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1. Introduction

In the new millennium biology has gone through a paradigm shift with the advent
of Genomics, the study of the structure, function, and evolution of whole genomes.  The
term “genomics” was coined in 1986, and institutional support for this new discipline
began with the creation of the National Center for Human Genome Research (NCHGR)
in 1989.  The initial goal of this discipline was the determination of the entire DNA
sequence of a human being (a human genome) and several related model organisms that
have played a central role in Genetics, including the bacterium Escherichia coli, the yeast
Saccharomyces cerevisiae, the worm Canerohabditis elegans, and the fruit fly
Drosophila melanogaster. Sequencing the human genome and those of each model
system were daunting distributed computing tasks which required collecting, storing,
integrating, retrieving, and distributing 3 billion base pairs (bp) of sequence on the human
genome alone.  

Many aspects of computer science were brought to bear to solve these problems
(Venter et al., 2001, International Human Genome Sequencing Consortium, 2001).  What
genomics promises is that with the availability of the complete genetic blueprints of a
variety of living systems, we will be able to unlock how living cells function and evolve.
Already genetics has given us the Central Dogma: DNA) Deoxyribonucleic Acid, a long
polymer composed of four bases (or letters) makes up the double helix, encodes our
genetic blueprint; RNA) genes in our genetic blueprint are transcribed into a related
information molecule called RNA to carry the instructions in the blueprint out into the
cell; protein) the message is translated into proteins (another information molecule with a
20 letter alphabet), which carry out the work of the cell.  The tools of genomics for the
first time provide new experiments that describe the complete blueprint (DNA), the
cellular levels of all RNAs (RNA profiling), and the cellular levels of all proteins (protein
profiling), i.e., not only the information on what a cell is to do (as encoded in the DNA)
but what the cell is doing (by RNA and protein profiling).

The paradigm shift in biology is that it is becoming an information science.  This
means biology is becoming: 1) data driven and informatics-based, with billions of base
pairs of DNA sequence in public databases (http://ncbi.nih.gov), used to collect, store,
integrate, retrieve, and distribute the avalanche of genomics data; 2) high throughput and
computational, with new technologies not only to sequence a genome but to describe the
full state of the cell as with new technologies like RNA profiling (DeRisi et al., 1997); 3)
hierarchical in its organization of information along the pathway of the Central Dogma;
4) inherently mathematical, in order to have the ability to organize and analyze the data;
5) systems science-oriented, with a focus on living systems as complex networks
(Strogatz, 2001).  This paradigm shift is driven by the promise of being able to
understand important complex traits at a cellular level.  These traits include heart disease
and cancer on one hand, and fundamental processes such as metabolism, development,
survival, biological clocks, and mating on the other hand, all controlled by many genes at
once.

http://ncbi.nih.gov/
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Since 1989, a number of new computational problems have emerged, and
computer scientists have played a fundamental role in the birth of this new discipline.
Genome projects by their nature are distributed (Hall et al., 2002).  The overall task of
sequencing any genome requires the collaboration of scientists at many sites working on
a hierarchically organized project.  The scientists take on different well-defined tasks in
the project and then transmit the information they produce to other scientists engaged in
other tasks to complete the project.

A large genomics project involves a significant number of researchers,
technicians, and other support personnel directly involved in the lab activities.  All the
people perform dozens of tasks, either manual (e.g. performing laboratory experiments),
computer assisted (e.g. looking for related genes in the GENBANK database), or
sometimes performed entirely automatically by the computer (e.g. genomic sequence
assembly).  Typically, the tasks must be performed in a specific sequence according to
the adopted experimental method.  In addition, most of these tasks require vast amounts
of support data from a variety of disparate sources, ranging from local flat files, database
servers storing experimental results, to a wealth of Web accessible data sources, such as
GENBANK and the Protein Database.  It has become apparent that managing such
projects poses overwhelming problems and may lead to results of lower or even
unacceptable quality, or possibly drastically increased project costs.

In this paper, we present a design and an initial implementation of a distributed
workflow system created to schedule and support activities in a genomics laboratory
focused on what genes do.   This project investigates which proteins work together to
accomplish tasks in the cell, discovering protein-protein interactions of fungi, specifically
Neurospora crassa.  Our goal is to create a highly flexible workflow system that
efficiently coordinates, manages and schedules lab activities, including those involving
collection, use and sharing of the necessary experimental data.  Our approach of
developing, adapting and applying workflow technology is presented in some detail using
one distinct part of a larger workflow to discover protein-protein interactions. In addition,
novel features of our system include the ability to monitor the quality and timeliness of
the results and if necessary, suggesting and incorporating changes to the selected tasks
and/or their scheduling. 

A primary contribution of this work is in-depth modeling and study of a distinct
part of very complex biological process, which allows us to demonstrate the benefit of
bioinformatics with the focus on support for process aspects of informatics challenges.  In
particular, it demonstrates the needs for workflow management to enable faster discovery
of biological processes such as protein-protein discovery by enabling effective processing
and analysis of laboratory experiment data.  Considering just the number of tasks whose
execution need to be coordinated shows that such activities are nearly impossible without
the automation afforded by workflow management. For the workflow management
research, it allows us to show several requirements, including:

• workflows with varied task interconnections and complex data exchanges between
tasks
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• very large number (tens of thousands) of task executions in a distributed environment
involving multiple computers and multiple laboratories, 

• processes requiring adaptation to reflect what is learned and addressing new details
not addressed earlier, and requiring exception handling to prevent loss of extensive
work performed, and

• ability to assess quality of scientific results.  

In this paper, we discuss in detail the issues of complexity, quality of service
measurement, as well as adaptation.  However, our experience in using the protein-
protein interaction workflow has not been long enough to discuss comprehensive aspects
of exception handling.  By using state of the art research in workflow management for a
challenging biology problem, this work also demonstrate the current capabilities and
future requirements in one instance of collaboration between biologists and computer
scientists. While earlier workflow systems have been used to automate laboratory
experiments, we believe that IntelliGEN demonstrates a new generation of optimized
laboratory workflows that cannot be supported by homegrown (such as script based) or
currently available commercial laboratory information systems.

2. Background

2.1. Protein-Protein Interactions

Genomics is only a beginning in discovering and investigating biological
phenomena that drive humans and life. The blueprints are here, but what do they mean?
How do we decipher the Rosetta Stone now available on many organisms and make
Genomics a hypothesis-driven science?  The focus on what cells do will initially follow
the path of sequencing simpler systems, such as microbes.  Microbes have small genomes
with 7 to 49 Mbp of DNA (Bennett and Arnold, 2001), and many of them, like those in
the Fungal Kingdom, share properties with their more complex relatives.  For example,
the filamentous fungus N. crassa has a biological clock (Lee et al., 2000); however, these
simpler microbial systems remain more tractable for analyzing what their cells are doing
(Davis, 2000).

One way to describe how living systems function is to think in terms of another
metaphor from computer science: a living system is a biological circuit.  Each organism
is a network of biochemical reactions, as shown in Figure 1.  In the past the focus of
biologists is to carve out one small piece of the larger genomic circuit diagram and focus
for 20-30 years on understanding one tiny piece of the biological circuit. A classic
example is the Nobel Prize winning work of Jacob and Monod to construct the first
biological circuit describing how E. coli combusts (i.e., metabolizes) lactose and derives
energy from the process.  In particular, Figure 1 shows one of the early paradigms for
eukaryotic gene regulation in N. crassa (Geever et al., 1989), which describes how N.
crassa metabolizes quinic acid, a compound from which the organism derives energy to
live.

