

Semantic Web Technology Evaluation Ontology (SWETO): A test bed for evaluating tools and benchmarking semantic applications

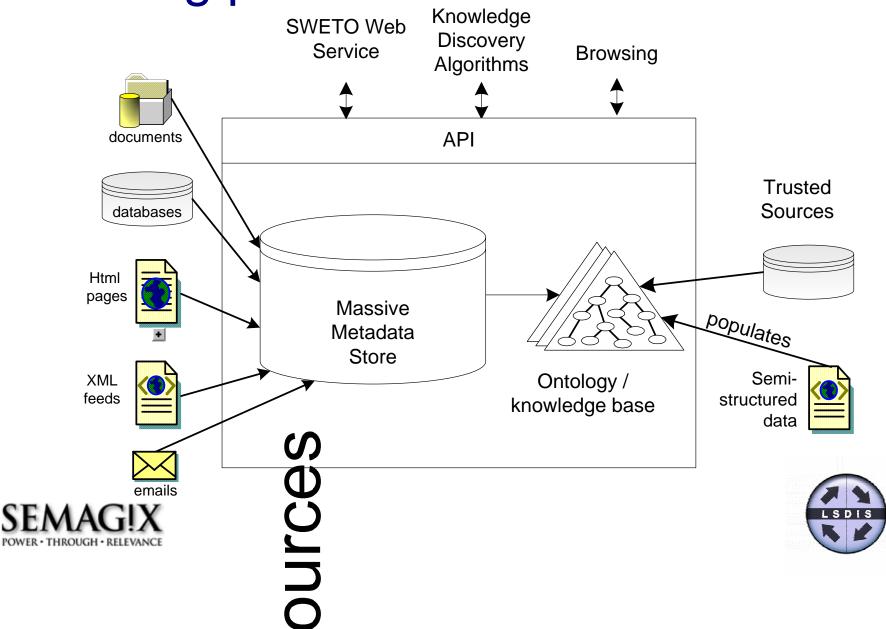
> WWW2004 (New York, May 22, 2004) Semantic Web Track, Developers Day

Boanerges Aleman-Meza, Amit Sheth, I. Budak Arpinar, Chris Halaschek Large Scale Distributed Information Systems Lab

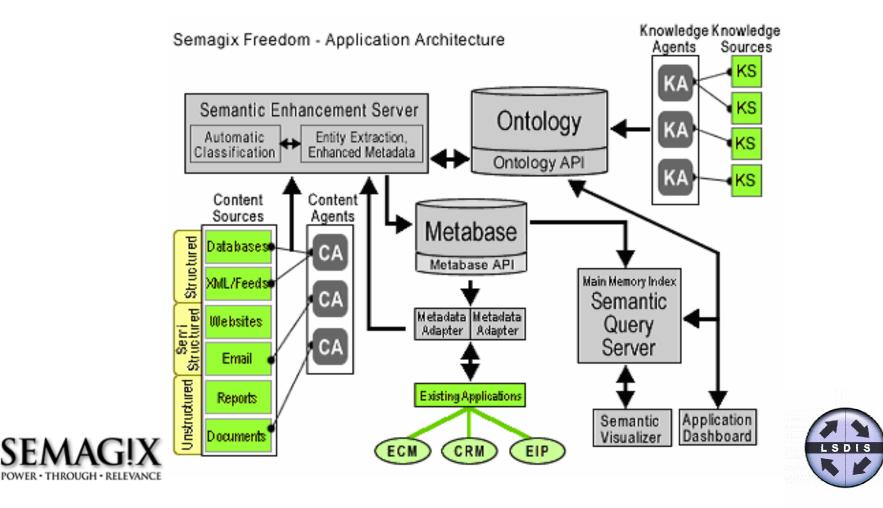
University of Georgia This material is based upon work supported by the National Science Foundation under NSF-ITR-IDM Award # 0325464 and NSF-ITR-IDM Award # 0219649.

Motivation for SWETO

- Many new techniques and software tools from emerging Semantic Web (SW) community
 Need a common infrastructure for testing
- Need of an open and freely available ontology with a very large knowledge base
 Scalability testing as the most important objective
 Quality and comparability as other criteria


SWETO Objectives

- Develop a broad and deep ontology populated with real facts/data from real world heterogeneous sources
 the instances in the knowledge base should be highly interconnected
- Serve as a test-bed for advanced semantic applications (i.e. business intelligence, national security, etc.)
- Address the requirements of a research benchmark for semantic analytics, and the semantic techniques of:
 - ontology creation
 - semi-automatic extraction
 - entity disambiguation



The big picture

Semagix Freedom Architecture

Utilized Semagix Freedom for SWETO ontology design and population

- Utilized Semagix Freedom for ontology design and population
- With Freedom, knowledge extractors were created to extract entities from various data sources

Data sources:

