as the training data for that concept. 
4. Set up Rainbow to receive classification requests on a 

specific server port. 
 

DISCUSSION of APPROACH I: 
Since we use all documents for training purpose, the number of 
features per category is very large. A large feature set leads to a 

performance loss in many cases. Moreover, since different classes 
have different amounts of textual data under them, classes with 
larger amounts of textual data appear much more often in 
classification results as compared to the ones with smaller 
amounts of textual data. This is because the classification results 
are based on word probabilities and occurrence counts, which 
creates a bias towards the classes with more data. This clearly 
leads to a sub-optimal quality of classification results, and in turn 
a lower quality of the system generated user profile. To overcome 
the data imbalance problem, we need a way to ‘equalize’ the 
classes and reduce the feature set. 

 
APPROACH II: 

Steps 1 and 2 as in APPROACH I. 
3. Run Rainbow document classifier at the level 'Top', this 

time indexing only 20 randomly selected documents under each 
class. Selecting the same number of documents for each class 
overcomes the data imbalance problem of APPROACH I. 

4. Set up Rainbow as a server on a specific port. 
 

DISCUSSION OF APPROACH II: 
In this approach, we intend to reduce the feature set of the TF IDF 
based classifier. Feature selection in text classification has been 
repeatedly shown to lead to little accuracy loss, and to a 
performance gain in many cases. Our method of reducing the 
features is to select a smaller, fixed number of training documents 
per category. Selecting a fixed number of training documents per 
category equalizes the categories, and since each of training 
documents contain rich textual information about a number web 
pages, selecting even a small number of training documents per 
category results in a rich feature set. 

 
3.4 System Software Architecture 
In this section, we describe the software architecture of our 
personalization system. Figure 2 gives an overview of the system. 
The system is composed of two parts: i) the server-side part which 
is implemented on a server, and ii) the client-side part which 
resides on user’s iPhone. 
 
3.4.1 Server-Side  
The server-side of our system consists of three main components: 

1. A text classifier, trained as described in section 3.3 
2. A socket program that communicates with the text 

classifier over a server port. 
3. A Django application that receives search query from 

the user, retrieves Yahoo search results for the query, 
forwards them for classification and returns the search 
results along with their classification back to the client 
device. 

 
Django Application 
Django is an open source web application framework, written in 
Python. The ‘Django App’ component of Figure 2 is an integral 
server-side component of our system. It integrates with the Yahoo 
BOSS search framework. Specifically, the Django App receives 
search query from the client device and retrieves Yahoo search 
results for the query using the “BOSS Mashup Framework”. It 
then sends the search results to the ‘Socket Program’ component, 
and receives the classification results back from the ‘Socket 
program’ component. Finally, it sends the results back to the user. 



Fig 2: System Architecture  
 

Socket Program 
The Socket Program component in Figure 2 is a C program that 
performs socket communication. We set our Rainbow classifier to 
be run as a continuous background server process. The classifier 
listens for document classification requests over a port and 
produces a classification score for each category for which it was 
trained. The socket program does the job of sending document 
classification requests to the port on which Rainbow is running, 
and reading the document classification result scores back from 
the port. 

 
Whenever the user performs a search on his iPhone, an HTTP 
GET request containing the user query is sent to our web server. 
The web server is configured to forward such requests to the 
Django application. The Django application receives the HTTP 
request URL from the web server and extracts the query from the 
URL. It then performs Yahoo web search for the query through 
the BOSS API. We fetch the top 100 search results from Yahoo. 
That corresponds to the first 10 pages of search results. Given that 
users typically browse up to the top 2 to 3 result pages on an 
average, we believe that 100 search results will be reasonable in 
most cases. The search results are returned as a JavaScript Object 
Notation (JSON) formatted string. JSON is a lightweight data-
interchange format that is based on a subset of the JavaScript 
Programming Language  [10]. For each search result, the JSON 
string contains the Title, URL, abstract and key terms (among 
other data) corresponding to the web page. In our Django 
application, we combine the title, abstract and key terms for each 
search result into a single string. We believe that the combination 
of title, abstract and key terms for a web page provides sufficient 
information of what the web page is about. A more sophisticated 
approach would be to extract the complete text of the search result 
web page and analyze it to understand what the web page is about 
but that requires additional steps such as parsing out all the 
HTML content and performing text analysis, both of which add 
significantly to the post-processing time. Besides, the key terms 
were extracted by Yahoo by performing text analysis in the first 