The paradigm shift through genomics is to move from one small part of the circuit
in Figure 1 to the whole circuit.  A major goal of genomics is to reconstruct the entire
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biological circuit for an organism to describe all of its functions.  The hope is that by a
systems approach we can quickly reconstruct large 

Figure 1: A kinetics model of quinic acid metabolism represented as a biological circuit

complex networks and show how these biological circuits can provide predictions about
complex traits involving many genes, such as heart disease, cancer, metabolism,
biological clocks, development, viability, and mating involving many genes.  The
reconstruction of such a network requires a diverse array of experimental tasks to be
carried out.  To make the task concrete we focus now on one small piece of the whole
circuit, taking the qa cluster as an example.  This is appropriate because it was in this
model system that the biochemical function of genes was first discovered sixty years ago
(Beadle and Tatum, 1941).

The specification of the model in Figure 1 begins by writing down the chemical
reactions of the known participants in quinic acid (QA) metabolism.  The circles on the
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wiring schematic denote reactions, and the boxes are reactants.  Arrows indicate the
reactants entering a reaction, and outgoing arrows indicate the products of a reaction.
Reactants include the 7 genes in the qa gene cluster (qa-x, qa-2, qa-4, qa-3, qa-y, qa-1S,
qa-1F) (Geever et al., 1989) in the boxes at the top of the circuit.  These genes can be
either in an unbound ('off' state) or a bound state ('on' state) with a protein (i.e.,
transcriptional activator) produced by the qa-1F gene as indicated by a superscript, 0 or
1, respectively.   These are in turn transcribed into RNA species (superscripted with an r)
carrying the message of the genetic blueprint out into the cell, where in turn the
messenger RNAs are translated into protein products (superscripted with a p) to carry out
the work of the cell.  The first four rows of the circuit are simply a restatement of the
Central Dogma. 

What remains is to specify in the circuit what the proteins are doing.  One protein
qa-1Fp turns on the circuit, and another protein qa-1Sp turns off the circuit. There are at
least 7 protein/DNA interactions between qa-1Fp, and regions near the genes in the qa
cluster.  These protein/DNA interactions determine whether or not a gene is on or off.
The bound state leads to activation of all seven genes while the unbound state to
inactivation of all seven genes.  

Proteins can collaborate as molecular machines to carry out the work in the cell.
These collaborations are called protein-protein interactions, and their identification is the
whole purpose of the workflow described in this paper.  There is one identified protein-
protein interaction in the biological circuit between the repressor, qa-1Sp, and the
transcriptional activator, qa-1Fp.  The repressor protein in some unknown way blocks the
activator from working.  

The cell must also adapt to its environment and acquire energy to live.  QA is the
energy source for the cell and is hypothesized to be the cell signal that interacts with the
bound complex of qa-1Sp/qa-1Fp to promote induction (Geever et al., 1989).  When the
complex forms, the system is in the off state.  The presence of QA switches the system
from the off to on state by favoring the unbound state of the transcriptional activator.

In the lower half of the circuit a total of 4 out of the 7 protein products participate
on a known biochemical pathway ultimately converting QA into products feeding into the
energy producing Kreb’s Cycle.  There are at least two cellular states for QA,
extracellular (denoted with an e) or intracellular QA. The cell only goes to work on QA
when it is imported into the cell.  One of the genes, qa-y, produces a permease, qa-yp,
which is thought to be involved in the transport of QA into the cell.

For most reactions, mass balance leads to a specification of a system of
differential equations to describe this reaction network or biological circuit (Bhalla and
Iyengar, 1999).  The boxes in the middle of this diagram with the RNA and protein
species are the observables.  The boxes at the bottom are the reactants in the underlying
biochemical pathway.  The model is a first approximation of what needs to be considered
to predict induction of the qa cluster and its products.  This model is a highly simplified
version of what the cell is actually doing with the QA.  We have not put the molecular
machine that transcribes DNA into messenger RNA.  Neither have we put in the
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molecular machine that translates messenger RNA into protein.  As a first approximation,
transcriptional and translational machinery are treated as an infinite resource, available as
needed. The aim is to introduce only enough of the “wiring schematic” of the organism
into the model to make the model predictive about how the system responds when the
system is perturbed genetically, environmentally, or chemically.  

The model is then fitted to the observed RNA and protein profiles (the boxes in
the third and fourth rows of the circuit) and evaluated for fit in the presence of varied
perturbations.  The system is perturbed genetically when the qa-2 gene is knocked out,
and the system observed.  The system is perturbed chemically when an inhibitor is added
to inhibit the qa-2p gene product, and the system is observed.  The system is perturbed
environmentally when sucrose is added or removed as the preferred carbon source, and
the system is observed.  In each perturbation the circuit is simulated with a reaction
network simulator, which leads to predictions of the messenger RNA and protein profiles
over time.  The predicted RNA and protein profiles either match or do not match the
observed profiles.  In all likelihood, it will be necessary to add additional components to
the wiring schematic in Figure 1 even in this well-understood paradigm of eukaryotic
gene regulation (Geever et al., 1989). 

Imagine extending this whole process to the cell.  One starting point may be
something like a cell with only 256 genes (Hutchison et al., 1999) in a very small
microbial genome.  Can we build the circuit and show that the circuit describes how the
cell functions?  This is hypothesis-driven genomics.  To carry out this program on a
model microbial system requires the completion of different tasks with the genetic
blueprint in hand, including: 

1) genetic, chemical, or environmental perturbation of the cell, 
2) RNA and protein profiling to describing the state of the cell after perturbation,
3) building protein/protein and protein/DNA interaction maps to build the links

in the biological circuit (Vidal, 2001), 
4) fitting the kinetics models to observed messenger RNA and protein profiles, 
5) evaluating the fit of the model, 
6) searching for an improved model, 
7) storing the intermediate circuit model for later query; and 
8) repeating the process.  

We model this process as an automated workflow.  In the next several sections we
will describe one distinct part of this larger workflow, identifying the protein-protein
links in the circuits.  It is clear that there are many subtasks that will be carried out by
different groups of researchers.  Then there is the challenge of integrating the information
to carry out the fitting process, not to mention the computational task of fitting a large
reaction network. 

As with sequencing the human genome, the process of computing life, i.e.
identifying the biological circuit, involves many new computational problems.  One of
these is constructing software that allows the design, construction, execution,
management, and adaptation of workflows to carry out circuit identification or some
subset of the tasks needed for circuit identification.  The experiments require typically
over 100,000 task executions.  The tasks are complex, and as the project unfolds over the
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course of several years new technologies become available, or discoveries are made that
require the workflow to be adapted.  Data routinely come from multiple sources in
multiple storage media.  There is also the challenge of database integration and efficient
storage and integration of data with complex structure.  The problem of constructing a
map of all the protein-protein interactions requires new algorithms similar to the ones in
physical mapping (Vidal, 2001).  Once the data are integrated, novel algorithms are
needed for simulating the large reaction networks, which are at the heart of the data
integration step.  

2.2. Process Management and Workflow Systems

A workflow is an activity involving the coordinated execution of multiple tasks
performed by different processing entities (Krishnakumar and Sheth, 1995).  These tasks
could be manual, or automated, either created specifically for the purpose of the
workflow application being developed, or possibly already existing as legacy programs.
A workflow process is an automated organizational process involving both human
(manual) and automated tasks.

Workflow management is the automated coordination, control and
communication of work as is required to satisfy workflow processes.  A Workflow
Management System (WfMS) is a set of tools providing support for the necessary
services of workflow creation (which includes process definition), workflow enactment,
and administration and monitoring of workflow processes (Hollingsworth 1994).  The
developer of a workflow application relies on tools for the specification of the workflow
process and the data it manipulates.  The specification tools cooperate closely with the
workflow repository service, which stores workflow definitions. The workflow process is
based on a formalized workflow model that is used to capture data and control-flow
between workflow tasks.