- Selected sources which were highly reliable Web sites that provide entities in a
 - semi –structured format
 - unstructured data with parse-able structures (e.g.,html pages with tables)
 - dynamic web sites with database back-ends
- Considered the types and quantity of implicit/explicit relationships
 - preferred sources in which instances were interconnected
- considered sources whose entities would have rich metadata
- Public and open sources were preferred
 - due to the desire to make SWETO openly available

- As the sources are processed by the extractors, entities are extracted and stored in appropriate classes in an ontology
- Due to heterogeneous data sources, entity disambiguation is a crucial step
 - Freedom's disambiguation techniques automatically resolved entity ambiguities in 97% of the cases, leaving the rest for human disambiguation (and may be ignored)

- Utilize Freedom's API for exporting both the ontology and its instances in either RDF [5] or OWL [2] syntax
- Extractors are scheduled to rerun for keeping the ontology updated

SWETO Life-cycle

Current Status

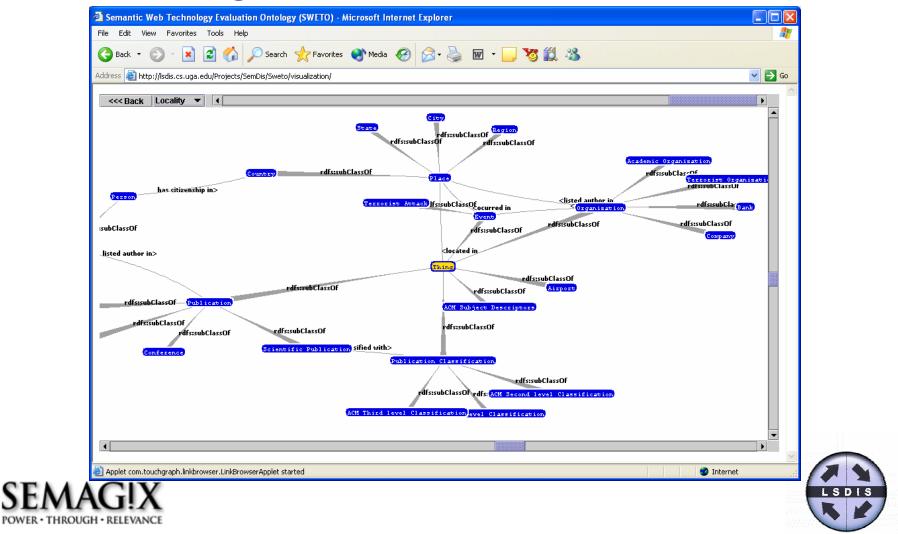
- V.1 population includes over 800,000 entities and over 1,500,000 explicit relationships among them
- Continue to populate the ontology with diverse sources thereby extending it in multiple domains, new larger release due soon
- Significant information for provenance/trust support [UMBC partnership]

Current Status – Classes

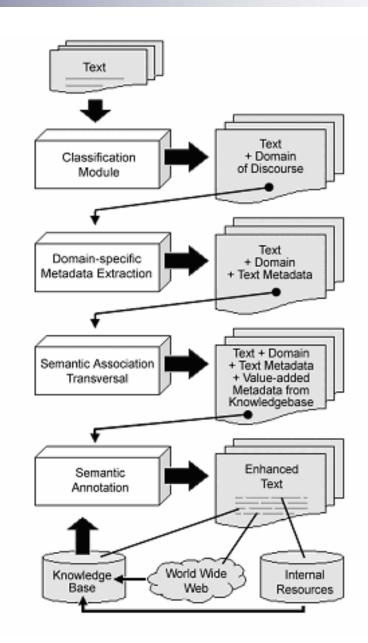
Subset of classes in the ontology	# Instances
Cities, countries, and states	2,902
Airports	1,515
Companies, and banks	30,948
Terrorist attacks, and organizations	1,511
Persons and researchers	307,417
Scientific publications	463,270
Journals, conferences, and books	4,256
TOTAL (as of January 2004)	811,819

Current Status – Relationships

Subset of relationships	# Explicit relations
located in	30,809
responsible for (event)	1,425
Listed author in	1,045,719
(paper) published in	467,367


Current Status – Disambiguation

Disambiguation type	# Times used
Automatic (Freedom)	248,151
Manual	210
Unresolved (Removed)	591

