
An Efficient Data Extraction and Storage Utility
For XML Documents

I. Budak Arpinar1, John Miller2, and Amit P. Sheth3

LSDIS Lab, Computer Science Department

University of Georgia, Hardman Hall, Athens, GA – 30602
1 budak@ainge.cs.uga.edu, 2 jam@cs.uga.edu, 3 amit@cs.uga.edu

1 Introduction

In this paper, a mechanism to provide selective extraction of
data objects from XML documents, the storage of these
documents in an object-relational database, and retrieval and
reconstruction of XML documents from extracted data
objects is discussed. The motivation is provided by a need
for a Workflow Process Repository in a Workflow
Management System (WFMS) [6], namely METEOR
WFMS, to store meta-data about workflow designs,
organizations, informational resources and computational
resources. Thus meta-data is composed of different XML
documents representing different components of a workflow
process.

The repository, involving the Data Extraction and
Storage Utility (i.e., Extractor), has the following main
capabilities:

 Filtering of XML objects that need to extracted,
 Generating relational schemas for on-the-fly

storage of XML documents,
 Loading data from XML documents into relational

tables,
 Re-creating original XML documents as needed,
 Querying, browsing, and versioning.

Our XML storage scheme is so practical and flexible.
Practicality comes from the broader acceptance and use
of Object-Relational Database Management Systems
(ORDBMSs); flexibility is provided by selective
extraction mechanism (i.e., filtering) employed by the
Extractor, which is not available in similar approaches
[3] using an ORDBMS. The comparison of our
approach with XML databases (e.g., Lore [5]) in terms
of efficient storage and querying XML documents [1,2]
requires more research and performance testing.
Although they support a native data model for XML
documents, many XML databases do not provide high
performance.

Recently, some database vendors have started to
support XML. Axielle by Ardent Software, eXcelon by
ODI, and XML Repository by Poet are some examples.
In general, these products provide an import and export
programming interface, which is compliant with
Document Object Model (DOM) from the W3C.

2 Repository Architecture

The motivation behind building an XML based workflow
repository to support multi-organizational workflow
processes, as well as to support reusability, adaptability and
survivability of both intra- and inter-organizational
workflows. Multiple organizations on the Web can post
their services into the repository as workflow steps, and
these steps can be incorporated into other organizations’
workflow processes using repository’s querying and
browsing capabilities. Even the organizations can use their
own local repositories to reuse existing workflow
components, eliminating design of new workflows from
scratch. Finally, the survivability is supported by replacing
failed workflow components with functionally equivalent
components at run-time, thus changing workflow schemas
on the fly. These new components are searched in the
repository using the graphical query composer and placed
into the new workflow schema by a “drag-and-drop” [4].

The workflow repository architecture is depicted in
Figure 1. Dynamic XML (DXML) from ObjectSpace
provides ability to access and manipulate XML objects like
regular Java objects. The Document Type Definitions
(DTDs) are processed to generate classes for each element
defined in a DTD. XML objects that need to be extracted, as
well as mapping between relational tables/attributes and
these objects, are defined in a spec file. Relational schemas
are created dynamically using this specification, and
extractor uses generated classes and Java reflection to
retrieve XML objects to be stored in the corresponding
relations. The XML documents themselves are stored as
Character Large Objects (CLOBs), and the extracted
information is correlated with corresponding CLOBs using
foreign keys. In this way, extracted information can be
queried (or browsed), and once desired object is located,
original XML documents (e.g., workflow schemas) can be
reproduced from the database.

Figure 1. An Overview of Repository Architecture

3 Data Filtering and Extraction From
XML Documents

An XML-relational mapping scheme is used to create a
relational schema corresponding the “filtered” hierarchy of
an XML document. Actually, both an XML document and a
relational database can be viewed as trees. In Figure 2, a tree
representation of the XML document below, namely
SampleFlow.xml describing workflow steps (i.e., tasks) is
depicted.

<?xml version="1.0"?>
<!DOCTYPE NetworkTask SYSTEM "NetworkTask.dtd">
<NetworkTask id="1">
 <Task id="2">
 <Name>SampleFlow</Name>
 <TaskType>Non-transactional WorkFlow</TaskType>
 </Task>
 <SimpleSubTaskList>
 <Task id="3">
 <Name>Start</Name>
 <TaskType>Human</TaskType>
 </Task>
 <Task id="4">
 <Name>Close</Name>
 <TaskType>Transactional</TaskType>

 </Task>
 </SimpleSubTaskList>
</NetworkTask>

Filtering is realized by (1) mapping only “selected”
elements to relations, and (2) mapping only “selected”
elements or attributes to relational attributes. For example,
only NetworkTask and Task elements (Figure 2) are
mapped to some relations. The property (2) above is
realized by filtering only a selected subset of attributes

associated with the leaf nodes of the paths starting with each
filtered relation. For example, the extracted elements and
attributes are depicted with dashed lines in the figure.
Extractor recursively traverses XML tree structure from the
Root downward using the interfaces and classes generated
by DXML to extract specified attributes for each relation.
Note that for brevity, a complete extraction algorithm is not
discussed here.