The workflow enactment service (including a workflow manager and the
workflow runtime system) consists of execution-time components that provide the
execution environment for the workflow process.  A workflow runtime system is
responsible for enforcing inter-task dependencies, task scheduling, workflow data
management, and for ensuring a reliable execution environment.  Administrative and
monitoring tools are used for management of user and work group roles, defining policies
(e.g., security, authentication), audit management, process monitoring, tracking, and
reporting of data generated during workflow enactment.  

Workflow technology has matured to some extent, and current products are able
to support a range of applications (for technology and state of the art overview, see
(Georgakopoulos et al., 1995; Dogac et al., 1998; Aalst and Hee, 2002).  Nevertheless,
many additional limitations remain, especially in supporting more demanding
applications, more dynamic environments and for better support for human involvement
in organizational activities and better support for Quality of Service (QoS) management
(Sheth et al., 1999; Cardoso et al. 2002).  In this paper, we focus on problems involved in
supporting a large genomics project, in which a number of additional demands are placed
on the workflow management system.  These demands include high adaptability to
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varying experimental conditions in the lab, automatic quality assessment of the
experimental results, as well as assisting the workflow administrator and researchers in
introducing changes in the workflow due to inadequate quality or timeliness of the
results. Research issues based on these requirements have been investigated as part of the
METEOR project and workflow management system developed at the LSDIS lab of the
Computer Science Department at the University of Georgia (http://lsdis.cs.uga.edu),
which we use in this effort.

2.3. Fungal Genome Database

The Fungal Genome Database  (FGDB) (Kochut et al., 1993; Prade et al., 1997)
is a 10-year development effort that supports storage, retrieval, and distribution of all of
our data over the Web (at http://gene.genetics.uga.edu) for physical mapping, genetic
mapping, sequencing, and now protein-protein interaction mapping experiments. An
important scientific contribution of FGDB is its support of ordered sequences of genomic
objects in order to meet the efficient computation requirements involving genome data.
FGDB is implemented in the object-relational database system, Oracle 8i Enterprise
Edition, on a SUN Enterprise 250 server.  The outline of the database schema is
presented in Figure 2 in the form of a UML (Unified Modeling Language) class diagram
(Rumbaugh et al., 1998). 
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Figure 2: Database Schema (more detailed schema at http://gene.genetics.uga.edu/database)

We have also developed Java-based tools to visualize the data in FGDB, which
can be downloaded from our web site (Hall et al., 2001a; Xu et al., 2001, Zhang, 2001;
Tian, 2001). FGDB supports physical mapping of Aspergillus nidulans, N. crassa,
Aspergillus flavus, Nectria haematococca, and Pneumocystis carinii and sequencing
projects for N. crassa and P. carinii.

2.4. Workflow Management System METEOR

METEOR is a comprehensive Workflow Management System.  METEOR’s
architecture includes a collection of four services: Workflow Builder, Workflow
Repository, Workflow Enactment, and Workflow Manager. Workflow Enactment
includes two services: ORBWork and WebWork. Both ORBWork and WebWork use
fully distributed implementations. WebWork (Miller et al., 1998), an entirely Web-based
enactment service, is a comparatively light-weight implementation that is well-suited for
a variety of enterprise workflow process applications that involve limited data exchange
and do not need to be dynamically changed. ORBWork (Kochut et al., 1999) (used in this
project) is better suited for more demanding, mission-critical enterprise applications
requiring high scalability, robustness and dynamic modifications. The overall architecture
of the system is shown in Figure 3.
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Figure 3:  METEOR Architecture

Workflow Builder Service

This service consists of a number of components that are used to design
graphically and specify a workflow, in some cases leaving no extra work after a designed
workflow is converted to a workflow application by the runtime code generator.  Its three
main components are used to specify the entire map of the workflow, data objects
manipulated by the workflow, as well as the details of task invocation, respectively.  The
task design component provides interfaces to external task development tools (e.g.,
Microsoft’s FrontPage to design the interface of a user task, or a rapid application
development tool). This service supports modeling of complex workflows consisting of
varied human and automated tasks in a conceptual manner using easy-to-use tools. In
particular, the designer of the workflow is shielded from the underlying details of the
infrastructure or the runtime environment.  At the same time, very few restrictions
regarding the specification of the workflow are placed on the designer. 

The workflow specification created using this service includes all the predecessor-
successor dependencies between the tasks as well as the data objects that are passed
among the different tasks.  It also includes definitions of the data objects, and the details
of task invocation.  The specification may be formatted to be compliant with the
Workflow Process Definition Language (WPDL) of the Workflow Management
Coalition (Hollingsworth, 1994) and its subsequently defined XML syntax. This service
assumes no particular implementation of the workflow enactment service (runtime
system).  Its independence from the runtime supports separating the workflow definition
from the enactment service on which it will ultimately be installed and used.  Workflow
process definitions are stored in the workflow repository.
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Workflow Repository Service

The METEOR Repository Service is responsible for maintaining information
about workflow definitions and associated workflow applications.  The graphical tools in
the workflow builder service communicate with the repository service and retrieve,
update, and store workflow definitions. The tools are capable of browsing the contents of
the repository and incorporating fragments (either sub-workflows or individual tasks) of
already existing workflow definitions into the one currently being created.  The
repository service is also available to the enactment service (see below) and provides the
necessary information about a workflow application to be invoked.

The first version of the repository service was based on the Interface I API, as
specified by WfMC (Hollingsworth, 1994).  Subsequently, we have built the second
version of the workflow repository (Arpinar et al., 2001), in which workflows are stored
as XML-documents to facilitate their Web-interchange on a distributed system managed
by METEOR. The researcher (or a service of the METEOR system itself) can query the
workflow repository in order to introduce dynamic changes needed for workflow
adaptation, as described later.

ORBWork Enactment System

The task of the enactment service is to provide an execution environment for
processing workflow instances. Both ORBWork and WebWork have suitable code
generators that can be used to build workflow applications from the workflow
specifications generated by the design service or those stored in the repository.  In the
case of ORBWork, the code generator outputs specifications for task schedulers (see
below), including task routing information, task invocation details, data object access
information, user interface templates, and other necessary data.  The code generator also
outputs the code necessary to maintain and manipulate data objects created by the data
designer.  The task invocation details are used to create the corresponding “wrapper”
code for incorporating legacy applications with relative ease. The management service
supports monitoring and administering workflow instances as well as configuration and
installation of the enactment services.

Adaptability and Dynamic Workflows

Recently, there has been an increasing interest in developing WfMSs capable of
supporting adaptive and dynamic workflows.  Such systems must be uniquely sensitive to
a rapidly changing process execution triggered by collaborative decision points, context-
sensitive information updates, and other external events. The majority of current work
addresses relevant issues at modeling and language levels (Krishnakumar and Sheth,
1995; Ellis et al., 1995; Jablonski et al., 1997, McClatchey et al., 1997; Han and Sheth,
1998; Reichert and Dadam, 1998) while the relevant issues involving organizational
changes appear in (Ellis et al., 1995; Hermann, 1995). A particularly different approach
to supporting adaptive workflow (capable of reacting to the changes in local rules and
other conditions) has been developed using the notion of migrating workflows) (Cichocki
et al., 1997).  Related issues of integrating workflow or coordination technologies and
collaborative technologies are investigated in (Guimaraes et al., 1997; Sheth, 1997). 
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ORBWork utilizes a fully distributed scheduler in that the scheduling
responsibilities are shared among a number of participating task schedulers, according to
the designed workflow map (Kochut et al., 1999).  Each task scheduler receives the
scheduling specifications at startup from the Workflow Repository (currently, the
repository service sends the specifications via the HTTP protocol).  Each set of task
specifications includes the input dependency (input transitions), output transitions with
associated conditions, and data objects sent into and out of the task.  In the case of a
human task (performed directly by an end-user), the specifications include an HTML
template of the end-user interface page(s).  In the case of a non-transactional automatic
task (typically performed by a computer program), the specifications also include a task
description and the details of its invocation.  Finally, in the case of a transactional task,
the specification includes the details of accessing the desired database and the database
query.