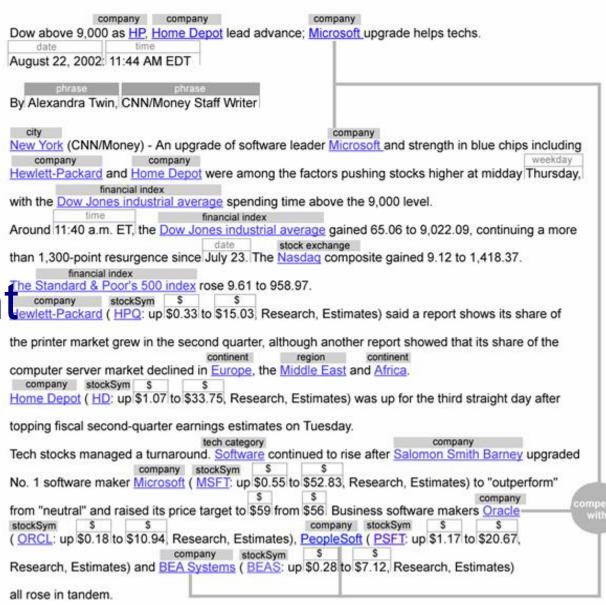

Browsing of the Schema

Evaluation/ Usage 1: Industry

Evaluation of
 Fast Semantic
 Enhancement

(in Marianas SDK)

[Hammond, Sheth, Kochut 2002]


Blue-chip bonanza continues

Semantic Annotation

Enhancemen

[Bancroft, Hammond, Sheth]

Application 2: Web of Belief (WOB) by UMBC

Web Of Belief (WOB) framework that maintains trust and provenance for SWETO

L. Ding, P. Kolari, A. Joshi, T. Finin, Y. Yesha (UMBC)

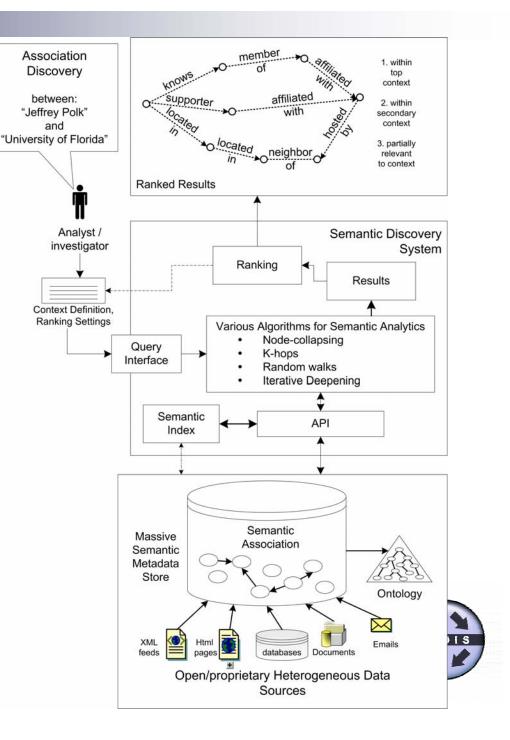
Presented at: "Trust on the Web Track" (also at Developers Day)

Ongoing work

Quality measures of the ontology

Access to the ontology Web service Filtering, views and versioning

On-the-fly semantic annotation


Future plans for benchmarking

- Semantic Search, Browsing and Personalization
- Semantic Portals
 - i.e., SEMPL automatically identifies entities
- Semantic Analytics
 - Discovery of semantic associations [p-operator]
 - Example apps: CIRAS (Semagix), PISTA

Approach to developing Semantic Analytics Application Benchmarking

Conclusions & Future Work

 Using Semagix Freedom, we have created a broad and deep Semantic Web Evaluation Ontology (SWETO)

Public access under Creative Commonsense license;

Looking for usage, feedback (of all kinds: schema, population, quality), and partners (for developing bechmarks)

Conclusions & Future Work

- More extraction of entities focusing on partners' needs
- Also plan to further investigate the use of semantic similarity for entity disambiguation
- Ontology lifecycle support

SWETO Project Homepage

<u>http://lsdis.cs.uga.edu/Projects/Semdis/SWETO/</u>
 Google or other search engine: "SWETO"
 Project description, papers, presentations

 Acknowledgements: This work is partially funded by NSF-ITR-IDM Award #0325464 and NSF-ITR-IDM Award # 0219649.

References

- [1] K. Anyanwu, and A. Sheth. "r-Queries: Enabling Querying for Semantic Associations on the Semantic Web". Twelfth International World Wide Web Conference, Budapest, Hungary. May 20-24, 2003; pp. 690-699
- [2] S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, et al. (2003). "OWL Web Ontology Language Reference". W3C Proposed Recommendation, from <u>http://www.w3.org/TR/owl-ref/</u>
- [3] R. Guha and R. McCool. "Tap: A Semantic Web Test-Bed". Journal of Web Semantics, 1(1), Dec. 2003, pp. 81-87
- [4] B. Hammond, A. Sheth, K. Kochut. "Semantic Enhancement Engine: A Modular Docu-ment Enhancement Platform for Semantic Applications over Heterogeneous Content in Real World Semantic Web Applications". V. Kashyap & L. Shklar, Eds., IOS Press, 2002
- [5] O. Lassila, & R. Swick. "Resource Description Framework (RDF) Model and Syntax Specification". W3C Recommendation, from http://www.w3.org/TR/REC-rdf-syntax/

