1785

The University of Georgia

Department of Computer Science

Brief Course Description
(50-words or less)

Extended Course Description /
Comments

Pre-Requisites and/or Co-Requisites

Approved Textbooks
(if more than one listed, the textbook
used is up to the instructor’s discretion)

Specific Learning Outcomes
(Performance Indicators)

Course Information Sheet

CSCI1 4570

Compilers

Design and implementation of compilers for high-level programming
languages. Topics include all phases of a typical compiler, including scanning,
parsing, semantic analysis, intermediate code generation, code optimization,
and code generation. Students design and develop a compiler for a small
programming language. Emphasis is placed on using compiler development
tools.

In this course, the students study the principles of compiler design and
implementation. The primary emphasis is placed on the organization of a
typical compiler pipeline, especially focusing on the stages of a compiler front-
end. The course begins with lexical analysis and the construction of scanners,
then moves on to various top-down and bottom-up parsing algorithms,
semantic analysis and type checking, syntax-directed translation, and
intermediate code generation. The course content also includes symbol
tables, error recovery, and runtime systems. Furthermore, the course
includes an overview of code optimization and target code generation.

Each student implements a compiler for a small programming language,
usually a subset of a well-known high-level programming language. The
students learn to use compiler-compiler tools, including scanner and parser
generators. The programming project is split into a few parts to make the
development a larger program manageable.

CSCI 4720

Computer Architecture

Author(s): Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman

Title: Compilers: Principles, Techniques, and Tools, Addison-Wesley, 2007.
Edition: 2-nd edition

ISBN-13:978-0321486813

This course presents a survey of topics in compiler construction most relevant
to students studying computer science. At the end of the semester, all
students will be able to do the following:

1. Define the phases of a typical compiler, including the front- and back-
end.

2. Identify tokens of a typical high-level programming language; define
regular expressions for tokens and design; implement a lexical
analyzer using a typical scanner generator.

3. Explain the role of a parser in a compiler and relate the yield of a parse
tree to a grammar derivation; design and implement a parser using a
typical parser generator.

4. Apply an algorithm for a top-down or a bottom-up parser
construction; construct a parser for a small context-free grammar.

5. Explain the role of a semantic analyzer and type checking; create a
syntax-directed definition and an annotated parse tree; describe the
purpose of a syntax tree.

6. Explain the role of different types of runtime environments and
memory organization for implementation of typical programming
languages.

7. Describe the purpose of translating to intermediate code in the



Relationship Between Student
Outcomes and Learning Outcomes

Program Outcomes

compilation process.

8. Design and implement an intermediate code generator based on given

code patterns.

Student Outcomes

a b C d e f g h i j k

Learning Outcomes

O oy L WIN =
.
.
.
.

An ability to apply knowledge of computing and mathematics
appropriate to the discipline.

An ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution.

An ability to design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs.

An ability to function effectively on teams to accomplish a common
goal.

An understanding of professional, ethical, legal, security and social
issues and responsibilities.

An ability to communicate effectively with a range of audiences.

An ability to analyze the local and global impact of computing on
individuals, organizations, and society.

Recognition of the need for and an ability to engage in continuing
professional development.

An ability to use current techniques, skills, and tools necessary for
computing practice.

An ability to apply mathematical foundations, algorithmic principles,
and computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices.

An ability to apply design and development principles in the
construction of software systems of varying complexity.



Major Topics Covered
(Approximate Course Hours)

3 credit hours = 37.5 contact hours
4 credit hours = 50 contact hours

Note: Exams count as a major topic
covered

Assessment Plan for this Course

How Data is Used to Assess Program
Outcomes

Course Master
Course History

Organization of a typical compiler (1.5-hours)

Token identification and specification (4-hours)

Scanner generator construction (3-hours)

Lexical analyzer design and implementation (3-hours)
Context-free grammar, derivations, parse trees (4-hours)
Algorithms for top-down parsing (3-hours)

Algorithms for bottom-up parsing (4-hours)

Syntax error detection and recovery (2-hours)

Parser specification using a typical parser generator (3-hours)
Syntax trees and symbol tables (2.5-hours)

Semantic analysis, attribute grammars, type checking (3-hours)
Semantic errors detection (4-hour)

Runtime environments (4-hours)

Intermediate languages and syntax-directed translation (3-hours)
Code patterns and intermediate code generation (3-hours)
Target code optimization and generation (3-hours)

Each time this course is offered, the class is initially informed of the
Course Outcomes listed in this document, and they are included in the
syllabus. At the end of the semester, an anonymous survey is
administered to the class where each student is asked to rate how well
the outcome was achieved. The choices provided use a 5-point Likert
scale containing the following options: Strongly agree, Agree, Neither
agree or disagree, disagree, and strongly disagree. The results of the
anonymous survey are tabulated and results returned to the instructor
of the course.

The course instructor takes the results of the survey, combined with
sample student responses to homework and final exam questions
corresponding to course outcomes, and reports these results to the
ABET committee. If necessary, the instructor also writes a
recommendation to the ABET committee for better achieving the
course outcomes the next time the course is offered.

Each course Learning Outcome, listed above, directly supports one or
more of the Student Outcomes, as is listed in "Relationships between
Learning Outcomes and Student Outcomes". For CSCI 4570, Student
Outcomes (c) (i) (j) and (k) are supported.

Dr. Krzysztof Kochut

01/2003 Course Uploaded into CAPA

02/2012 Course Information Sheet Updated