When a task is ready to execute, a task scheduler activates an associated task
manager.  The task manager oversees the execution of the task itself.  Figure 4 presents a
view of the ORBWork’s distributed scheduler.  Note that scheduling components and the
associated tasks and task managers are distributed among four different hosts.  The
assignment of these components to hosts can be modified at runtime.

The partitioning of various components (scheduler’s layout), including task
schedulers, task managers and tasks, among the participating hosts is flexible.  An
ORBWork administrator may move any of the components from one host to another.  In
the fully distributed layout, it is possible to place all of the workflow components on
different hosts. 

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Manager

TASK
Manager

TASK
Manager

TASK TASK

TASK
HOST 1

HOST 2

HOST 3

HOST 4

Figure 4:  ORBWork’s Distributed Scheduler

Each task scheduler provides a well-constrained subset of the HTTP protocol, and
thus implements a lightweight, local Web server.  This enables an ORBWork
administrator to interact directly with a selected task scheduler and modify its scheduling
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specifications from a common Web browser.  It also enables the end-user to access
workflow instances residing on the task’s worklist. This set up naturally supports a
mobile user.

The ORBWork scheduler and its supporting components have been designed in
such a way that the enactment service can be used to support a variety of dynamic
changes both to the workflow schema and to the individual workflow instances.  The
workflow administrator can easily modify the workflow schema at runtime by acquiring
new information from the workflow repository, or even by modifying the specification by
direct interaction with the scheduler.

We divide the dynamic changes in ORBWork into two categories: primitive
changes and composite changes. A primitive change is composed of “atomic” changes
that can only be applied to a process definition totally or not applied at all (e.g., adding a
synchronous transition between two tasks). A composite change is composed of a
sequence of primitive changes that describe a complicated process definition change
(e.g., adding a task between two existing tasks can be achieved by applying a sequence of
primitive changes as we will see in the following sections). Primitive changes can be
further divided into immediate changes and incremental changes. Immediate changes are
changes that can be introduced into workflow run-time in one step without losing the
correctness and consistency of the workflow. In the context of ORBWork run-time, one
step means reloading the necessary process definition files. On the other hand, there are
situations when we cannot apply the changes to a particular task in “one shot”. Consider
that we want to change the input/output dependencies of a task, where several workflow
instances are pending on this task (waiting for necessary transitions from the predecessor
tasks in order to invoke the task). If we just update the task specifications without taking
care of all these already existing workflow instances, they may work incorrectly.
Incremental changes address that problem. Such changes are introduced into the
workflow enactment system step by step and guarantee the correctness and consistency of
the whole workflow system. In practice, most of the primitive changes in a workflow
system are incremental.

Another very important issue of implementing a dynamic workflow system is
how should different versions of a workflow/task schema the workflow enactment system
support. We say that a particular task is in a stable state if all input/output dependencies,
input/output parameters of the workflow instances residing on that task scheduler, are the
same. Consider the following scenario: A workflow system is normally running and with
several instances working simultaneously. The workflow administrator decides to do
some changes to the input dependencies of a task and several instances are under the
control of this task’s scheduler. From the earlier discussion, we know that some instances
should still use the old input dependency schema while new instances should use the new
version of the input dependencies. At some time, the task scheduler may be scheduling
two workflow instances with different input dependencies. In such a case, the task is
unstable. Moreover, if we try to change the input dependencies of that unstable task, the
task scheduler will finally have three different versions of input dependencies. If the
administrator keeps making changes, the task scheduler may have four, five, six or more
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input dependency versions. In our current implementation, we only allow two versions of
a process definition to exist for the workflow instances residing on a particular task.

An additional issue worth mentioning here is how to suspend the task scheduler.
When dynamic changes are introduced to a particular task, we will force the ORBWork
runtime to suspend that task scheduler. In our implementation, we divide the suspend
operation into three different types: suspend input transition; suspend output transition;
suspend both input/output transitions. After applying the “suspend input transition”
operation, no workflow instance is allowed to “flow” to this task by making a transition
call on this task’s scheduler. Similarly, the “suspend output transition” operation keeps
any existing workflow instance on that task from making a transition call to a successor
task’s scheduler. The third suspend operation is the combination of the previous two. 

A detailed description of possible changes and how they are implemented is described in
(Chen, 2000). The types of dynamic modifications currently offered in ORBWork are
presented in Table 1. However, sometimes a predefined schedule of tasks may need to be
altered for just a single workflow instance, without introducing permanent changes to the
workflow schema.  The ORBWork process manager allows the per-instance changes of
similar types as described above, but only those associated with a single instance, rather
than with the whole workflow schema.  The changes cease to exist, once the instance
completes. Theoretical aspects of introducing dynamic changes to workflow systems are
examined in (Aalst and Basten, 1999).
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Change Type Change Type After the change

AND to OR Join incremental A single predecessor tasks needs to be completed in
order to execute a given task 

OR to AND Join immediate All of the predecessor tasks need to be completed in
order to execute a given task 

AND to OR Split immediate A single successor task will be activated after a given
task completes

OR to AND Split immediate All successor tasks will be activated after a given task
completes

Add AND
Transition

incremental One more task will be activated after a given task
completes

Add OR
Transition

immediate One more task may be activated after a given task
completes

Delete Transition incremental A given transition will not be attempted (either AND
or OR)

Add Object
Transfer

incremental One more data object will be transferred along a given
transition

Delete Object
Transfer 

incremental A data object will not be transferred along a given
transition

Parameter
Mapping Change

incremental An incoming data object will be assigned to a
different parameter of a given task

Parameter Type
Change

incremental A given task will accept a new data object type for a
given parameter

Task Type Change incremental A different task type (e.g. automatic instead of
human) will be invoked

Task Invocation
Change

composite A different task will be invoked (but within the same
task type)

Insertion of a Task composite A new task will be performed, if enabled

Deletion of a Task composite A given task will not be performed

Table 1:  Types of dynamic modifications available in ORBWork

Support for Scalability and Fault Tolerance

The fully distributed architecture of ORBWork yields significant benefits in the
area of scalability.  As mentioned, all of the workflow components of a designed and
deployed workflow (this includes individual task schedulers, task managers, and task
programs) may be distributed to different hosts. However, in practice it may be sufficient
to deploy groups of less frequently used task scheduler/manager/programs to the same



To Appear in Special Issue on Bioinformatics, International Journal on Distributed and Parallel Databases, 2002.

host.  At the same time, heavily utilized tasks may be spread out across a number of
available workflow hosts, allowing for better load sharing. 

The features of ORBWork designed to handle dynamic workflows are also very
useful in supporting scalability.  As load increases, an ORBWork administrator may elect
to move a portion of the currently running workflow to a host (or hosts) that become
available for use in the workflow.  The migration can be performed at the time the
deployed workflow is running.  Simply, the workflow administrator may suspend and
shutdown a given task scheduler and transfer it to a new host.  Because of the way task
schedulers locate their successors, the predecessors of the moved task scheduler will not
notice the changed location of the task.  If the associated task must be executed on a
specific host (for example it is a legacy application), the associated task manager may be
left in place, while only the scheduler is transferred.