place and provide much valuable information about a search result 
web page in addition to its abstract. Therefore, using the Yahoo 
key terms is the same as performing text analysis on the web page 
content. In [9], they take a similar approach as ours wherein they 
used the Google SOAP API to access Google search results and 
used the search snippets as representing the search result web 
page. 
 

 
Table 1: User Profile on Client Side 

 
3.4.2 Client-Side 
As discussed earlier, we do not store any type of user information 
on the server. The userʼs interest profile is maintained locally on 
the userʼs iPhone. We model user interests using the same 
concepts that we trained our text classifier on. 

 
Table 1 shows the structure of the user profile. The first column 
contains concept names and the second column contains concept 
weights in the user model. Initially, all concept weights are zero. 
The concept weights are constantly updated by our system based 
on the userʼs interaction with the search results and based on the 
links the user visits after clicking one of the search results. At any 
time, the concepts with higher weights are the ones the user is 
more likely to be interested in. Figure 3 below shows what 
information about each search result is returned from the server. 

 



 
Fig 3: Search Result Details Stored on User’s iPhone 
 

For each search result, we return the Title, URL, Abstract, Web 
Rank and the top three categories assigned to that result by our 
document classifier. Once the Yahoo search results are received, 
the next step on the client-side is to re- rank the results so that the 
ones that are more likely to be of interest to the user are shown 
above others. 

 

 
Fig 4: Re-ranking Search Results on the Client Side 

 
The re-ranking is achieved through a matching function, which 
calculates the degree of similarity between each search result and 
the user profile. 

 

 
where  

wpi,k = weight of concept k in user profile, 
wdj,k = weight of the concept k in the result j, 
N = number of concepts returned to the client. 

 
The final weight of the document used for reordering is calculated 
by combining the previous degree of similarity with Yahooʼs 
original rank, using the following weighting scheme: 
 

 
 
where α gets values between 0 and 1. When α is 0, conceptual 
rank is not given any weight, and the match is equivalent to the 
original rank assigned by Yahoo. If α has a value of 1, the search 
engine ranking is ignored and pure conceptual match is 
considered. Obviously, the conceptual and search engine-based 
rankings can be blended in different proportions by varying the 
value of α. 
 
The final score of each search result is assigned to the search 
result as shown in Figure 5. Finally, the search results are sorted 
based on their final scores, so that the ones with higher scores are 
ranked higher. 

 

 
Fig 5: Post Re-ranking, and Search Result Details Stored on 

the iPhone 
 

Once the user is presented the re-ranked search results, the system 
enters into observation mode. Whenever the user clicks a search 
result, the categories that were assigned to that search result by the 
classifier are updated. For instance, if categories C1, C2 and C3 
were assigned to the search result by the server, C1 being the best 
match and C2 and C3 being the second and the third best matches, 
the system would increase the weight of C1 by 3, C2 by 2 and C3 
by 1 in the user model. After the user clicks a search result and is 
viewing a web page, we also monitor the hyperlinks that the user 
visits from the web page. When the user clicks on a hyperlink, we 
extract the text from all the paragraph elements of the target 
webpage. The extracted text is sent to the server for classification. 
Once the classification results are returned from the server, the top 
three category matches are updated proportionally in the user 
model. 

