il

The Univer’sigl of Georgia

Department of Computer Science

Brief Course Description
(50-words or less)

Extended Course Description /
Comments

Pre-Requisites and/or Co-Requisites

Approved Textbooks

Learning Outcomes

Course Information Sheet

CSCI 2670

Introduction to Theory of Computing

This is a first course on the theory of computing. Fundamental Topics
include finite automata, regular expressions and languages, context-free
grammars and languages, push-down automata, pumping lemmas for regular
languages and for context-free grammars, the Chomsky hierarchy of language
classes, Turing machines and computability, undecidability of the halting
problem, reducibilities among decision problems and languages, time
complexity, and NP-completeness and tractability. Please note, I removed
space complexity from the CAPA description. I have never been able to cover
that material ... I struggle to get to NP-completeness.

This is a required course for all computer science majors. Itis open to any
students interested in learning the underlying mathematical models of
computation (provided they have the necessary background knowledge).

CSCI/MATH 2610: Discrete Mathematics or CSCI 2611 Discrete Mathematics
for Engineers

Thomas A. Sudkamp

Languages and Machines: An Introduction to the Theory of Computer Science
3rd Edition

ISBN-13:978-0321322210

Michael Sipser

Introduction to the Theory of Computation
2nd Edition

ISBN-13: 978-0534950972

This course introduces fundamental models relevant to most areas of
computer science. At the end of the semester, all students will be able to do
the following:
1. Given an NFA M, create a DFA or a regular expression that accepts
L(M).
2. Given aregular language L, create an NFA that accepts L.
3. Use pumping lemmas to prove a language is not regular or not
context-free.
4. Given a description of a context-free language L, develop a context-free
grammar (CFG) G such that L(G) = L.
Convert a CFG into Chomsky Normal Form (CNF).
6. Given a context-free grammar G in CNF and a string w, use the CYK
algorithm to determine if G generates w.
7. Given an context-free grammar G, create a push-down automaton
(PDA) that accepts L(G).
8. Identify if a given language is regular, context-free but not regular, or
neither.
9. Given alanguage L, create a Turing machine L that accepts L.
10. Convert between different variations of the Turing machine model
(e.g., multi-tape to single tape).
11. Create a Turing machine that performs a function.

U

Relationship Between Student
Outcomes and Learning Outcomes

Student Outcomes

12.
13.
14.
15.
16.
17.

Define decidabilty and demonstrate that a language is decidable.
Reduce one problem to another one.

Use reductions to prove a problem is undecidable.

Define P, NP and NP-complete.

Show a problem is in P and determine its computational complexity.
Write pseudo-code describing a non-deterministic Turing machines
steps to solve a problem.

18. Prove a problem is NP-complete.
Student Outcomes
A b C d e f g h i j k
1 . .
2 . .
3 . .
4 ° .
5 .
@ 6 ° °
g 7 . .
§ 8 ° °
S 9 ° °
g 10 .
g 11 .
8 12 . . .
= [13 .
14 .
15 ° ° °
16 ° ° °
17 . ° °
18 ° ° °

a. An ability to apply knowledge of computing and mathematics
appropriate to the discipline.

b. An ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution.

c. An ability to design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs.

d. An ability to function effectively on teams to accomplish a common
goal.

e. Anunderstanding of professional, ethical, legal, security and social
issues and responsibilities.

f. An ability to communicate effectively with a range of audiences.

g. An ability to analyze the local and global impact of computing on
individuals, organizations, and society.

h. Recognition of the need for and an ability to engage in continuing
professional development.

i. An ability to use current techniques, skills, and tools necessary for
computing practice.

j. An ability to apply mathematical foundations, algorithmic principles,
and computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices.

k. An ability to apply design and development principles in the

construction of software systems of varying complexity.

Major Topics Covered
(Approximate Course Hours)

Assessment Plan for this Course

Course Master
Course History

Mathematical preliminaries (2-hours)

Languages and regular expressions (2-hours)

Context-free grammars (3-hours)

Chomsky normal form and the CYK algorithm (2-hours)

DFAs and NFAs (6-hours)

Equivalence of finite automata and regular expressions (2-

hours)

Pumping lemma for regular languages (2-hours)

DFA state minimization (1-hour)

PDAs (2-hours)

Pumping lemma for context-free grammars (2-hours)

Turing machines (2-hours)

Turing computable functions (2.5-hours)

The Chomsky hierarchy (0.5-hours)

Decidability and problem reductions (3-hours)

Undecidability and the halting problem (5-hours)

Time complexity (1-hour)

P, NP and Cook’s theorem (3.5-hours)

NP-completeness (5-hours)
Each time this course is offered, the class is initially informed of the
Course Outcomes listed in this document, and they are included in the
syllabus. At the end of the semester, an anonymous survey is
administered to the class where each student is asked to rate how well
the outcome was achieved. The choices provided use a 5-point Likert
scale containing the following options: Strongly agree, Agree, Neither
agree or disagree, disagree, and strongly disagree. The results of the
anonymous survey are tabulated and results returned to the instructor
of the course.

The course instructor takes the results of the survey, combined with
sample student responses to homework and final exam questions
corresponding to course outcomes, and reports these results to the
ABET committee. If necessary, the instructor also writes a
recommendation to the ABET committee for better achieving the
course outcomes the next time the course is offered.

X/X/2012 Course approved by CSCI Curriculum Committee
X/X/2012 Course approved by Computer Engineering Faculty
X/Y/2012 Course approved by CSCI Department Faculty