In the case that a group of task schedulers is deployed to the same host, the
ORBWork administrator has the option to combine them into a single “master”
scheduler.  Such a master scheduler controls a number of individual task schedulers that
share the same heavyweight process.  This allows the administrator to control the
utilization of the participating host even further, while having many individual operating
system-level processes (task schedulers) could potentially burden the host system.

The distributed design of ORBWork offers no single point of failure for an
ongoing workflow instance.  Since the individual task schedulers cooperate in the
scheduling of workflow instances, a failure of a single scheduler does not bring the whole
system down, and other existing workflow instances may continue execution.

The error handling and recovery framework for ORBWork (Worah et al., 1997)
has also been defined in a scalable manner.  All errors are organized into error class
hierarchies, partitioning the recovery mechanism across local hosts, encapsulating and
handling errors and failures as close to the point of origination as possible, and
minimizing the dependence on low-level operating system-specific functionality of the
local computer systems.  Complementary work on exception handling, especially on
finding alternatives to deal with exceptions, is described in (Luo et al., 2002).

3. Discovering Protein-Protein Interactions

With the completion of the sequencing of the human genome and that of other
model systems a major new direction has been the characterization of the proteome, the
collection of all proteins in the cell, to figure out what cells are doing besides data
storage.  The genetic blueprint is here.  The genome is known.  What functions does the
genome encode and program through the Central Dogma?  

One new direction is to identify all of the proteins produced by the genetic
blueprint.  In this way we obtain a task list for the organism.  This effort has led in a
number of directions because in many ways protein structure is much richer than that of
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DNA.  One direction is simply to isolate and characterize all the proteins in the cell.
Isolating proteins allows biochemists to examine their function.

From here several directions can be chosen.  One direction has been identifying
the structures of all proteins in the cell (Skolnick et al., 2000).  High-throughput methods
for obtaining molecular structures on all proteins are being developed. These molecular
structures provide valuable insights into how proteins carry out their tasks. Proteins,
unlike DNA, have a vast repertoire of structures to carry out the diversity of functions.

Once the proteins are identified and characterized, a second interest is how they
assemble into the molecular machines that carry out the work in the cell.  Some of these
larger cooperative structures in cell have names like the transcriptosome, splicesome,
proteasome, ribosome, cytoskeleton, mitochondrion, circadian clock, spindle, and MAP
kinase cascades to carry out basic processes in the cell like transcription, RNA splicing,
translation, energy metabolism, cell division, and signaling (Vidal, 2001).  

Identifying all of the protein-protein interactions is fundamental to searching for
connections relevant to a particular process, such as the link qa-1Sp/qa-1Fp in the
biological circuit of Figure 1.  Knowing which proteins work together is part of
specifying the biological circuit describing a particular biological process. The collection
of protein-protein interactions can be visualized as a map, in which proteins are the nodes
and the edges are the interactions (Figure 5).  A protein-protein interaction network or
map then represents a search grid on which biological circuits are constructed.  The map
tells the researcher what connections he or she may need to consider in the circuit.

Figure 5: Protein-Protein Interaction Map of S. cerevisiae from (Ito et al., 2000) visualized as a
“Protein Mobile”.

We refer to this Calder-like visualization of a protein-protein interaction map as a
“protein mobile”.  The goal of this paper is to describe a distributed automated workflow
to generate this protein mobile accessible over the Web (Fang, Miller, and Arnold, 2002;
Kraemer et al., 2001).  The example shown is part of the protein-protein interaction map
for the yeast S. cerevisiae (Ito et al., 2000).  Eight composite steps comprise the
workflow to generate such a map.
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Step 1 (GetGenes).  In eukaryotic systems like humans a major complication is
identifying all of the genes that produce the proteins.  The complication is that genes in
eukaryotes contain regions of DNA called introns, which are not transcribed.  The introns
are cut out of primary transcript to form mature transcript.  A geneticist can isolate all the
RNAs in a cell and reverse the process of transcription with the enzyme reverse
transcriptase to make complementary DNAs or cDNAs that identify correctly what DNA
sequence is ultimately used to make a protein.  These cDNAs can be used to create a
library of clones called a cDNA library.  The first step in the process of identifying all
protein-protein interactions is to make a large cDNA library that contains most of the
genes in the organism with the introns conveniently spliced out.  Ultimately, this cDNA
library can be used to make the proteins needed to test for interactions among them.

The main limitation of this strategy to get to the DNA sequence encoding a
protein is that cDNA libraries typically do not have all of the genes.  Alternative
strategies are resorted to.  One of these is computational.  A large clone is sequenced, and
algorithms for gene identification are utilized based on the grammar of DNA to identify
genes (Kraemer et al., 2001).  Then the genes are extracted directly from the clone by a
technique known as polymerase chain reaction, a way to amplify a specific region of
DNA from a DNA source like a clone.

Step 2 (GenExpLib sub-workflow).  The next step is to build an interaction
detector.  A standard way to detect interactions is the yeast S. cerevisiae 2-hybrid system.
The goal is to use proteins in the cell to reconstitute a transcriptional activator like GAL4
in S. cerevisiae and to hook up the transcription factor to a collection of reporter genes
which come on only when the protein-protein interaction is present.  The GAL4 gene has
two parts, an activation domain (AD) and a binding domain (BD).  The AD-domain
interacts with another protein to turn on transcription.  The binding domain binds to the
DNA to activate transcription.  The reporter genes are put downstream of the AD-domain
to report transcription.

To test for an interaction, one cDNA is fused to the AD-domain.  Another cDNA
is fused to the BD-domain.  If the two cDNAs ultimately produce proteins that interact,
then the activation domain (AD) will be brought together with the binding domain (BD)
to reconstitute the GAL4 protein, and transcription will be initiated.  The library of
cDNAs fused to the AD-domains is referred to as the library of prey clones. They are the
key that enters the lock.  The library of cDNAs fused to the BD-domains is referred to as
the library of bait clones.  They are the lock waiting for the key.  When the bait and prey
come together through the protein-protein interaction, the GAL4 protein is reconstituted,
and transcription initiates.  In summary, Step 2 is to build the bait and prey libraries.

Step 3 (GenExpLib sub-workflow).  Neurospora crassa has ~11,000 genes, and
it is not possible to screen one by one for the 121,000,000 possible interactions.  Instead
we use the fact that most proteins do not interact with each other.  Instead of screening
each pair of potential interactors one at a time, we create pools of bait or prey.  There are
three pooling strategies that have been used to date.

96 prey encounter 96 bait.  In this strategy pools of 96 bait and 96 prey clones
are created separately, and the pools are ultimately tested against each other (Ito et al.,
2000).  Each such experiment tests for one or more interactions in a pool of ~10,000

http://gene.genetics.uga.edu/
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interactions.  In this way, (Ito et al., 2000) screened about 10% of the 36,000,000
possible interactions in the yeast S. cerevisiae.

1 prey encounters an array of all baits.  In this strategy all bait clones are
robotically arrayed on solid media where the individual proteins are expressed (Uetz et
al., 2001).  In the case of N. crassa, this would mean arraying up to 11,000 different
genes on solid media and introducing one prey at each point on the array to test for the
interaction.  This approach is more easily automated than the first strategy.