 
4. EXPERIMENTS 
To evaluate the effectiveness of our personalized search results, 
we built an evaluation version of our client-side system. The 
evaluation version was designed to run on the ʻiPhone Simulatorʼ 
software that is part of the iPhone SDK. In the evaluation version, 
we combine the top 10 web search results from Yahoo and the top 
10 personalized search results. If there is overlap (e.g., when some 
of the top 10 personalized search results come from the top 10 
Yahoo search results), we add an equal number of personalized 
and Yahoo search results so that the final count of search results 
displayed to the user is 20. The search results are shuffled before 
they are displayed to the user so as to remove any bias. Upon 
clicking a search result we record the fact that the user considered 
the selected search result relevant. We communicate this to the 
user by displaying a small tick mark next to the visited search 
results. If in fact the user thinks otherwise, he can uncheck the 
search result and the record for that search result will be removed. 
We asked 5 graduate students (3 from Computer Science, 1 from 
Textile Science and 1 from Bio Technology) from University of 
Georgia to use the evaluation version of our app over a period of 7 
days. In the rest of the discussion, we refer them as User 1, User 
2, etc. The users were first given an overview of our system and 
were explained the experimental setup (describe above). They 
were asked to use our application for performing web search just 
as they would normally query a search engine. Before clicking on 
any search result for a given query, the users were asked to 
carefully review the title, abstracts and URLs of all search results 
and then click on the ones they thought were relevant to them. 

 
Experiment 1: System Generated User Profile vs. True User 
Profile 
Given that our primary goal is to learn a model of user interests 
based on his interaction with search results, and use this model to 
personalize search ranking, one natural way to evaluate our 



learning method is to measure the difference between the userʼs 
actual interest vector and the learned interest vector. At the end of 
the 10 day period of user evaluation, the users were shown the top 
20 system predicted user interests were asked to re-order the 
interests based on what they thought were their true interests. To 
measure the degree of agreement between the two lists, we 
calculate normalized Kendall tau distance (see [11], for how 
normalized Kendall tau distance is calculated) between them. The 
normalized Kendall tau distance lies in the interval [0, 1], where 0 
indicates that the two lists are identical and 1 indicated maximum 
disagreement. 

 

 
Table 2: Normalized Kendall Tau Distance between the 

System Predicted Interest Vector and the True Interest Vector 
 

Table 2 shows the normalized Kendall Tau distance value for the 
five users. We note that the value for all users are closer to 0, 
which indicates agreement between the system generated interest 
vector and the true user interest vector. We can therefore assert 
that our learning method does a good job of identifying user 
interests. 

 
Experiment 2: Comparing User Interaction with Standard 
and Personalized Results 
In this experiment, we wished to determine which search results 
the users tended to view more often - personalized search results 
or the standard search results. For each query, we recorded which 
search results the user considered relevant. The search results 
were tagged as ʻPʼ if they came from the personalized results and 
ʻYʼ if they came from standard Yahoo search results and ʻYPʼ if 
they were common to both, the top 10 Yahoo search results and 
the top 10 personalized results. At the end of the evaluation, we 
calculated the total number of search results clicked by each user 
and how many of them were personalized results. 
 
Table 3 compares the percentage of standard and personalized 
search results clicked by users. It is clear that the users considered 
the personalized results more relevant compared to the standard 
search results. And since the experiment presented search results 
in an unbiased manner, we can assert that the personalized search 
results were indeed relevant to user needs and that integrating user 
interests can help improve the quality of web search. 
 

6. CONCLUSION 
This research was about personalizing web search on mobile 
devices. As a case study, we used Appleʼs iPhone as the client 
mobile device. Our approach involved building an interest profile 

on the userʼs iPhone based on his interaction with web search 
results and his browsing behavior. Personalization of search 
results was achieved by re- ranking search results returned by a 
standard web search engine (Yahoo) based on proximity to the 
userʼs interest profile. The ability to recognize user interests in a 
completely non-invasive way and the accuracy of the personalized 
results are some of the major advantages of our approach. The 
average response time of our system for displaying the top 100 
personalized search results was found to be less than 2 seconds 
which is reasonable in a mobile environment. Our 
experimentation showed that, when presented with an unbiased, 
randomized list of standard web search results and personalized 
search results, users viewed personalized results more often than 
standard web search results. We can therefore assert that search 
personalization can not only be achieved but can be effective in 
the mobile environment. 

 

 
Table 3: Statistics of the search results clicked 
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