The two employed filtering techniques ((1)&(2)) allow
users to control creation of database schemas and provide an
efficient storage mechanism for the selected components,
because instead of a whole document, important parts of the
document for a user are specified and extracted.

The resulting relational database is depicted in Figure 3.
Filtered elements (i.e., NetworkTask and Task) are
mapped to relations, and filtered elements/attributes (e.g.,
Name and TaskType) are mapped to attributes. A special
relation, namely XmlDoc, is used to store XML documents
themselves in DocumentText attribute as CLOBs. A
VersionNo attribute is placed to support different versions
of the same XML document.

As a final step, foreign and primary keys are computed
for each relation. A foreign key is used to represent
ancestor-successor (i.e., containment) relationship in the
XML tree. In this way, attributes of ancestor nodes, or even
attributes of sibling nodes can be accessed by using these
foreign keys as join attributes. For each relation, the
relation(s) referenced are indicated and foreign key(s) are
produced to reference that relation(s)'s primary keys. A
generated name for a foreign key is "<relation-
name>_<primary-key>" of what it references. For example,
for Task "XmlDoc_DocumentId" references the XML

NetworkTask.dtd
RoleDomain.dtd
DataClass.dtd

Xgen
(Dynamic

XML)

/networktask/*.java
/roledomain/*.java
/dataclass/*.java

*.xml

Extractor

TABLE
TABLE_MAP

(e.g., Task = NetworkTask SimpleSubtaskList Task *)
ATTRIBUTE_FILTER

PRIMARY_KEYS
FOREIGN_KEYS

specspec

Java Reflection:
get…SimpleSubTaskLists();
get...Tasks();
get…TaskName();
…

Database
Utility

RDBMS
Oracle,

MySQL, etc.

CLOB
Utility

Schema
Generator

SCHEMA

JDBC

Figure 2. Filtering Elements and Attributes

Document. In general, a filtered XML element in the tree
can reference one of the primary keys of a parent element,
which is also filtered, or XML document to which it
belongs. Finally, the primary keys are specified and they are
underlined in Figure 3.

4 Conclusions

Recently, XML gains a great acceptance as a data
interchange format on the Web. Thus, providing storage and
querying capabilities for XML attains interests of many
researchers. However, a broadly accepted solution is still
missing. We believe that our approach provides for a
flexible and practical solution until XML DBMSs are
improved and standardized. Furthermore, the XML based
workflow repository provides easy exchange of workflow
process definitions between companies, and an integration
tool to enable coordination of companies’ business
processes.

References

[1] “The XML Query Algebra”, W3C Working Draft, Dec. 2000.
[2] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web”,

Morgan Kaufmann, 2000.
[3] R. Bourret, C. Bornhovd, and A. Buchmann, “A Generic

Load/Extract Utility for Data Transfer Between XML
Documents and Relational Databases”, WECWIS 2000,
Milpitas, CA.

[4] M. H. Kang, J. N. Froscher, A. P. Sheth, K. Kochut, and J. A.
Miller, “A Multilevel Secure Workflow Management
System”, CAiSE 1999: 271-285

[5] L. McHugh, S. Abitebul, R. Goldman, D. Quass, and J.
Widom, “Lore: A Database Management System for
Semistructured Data”, ACM SIGMOD Record, 26(3), 1997.

[6] A. Sheth, W. Aalst, and B. Arpinar, “Processes Driving the
Networked Economy: Process Portals, Process Vortexes, and
Dynamically Trading Processes, IEEE Concurrency, July-
September 1999.

Figure 3. Dynamically Created Relational Database

Name TaskType Id Name TaskType Id

Root

NetworkTask

Task SimpleSubTaskList Id

TaskTaskName TaskType Id

SampleFlow Non-transactional-
Workflow

2

Start Human

1

43 Close Transactional

DocNode

ElementNode

AttributeNode

ValueNode

Legend

NetworkTask TaskTask

SampleFlow Non-transactional-
Workflow

Start Human Close Transactional

XmlDoc

Database

Relation

Attribute

Value

Legend

Database

Name
TaskType

XmlDoc-
DocumentId

XmlDoc-
DocumentId

XmlDoc-
DocumentId

Name
TaskType

Name
TaskType

Dtd

DocumentText

XmlFileNameDocumentId

VersionNo