All prey encounter 96 baits.  In this strategy a mixture of all prey clones in the
prey library is created and then tested against a plate of of 96 baits (Uetz et al., 2001).
The entire prey library is allowed to interact with each of the 96 baits individually.  This
protocol constitutes a high-throughput screen.  The plates of 96 baits can be processed
robotically.  The pool of prey is large.  This allowed the creation of the first protein-
protein interaction map for the yeast S. cerevisiae (Uetz et al., 2001).  The limitation is
that there are many more false positives in this screen than strategies 1 or 2.  This strategy
provides a rough sketch of the map, while the first or second strategy provide detailed
sketching.

In that there is a mixture of strategies available, the workflow needs to be
adaptive.  First, the entire portrait of the protein-protein interaction map needs to be
obtained, and then the details need to be sketched in.  As interesting connected subsets in
the map are uncovered, likely to correspond to interesting molecular machines, a switch
needs to be made to a more detailed sketching process.  Also, the workflow needs to be
adaptive in the sense that new technologies will come on line to detect protein-protein
interactions more effectively, and these new technologies need to be introduced into the
workflow.  Finally, each detector is characterized in part by its false positive rate and
false negative rate in detecting interactions.  As researchers gain more experience in
building these maps, there will be an evolution in quality standards that will also mandate
alterations in the workflow. 

Step 3 of the workflow is to create the bait and prey pools of cDNAs, which are
ultimately used to test for a protein-protein interaction.

Step 4 (IDRemGen and InterMating).  In step 4, the bait and prey pools of
clones are brought together to detect the interaction.   The mechanism for bringing them
together is called an interaction mating (Hudson et al., 1997).   A female strain (alpha) of
the yeast S. cerevisiae is transformed with the pool of bait clones; a male strain (a) of the
yeast S. cerevisiae is transformed with the pool of prey clones.  Transformation is the
process of introducing foreign DNA into a host; the strains of S. cerevisiae are then
capable of expressing the proteins of interest.  The female and male strains are mated to
bring the bait and prey pools together.  In strategy 2 this means simply pinning
robotically each bait strain on the solid media with the prey strain.  Those grid points
with the reporter genes on can be visually scored on the array.  Step 4 is the interaction
mating bringing bait and prey together.  The resulting images of the arrays or the
positives on plates can be digitally captured.

A number of controls are introduced at this point to confirm the interaction.
Three reporter genes exist downstream of the BD ('bait') gene, and each of the reporters
give a vote on whether or not the interaction is real.  A separate experiment highlights the
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vote of each reporter gene.  In strategy 2, for example, three arrays need to be generated,
one for each reporter gene to score visually whether or not a particular reporter gene
votes yes to the interaction.

It is possible to alter the threshold of the detector for one reporter gene simply by
adding an inhibitor called 3AT to poison the protein product of one reporter gene.  The
presence of the inhibitor means that the detected protein-protein interaction must be
stronger to counteract the effects of the inhibitor.  In strategy 2, each threshold selected as
indexed by the 3AT concentration used in the solid media operates the detector at a
different threshold.

Lastly, different protein pairs may or may not interact in the yeast S. cerevisiae.  It
is possible to repeat the whole experiment in a different host like E. coli in order to
reduce false negatives in the interaction detector.  

As a consequence, the workflow is inherently adaptive depending on the structure
of the protein-protein interaction map, the interesting features in the uncovered map, and
what regions of the table of all possible interactions are missing.

Step 5 (RobotPickColonies).  In step 5, we need to identify what genes are
positive in the pools.  In strategy 1, we do not know which of the 96 prey reacted with
which of the 96 baits.  The positives are robotically picked.  The DNA of the positives is
extracted and sequenced.  By comparing the resulting sequences of the bait and prey
clones, we can positively identify the partners that are interacting.  These sequences are
sometimes referred to as Interaction Sequence Tags (ISTs), and they allow screening for
the protein-protein interactions based on the availability of the genomic sequence of the
organism of interest.  Step 5 is the identification of the interactors by sequencing.

Step 6 (FGDB).  In step 6, the interactors identified through their ISTs are loaded
into the Fungal Genome Database FGDB (Kochut et al., 1993).  The FGDB database is
web-accessible at http://gene.genetics.uga.edu to the scientific community to make use of
the information.  Step 6 involves storing, retrieving, releasing, and sharing the ISTS over
the Web from FGDB.

Step 7 (Layout).  Once the ISTs are available, the data are ready to be assembled
into a protein-protein interaction map.  The strongly connected components in the graph
will allow the identification of putative protein complexes.  Several algorithms for laying
out these maps have been coded in Java and tested (Zhang, 2001).  While the ISTs can be
stored as tables of all the directional pairwise interactions in a relational database, the
only way to begin to make sense of this information is graphically.  A critical
intermediate step in visualization is assembling the graph describing the protein-protein
interactions and highlighting its features on the graph.  The nodes of the graph are
proteins, and the directed edges are the interactions.  The graph captures the biology and
is ultimately rendered in various forms like the protein mobile in Figure 5, which is of
great interest to biologists.  There are many difficult algorithmic problems with
identifying this graph. Interacting with the graph is believed to be key to locating
biologically relevant clusters.  Step 7 is assembling the protein-protein interaction map as
represented in a graph.

Step 8 (J3DV).  The last step in the workflow is visualizing the protein-protein
interaction map over the Web.  To this end a Java-based server was created to provide the
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interface between FGDB and Java objects for map rendering (Fang et al., 2002).  Second,
a Java 3D client software was created to visualize the map (Tian, 2001; Zhang, 2001).
The map is rendered over the Web and provides a view of the data allowing adaptation of
the workflow and interpretation of the protein-protein interaction mapping data.  The last
step is visualizing the protein-protein interaction map before returning to Step 1 to
continue map construction.

Each of the composite tasks above contain about 10 individual tasks, and so in
Strategy 3, for example, it would be necessary to execute an instance through the
workflow about 500 times.  Each instance has at least one control.  We are talking about
managing the execution of ~75,000 tasks with an automated workflow.  The tasks
themselves are distributed between several experimental locations and over several
computers and robots.  For example, the libraries are generated in one laboratory, and the
robots are located in a different laboratory.  The FGDB is located on one server, and the
map assembly routine is located on a different server.  Image capture involves other
workstations.

4. IntelliGEN: Workflow For Protein-Protein Interaction Discovery
IntelliGEN is a comprehensive system for genomic data and process management.

It implements the overall workflow, as described above. It reuses in part two of our
earlier works: (b) GeneFlow (Hall et al., 2002) build as part of a laboratory information
system for managing distributed high throughput sequencing, which supports steps
6through 8 of the overall workflow, and (b) graphical tools to visualize the mapping and
sequencing data (Hall et al., 2001a).  The graphical database tools also support XML
messaging to exchange genomic information with other databases and applications (Xu et
al., 2001). While earlier workflow systems have been used to automate laboratory
experiments (Bonner et al., 1996, Goodman et al., 1998), we believe that current
advances in adaptive workflow technologies can improve dramatically the quality of
experiments by optimizing laboratory workflows.

