il

The Univer’sigl of Georgia

Department of Computer Science

Brief Course Description
(50-words or less)

Extended Course Description /
Comments

Pre-Requisites and/or Co-Requisites

Approved Textbooks
(if more than one listed, the textbook
used is up to the instructor’s discretion)

Specific Learning Outcomes
(Performance Indicators)

Course Information Sheet

CSCI 4500

Programming Languages

In this course we will explore modern programming languages and the
paradigm -- procedural or imperative, functional, and logic programming --
that each strives to accommodate. Projects involve at least three languages to
get a feel for the language paradigms.

We will cover both past and present languages, with an emphasis on modern
programming languages. @ We will look at a wide spectrum of styles of
programming that include imperative, scripting, functional, logic and object
oriented languages and evaluate their strengths and limitations. Specific
topics include:

* Syntax and semantics.

* Names, binding and scope.

* Imperative, functional, logical based and object oriented paradigm.
* Types.

* Control flow.

* Programming: Functional, Scripting and Logical Programming.

CSCI 1302 (Pre-Requisite)
Software Development in Java

CSCI 2720 (Co-Requisite)
Data Structures

Recommended Textbooks:

Author: Michael L. Scott

Title: Programming Languages Pragmatics
Edition: 3 or later.

ISBN-13: 978-0123745149 or later.

Author: Robert W. Sebesta

Title: Concept of Programming Languages
Edition: 9 or later

ISBN-13: 978-0131395312 or later

At the completion of this course students should be able to do the following:

1. Explain the differences between imperative, functional and logical
paradigms.

2. Explain why it is important to understand these programming
language paradigms.

3. Explain when (and why) one paradigm is more applicable than
another paradigm.

4. Create a lexer (using a tool like flex or lex) for a simple language.

5. Create a simple parser (using a tool like bison) for simple language.

6. Create and design a program using a functional programming
language.

7. Create and design a program using a logical programming language.



Relationship Between Student
Outcomes and Learning Outcomes

Student Outcomes

8. Create and design a program using a scripting language

9. Demonstrate comprehension of short programs written in functional,
imperative and logic paradigms.

10. Explain and evaluate design and implementation features of
programming languages.

Student Outcomes
a b c d e f g h i j k
1 . ° .
2 ° °
g 3 ° . °
§ 4 . . . )
s e Lo : :
? 7 ° ° . .
<
§ 8 . . ° °
-~ 9 . . .
10 ° ° ° °

a. An ability to apply knowledge of computing and mathematics
appropriate to the discipline.

b. An ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution.

c. An ability to design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs.

d. An ability to function effectively on teams to accomplish a common
goal.

e. Anunderstanding of professional, ethical, legal, security and social
issues and responsibilities.

f.  An ability to communicate effectively with a range of audiences.

g. An ability to analyze the local and global impact of computing on
individuals, organizations, and society.

h. Recognition of the need for and an ability to engage in continuing
professional development.

i.  An ability to use current techniques, skills, and tools necessary for
computing practice.

j-  An ability to apply mathematical foundations, algorithmic principles,
and computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices.

k. An ability to apply design and development principles in the

construction of software systems of varying complexity.



Major Topics Covered
(Approximate Course Hours)

3 credit hours = 37.5 contact hours
4 credit hours = 50 contact hours

Note: Exams count as a major topic
covered

Assessment Plan for this Course

How Data is Used to Assess Program
Outcomes

Course Master
Course History

Overview of Programming Languages (4 hours)

Programming Language Paradigms (4 hours)

Programming Languages Syntax and Semantics (4-hours)

Scanning in Practice (4-hours)

Parsing in Practice (4-hours)

Functional Languages (lazy evaluation, evaluation order, higher order
functions, currying, closures, static & dynamic scope, side-effects,
introduction to LISP like languages, LIPS or Scheme and modern
mainstream functional programming languages like Clojure, Groovy
and Scala) (8 hours)

Polymorphism (4 hours)

Control Flow (4 hours)

Names, Binding, Scope (4 hours)

Scripting (4 hours)

Data types (4 hours)

Logical Languages (4 hours)

Each time this course is offered, the class is initially informed of the
Course Outcomes listed in this document, and they are included in the
syllabus. At the end of the semester, an anonymous survey is
administered to the class where each student is asked to rate how well
the outcome was achieved. The choices provided use a 5-point Likert
scale containing the following options: Strongly agree, Agree, Neither
agree or disagree, disagree, and strongly disagree. The results of the
anonymous survey are tabulated and results returned to the instructor
of the course.

The course instructor takes the results of the survey, combined with
sample student responses to homework and final exam questions
corresponding to course outcomes, and reports these results to the
ABET committee. If necessary, the instructor also writes a
recommendation to the ABET committee for better achieving the
course outcomes the next time the course is offered.

Each course Learning Outcome, listed above, directly supports one or
more of the Student Outcomes, as is listed in "Relationships between
Learning Outcomes and Student Outcomes".

Dr. Maria Hybinette
05/2008 Course Approved into CAPA
02/2012 Course Information Sheet Prepared



