METU Object-Oriented DBMS Kernel

Asuman Dogac, Mehmet Altinel, Cetin Ozkan, Budak Arpinar, Ilker Durusoy
and Ilker Altintas

Software Research and Development Center of TUBITAK
Middle East Technical University (METU)
06531 Ankara Turkiye
email: asuman@srdc.metu.edu.tr

Abstract. This paper describes the design and implementation of a
kernel for an OODBMS, namely the METU Object-Oriented DBMS
(MOOD). MOOD is developed on the Exodus Storage Manager (ESM).
MOOD kernel provides the optimization and interpretation of SQL state-
ments, dynamic linking of functions, and catalog management. SQL
statements are interpreted whereas functions (which have been previ-
ously compiled with C++) within SQL statements are dynamically linked
and executed. Thus the interpretation of functions are avoided increas-
ing the efficiency of the system. A query optimizer is implemented by
using the Volcano Query Optimizer Generator. A graphical user inter-
face, namely MoodView, is developed using Motif. MoodView displays
both the schema information and the query results graphically. Addi-
tionally it is possible to update the database schema and to traverse the
references in query results graphically.

Keywords: OODBMS kernel implementation, query optimization in
OODBMSs, dynamic function linker, Graphical User Interface

1 Introduction

In this paper we describe our experience in the design and implementation of
the METU Object-Oriented DBMS (MOOD) kernel. The system is coded in
GNU C++ on Sun Sparc 2 workstations. MOOD has a SQL-like object-oriented
query language, namely MOODSQL [15, 8], and a graphical user interface, called
MoodView [2, 3] developed using Motif. MOOD has a type system derived from
C++, eliminating the impedance mismatch between MOOD and C++. The
users can also access the MOOD Kernel from their application programs written
in C++. For this purpose MOOD Kernel defines a class named UserRequest that
contains a method for the execution of MOODSQL statements. MOOD source
code is available both for anonymous ftp users from ftp.cs.wisc.edu and for the
WWW users from the site http://www.srdc.metu.edu.tr along with its related
documents.

MOOD is developed on top of the Exodus Storage Manager (ESM) which has
a client-server architecture [10, 5] and each MOOD process is a client application
in ESM. ESM provides the MOOD some of the kernel functions like storage
management, concurrency control, backup and recovery of data.



Additional kernel functions provided by the MOOD are the optimization
and interpretation of SQL statements, the dynamic linking of functions and cat-
alog management. MOOD query optimizer is implemented by using the Volcano
Query Optimizer Generator [12]. During the interpretation of SQL statements
functions (which have been previously compiled with C+4) are dynamically
linked and executed. This late binding facility is essential since database en-
vironments enforce runtime modification of schema and objects. With our ap-
proach, the interpretation of functions are avoided increasing the efficiency of
the system.

An alternative way to handle dynamic linking is to extend a C++ interpreter
with DBMS functionality. In this alternative there is a problem of performance
decrease due to interpretation. The advantage is to be able to use the full power
of C++.

The implementation of a query optimizer for a SQL-like object-oriented query
language, namely MOODSQL, is presented. The Volcano Query Optimizer Gen-
erator is used in developing the MOOD optimizer.

The paper is organized as follows: An overview of the MOOD Kernel is de-
scribed in Section 2. In Section 3, the implementation of the Catalog Manager is
given. The Query Manager and Dynamic Function Linker are discussed in Sec-
tions 4 and 5 respectively. Section 6 describes the MOOD Query optimizer. In
Section 7, the implementation of the Database Engine is summarized. Kernel in-
teraction with MoodView is given in Section 8. Finally conclusions are presented
in Section 9.

2 MOOD Kernel Design Considerations and an Overview

There are some design choices that we have made and some decisions are en-
forced by the implementation language, namely C++. These are discussed in
the following within the framework presented in [11].

Object Specification in MOOD: Each object is given a unique Object
Identifier (OID) at object creation time by the ESM which is the disk start ad-
dress of the object returned by the ESM. Object encapsulation is considered in
two parts, method encapsulation and attribute encapsulation. These encapsula-
tion properties are similar to the public and private declarations of C++.

Declarative properties of the MOOD : In the MOOD, the aspect con-
cept given in [11] is limited to type specifications, in other words, class defini-
tions are analogous to type definitions in a programming language. Hence each
instance in the system is defined as a member of a class.

Procedural properties of the MOOD: Methods can be defined in C++
by users to manipulate user defined classes. Method binding is performed dy-
namically at run time. Dynamic linking primitives are implemented by the use
of the shared object facility of SunOS [17]. Overloading is realized by making
use of the signature concept of C++.

Object Abstractions in the MOOD: Objects are grouped in the abstrac-
tion level of a class, in other words, classes have extensions. Class extensions are



implemented as ESM files. A class in the system has an unique type identifier
which is inherited from a meta class named MoodsRoot. This type identifier
is used in accessing the catalog to obtain the type information to be used in
interpreting the ESM storage objects which are untyped arrays of bytes. The
relation between classes and instances is a 1:n relation, i.e., under a class there
could be any number of instances associated with it, but an instance can not be
associated with more than one class. Class inheritance mechanism of the MOOD
Kernel is multiple inheritance. The name resolution is handled as in standard
C++. Additionally in our system in case of name conflicts, if the scope reso-
lution operator is not used, the first class in the inheritance order having that
attribute is assumed as default.

Aggregates in the MOOD: Aggregate definitions are handled in the
MOOD system by introducing type constructors (Set, List, Ref and Tuple).
Aggregate classes can be constructed by recursive use of these type construc-
tors.

2.1 MOOD Overview

The general flow of execution in the MOOD system is shown in the Figure 1.
MoodView [2, 3] is the graphical user interface of the system. MoodView displays
both the schema information and the query results graphically. Additionally it is
possible to update the database schema and to traverse the references in query
results graphically. In displaying the schema, MoodView either makes direct
calls to the Catalog Manager (1) or issues the necessary commands to the Query
Manager (3). For primitive operations involving a single function call, Mood-
View directly communicates with the catalog. Complex operations are passed
to the Query Manager. Query Manager parses and executes these commands by
obtaining the necessary information from the Catalog Manager (5,6). Results are
returned from the Catalog Manager or from the Query Manager depending on
which subsystem received the request (2,4). Query Manager handles the method
creation through Dynamic Function Linker (8, 9).

MoodView passes the MOODSQL [8, 14, 15] queries to the Query Manager
without any modification (3). Query Manager obtains the necessary information
from the Catalog Manager (5,6) and then makes syntax and semantic checks
on the queries. If no error is detected, a query tree is generated and passed to
the query optimizer (7). After the optimization phase, resulting query tree is
ready to be executed by the MOOD engine (10). During execution, class extents
are read from the Exodus Storage Manager (ESM) and temporary results are
stored in the ESM (16, 17). If the class methods are used in the query, they are
activated through the Dynamic Function Linker subsystem (14,15). At the end
of the execution, results are returned directly to MoodView (13). In Moodview,
a user can traverse the links in the database or execute class methods with void
return type by using the cursor mechanism provided.

MOOQOD also has a textual interface to the database. For this interface, MOOD-
SQL provides schema definition and modification commands.