In the near term, the core objective of the proposed system is running protein-
protein interaction mapping workflows.  However, we plan to use the system in other
types of genomic workflows to automate identification of a biological circuit.  The rest of
this section contains a brief discussion of the specific capabilities of IntelliGEN.  The
architecture of IntelliGEN is shown in Figure 6.
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Figure 6:  IntelliGEN Architecture

IntelliGEN’s workflow network is presented in Figure 7 (GeneFlow is a
subworkflow of this workslow; its tasks are not shown), and a subset of this workflow is
used to process the ISTs  (Interaction Sequence Tags). These workflow networks are
presented here as screen shots of METEOR’s Builder service. The top-level protein
interaction workflow includes some high-level network tasks (which include further
tasks, acting as subworkflows), such as GetGenes, GenExpLib, IdRemGen, InterMating,
and RobotPickColonies. These high-level steps correspond to getting genes from a cDNA
library or cosmid library, generating expression libraries by recombinational cloning,
eliminating spontaneously activating genes from the mapping experiments, performing
interaction matings and finally robotically screening (picking) positive interactions,
respectively. These tasks are further divided into several sub-tasks.  As an illustration, the
internal tasks of GetGenes are depicted in Figure 8.
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Figure 7: Graphical Design Tool Displaying Top-Level Protein Interaction Workflow

Figure 8: The Details of GetGenes Sub-Workflow 

The GetGenes subworkflow may be initiated by obtaining genes from our cDNA
libraries or from our cosmid libraries (Kelkar et al., 2001).  The subsequent steps include
the following activities: Clones are chosen from a library for protein-protein interaction
mapping. If we elect to get genes from the cosmid libraries, genes are identified (Kraemer
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et al., 2001).  DNA is extracted from the cosmid; a particular gene amplified by PCR and
recombinationally cloned into a Gateway entry vector pENTR 1A; alternatively, a cDNA
collection in a Gateway entry vector is accessed, a plate pulled, and the associated genes
being processed with their associated BLAST reports are displayed (not shown).  All of
these activities require numerous software components and a laboratory information
system is used to track micro-titer plates and data, forwarding the relevant information to
the follow-up tasks in the workflow. As data are tracked, an adaptive component is
needed to suggest corrective action when a failure occurs during the workflow so that the
throughput is sustained, or when a new interesting interaction is discovered.

In Table 2, we list some of the well-known biological software systems used in
the protein interaction workflow. The individual tasks in this workflow are spread across
several UNIX servers at UGA in two laboratories and a central location. The
ASSEMBLY_1 and ASSEMBLY_2 sub-workflows are executed on separate servers.
The annotation sub-workflow, which is computation intensive, is executed on a 32
processor SGI Origin 2000 server. The remaining tasks run on another server.  Roles
were created for sequence finisher, submitter, and annotator. The Web interface to
METEOR creates URL’s for each role with links to all tasks associated with that role.

ASSEMBLY_X Phred (Ewing and Green, 1998)
Phrap
Consed (Gordon et al., 1998)

Base Calling
Sequence Assembly
Editing and Primer Design

HTG_Submission Sequin Submits  sequence to NCBI

ANNOTATION BLAST (Altschul et al., 1997)
GeneMark.hmm

Sequence Similarity Search
Gene identification

Table 2:  Comonly used biological software systems incorporated in IntelliGEN

In the final step of the workflow, in which a researcher is creating the protein-protein
interaction map, we use a software system to assist the researcher in constructing the
map.  A screen shot of the tool (invoked automatically by IntelliGEN) is presented as an
illustration in Figure 9.

IntelliGEN incorporates subsystems for quality measurement and intelligent adaptation.
These two novel components are briefly described in the following two sections.
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Figure 9: Screen shot of the protein-protein interaction layout tool

4.1. Quality of Service Management

Workflow systems have been used to support various types of processes for more
than a decade now. Workflows modeling genomic applications, such as protein
interaction mapping, require the specification of Quality of Service (QoS) items such as
products to be delivered, deadlines, quality of products, quality of information (e.g.,
accurate protein interaction maps), reliability, and cost of services (Cardoso, et al. 2002).

Low-level script-based applications or other traditional workflow approaches do
not permit flexible specification and realization of such quality requirements. Thus, they
are less suitable for mission critical applications such as a protein interaction workflow.
A vital goal is the ability to construct and deploy truly dependable workflows with
continuous availability and predictable QoS metrics.

The management of QoS metrics directly impacts the success of genomic
experiments. Therefore, when experiments are created or managed using workflows, the
underlying workflow system must accept the specifications and be able to estimate,
monitor, and control the QoS of processes.

For genomic laboratories, being able to characterize workflows based on QoS has
four direct advantages. First, it allows laboratories to translate their experiments into their
processes more efficiently, since workflow can be designed according to QoS metrics.
Second, it allows for the selection and execution of workflows based on their QoS, to
better follow experimental strategies. Third, it makes possible the monitoring of
workflows based on QoS. QoS monitoring allows adaptation strategies to be triggered
when undesired metrics are identified or threshold values violated. Fourth, it allows for



To Appear in Special Issue on Bioinformatics, International Journal on Distributed and Parallel Databases, 2002.

the evaluation of alternative strategies when adaptation is necessary. The environment
has an important impact on the strategies, methodologies, and structure of genetic
workflows. Thus, in order to complete a workflow according to the initial QoS
requirements, the workflow will likely be adapted, modified, and rescheduled, due to
unexpected progress delays, or technical conditions. When adaptation is necessary, a set
of potential alternatives is generated with the objective of changing a workflow, such as
its QoS continues to meet initial requirements. For each alternative, prior to actually
carrying out the adaptation, it is necessary to estimate its impact on the QoS of the
modified workflow.

We have enhanced our workflow system to support processes constrained by QoS
requirements, such as the protein interaction workflow. The enhancements include the
development and support of a comprehensive QoS model and the implementation of
methodologies (a mathematical model and simulation) to compute and predict workflow
QoS. We have developed a stochastic workflow reduction algorithm (SWR) for the step-
by-step computation of QoS metrics.

One of the main modules, the Quality Monitor, oversees the execution of the
workflows and checks the quality of produced data according to QoS specifications.  If
the quality drops below a certain threshold the Intelligent Adaptation subsystem is
invoked to suggest corrective actions and adapt the workflow (as described in the
following subsection) so that the initial QoS requirements can be met.  

The quality monitor displays QoS metrics in several formats.  It is possible to
color code the protein-protein interaction by whether or not a particular link is supported
by two or more experiments, the number of votes for the interaction by the 4 reporters,
and the number of controls satisfied in Figure 5 (Zhang, 2001).  Another possibility is the
traditional quality control chart with the measures of quality on the y-axis and the course
of the experiment (i.e., plate number in the high-throughput screen) on the x-axis.  In the
high-throughput screen, quality measures include false negative and false positive rates
per plate, the average number of positive votes per positive from one bait plate, the
number of controls satisfied per bait plate, and estimated coverage.

4.2. Adaptation

Traditional WfMSs are adequate to support workflows with a defined structure
and with no need to account for ad hoc deviations or dynamic extensions at run-time
(Reichert and Dadam, 1998). But, recently there has been an increasing demand in
developing WfMSs with dynamic capabilities, with a special emphasis to dynamic
changes at the instance level. This makes sense since there are in reality very few
workflows that are static (i.e. without a need to change their structures over time). As
workflow processes are instantiated, changes in the environment or in previous activities
may invalidate the current workflow instances, requiring adaptation procedures to be
carried out. It is therefore important to be able to continuously repair or improve the
execution of a workflow process (Berry and Myers, 1998).

A critical challenge for the IntelliGEN management system is its ability to
respond effectively to changes. Changes may range from ad-hoc modifications of the
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process for a single experiment due to a control failing, improvement in the process to
incorporate a new technique or instrument, or to a restructuring of the process to improve
its efficiency.  For example, it may happen that gene identification evolves to the point
that gene extraction from an available cosmid library becomes feasible (Kelkar et al.,
2001; Hudson et al., 1997) as opposed to extracting genes from a cDNA library. As a
result, the run-time process used in practice is often much more variable than the process
specified at design-time. It has been our experience in physical mapping and sequencing
that workflows are constantly being improved.  If the researchers are forced to bypass the
workflow management system quite frequently, the system becomes more a liability than
an asset. Thus, in ORBWork system we have implemented a layer that permits the
realization of dynamic change of instances in a consistent manner (Chen, 2000). The
implemented module guarantee that all consistency constraints that have been ensured
prior to a dynamic change are also ensured after the workflow instances have been
modified (Reichert and Dadam, 1998).

When adaptation is required in the protein-protein interaction workflow, it is
necessary to evaluate alternatives with the objective of changing the workflow such as its
QoS continues to meet initial requirements. Adaptation procedures are evaluated based
on their impact on workflow QoS that include: 1) time of execution; 2) cost of execution;
3) and quality of execution. The application of a specific adaptation procedure is
constrained with the objectives set by the initial project and includes: 1) time remaining;
2) budget remaining; 3) and current measures of quality like coverage, false positive rate,
and false negative rate. 

Some of the changes include the type of screen, the controls to be executed, the
3AT concentration, and the type of interaction trap. To make today’s workflow
management systems more flexible, it is crucial to know what kind of changes need to be
supported. Changes can be triggered by developments outside the management system,
i.e., the context/environment. There are three basic types of external circumstances that
may trigger a change in the protein-protein interaction workflow: (1) discovery (e.g. of a
new molecular machine), (2) changing quality standards (i.e., the change is triggered by
refinements to the map of quality standards), (3) changing technology for detecting
protein-protein interactions (i.e., due to the development of new technologies or changes
in the technical infrastructure). A change can also be triggered by developments inside
the system. These changes are not initiated by the environment, but by problems detected
inside the management system itself (e.g., logical design errors or technical problems). It
is important to classify the type of changes that may occur. Thus, we characterize
changes as either ad-hoc or evolutionary changes:

 Ad-hoc changes may be the result of an error, an exception, a rare event, or special
demands created by the presence of a promiscuous protein. Ad-hoc changes affect
only one case (i.e., one bait plate) or a selected group of cases (a selected group of
plates). They occur on an individual or selective basis.  In general, it is not necessary
to change the workflow definition, since the same change will likely not be needed
again. An example of an ad-hoc change is the need to skip a task in case of an
emergency (i.e., the reagent 5FOA was degraded or the PCR kit failed). This type of
change is often initiated by some external factor. Typical problems related to ad-hoc
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changes are deciding what kinds of changes are allowed and the fact that it is
impossible to foresee all possible ad-hoc changes. 

 Evolutionary changes are of a structural nature. From a certain moment in time, the
workflow changes for all new instances created. It is possible that the existing running
instances may be influenced. An evolutionary change is applied to a workflow as a
result of the adoption of a new mapping strategy, reengineering efforts, or a permanent
alteration of external conditions (e.g., a change of interaction trap). Evolutionary
change is typically initiated by a researcher to improve efficiency, quality or
responsiveness to the community, or is forced by improved quality standards.  As an
example, we have two strategies for creating the protein-protein interaction map. One
strategy involves the high throughput screen and the other the clone-by-clone screen.
They differ on the basis of the size of the bait and prey pools being interrogated. The
high-throughput screen is estimated to take 31 weeks to finish with a pool size of 96
baits vs. the whole AD-library, but it is 3-fold less sensitive than the clone-by-clone
screen. In contrast, we can perform only about 650 clone-by-clone screens in a year.
Once the map is sketched by the high-throughput screen, we want to turn to the clone-
by-clone screen to color in the finer details of the map. Alternatively, once a human
observer finds interesting clusters by the high throughput screen, more sensitive
(although slower) clone-by-clone screens may be interjected to respond to community
interest. Adaptive workflows can then be used to adjust the overall experimental
strategy for finding protein-protein interactions using a task replacement policy.

Both ad-hoc and evolutionary changes are possible at entry time or and on-the-fly
to running instances. Customizing the process definition for a single case before the
processing is started corresponds to an ad-hoc change at entry time. If such a
customization is also allowed after a workflow processing is started, we define it as an
on-the-fly change. If evolutionary changes are only possible at entry time, then only the
new cases that are started after the change took place have to run according to the
updated workflow definition; all other cases run according to the old workflow definition.
On-the-fly evolutionary changes are more difficult to handle since for each running
workflow instance it must be decided how to deal with the change (Aalst and Jablonski,
2000). It is especially difficult to introduce changes while workflow instances are being
processed. For workflow instances that are active (started, but not finished) at the time of
the change the transactional tasks (possibly subworkflows) can be rolled back, and
restarted under the new plan, or the instances in progress be allowed to continue under
the modified workflow.  

4.3. System Performance
The nature of the protein-protein interaction workflow is that all of the tasks are of long
duration.  As an example, each of the high-throughput screens involves processing 500
“bait” library plates in a 2-hybrid screen for interactions.  Unassisted (manual) processing
typically takes one month per plate.  Using IntelliGEN, we are able to process up to 16
plates per week, which translates to 64-fold productivity gain.  

Table 3 illustrates the duration of the individual steps of in the workflow.  The
times are for an individual work item, which in the case of the protein-protein
interactions is processing of a single plate. As easily seen, the system overhead
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introduced by IntelliGEN is negligible in comparison to the task processing time.  Task
activation time is below one second.

In addition, our estimate is that it will take approximately 75,000 task executions
to complete the project, which will take roughly 3 years.  This translates to about 75 tasks
per day, on average, a rather small number.

Task Time Comments
Step 1 overnight Mix of automatic and manual (human) tasks
Step 2 1 day A manual task
Step 3 Less than 1 day A manual task
Step 4 4-5 days A manual task
Step 5 1-2 days Performed by a robot
Step 6 1 day Largely automatic; sequence assembly and BLAST

searches
Step 7 Several minutes Human with computer assistance

Table 3:  Approximate timings for individual workflow steps 

5. Conclusions and Future Research
We have successfully applied workflow technology to a large genomic project of

mapping protein-protein interactions of fungi.  We have built on the success of our
previous workflow project for sequencing for N. crassa.  It is an ongoing project and
changes are made to both the workflow engine, and the workflow specification, as
necessitated by the laboratory work.  Because of the fact that we used our distributed and
dynamic enactment system ORBWork, it is possible to make changes to the deployed
system.  In the near future, we intend to experiment with adding to IntelliGEN agents
capable of performing adaptive changes without human involvement.  

The use of workflows and workflow systems to conduct and coordinate genomic
experiments in a heterogeneous and distributed environment has an immediate
operational requirement: the management of workflow quality of service. The
experiments cannot be undertaken while ignoring the importance of quality of service
measurements. When adaptation is required, an adaptation agent will use QoS
information – such as task the time and the cost of each task, and the final quality
standards to be achieved (Cardoso et al., 2002) – to select a set of adaptation strategies to
be applied to a workflow requiring changes. In the case that the intelligent agent is
attempting to maximize coverage given the budget and time constraints, it will be
necessary to invoke a simulation agent.  A protein-protein interaction can be simulated as
previously described (Miller et al., 1995).  The proposed strategy can be applied to many
simulations of the protein-protein interaction map, and an average coverage of the
networks can be estimated.  In this way different proposed workflows can be evaluated
with respect to coverage.

http://www.informatik.uni-ulm.de/dbis/cgi-bin/wow/dbis.DB_AbstractByRowID?in_rowid='AAAAkpAABAAAEw3AAA'
http://www.informatik.uni-ulm.de/dbis/cgi-bin/wow/dbis.DB_AbstractByRowID?in_rowid='AAAAkpAABAAAEw3AAA'
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