Chapter 5
Ontological Evaluation and Validation

Samir Tartir, I. Budak Arpinar, and Amit P. Sheth

5.1 Introduction

Building an ontology for a specific domain can start from scratch (Cristani and
Cuel, 2005) or by modifying an existing ontology (Gémez-Pérez and Rojas-Amaya,
1999). In both cases, techniques for evaluating the characteristics and the validity
of the ontology are necessary. Not only such techniques might be useful during the
ontology engineering process (Paslaru et al., 2006), they can also be useful to an
end-user who is looking for an ontology that is suitable for her application domain.
The user can select the best ontology according to her application needs among
several ontologies (Sabou et al., 2005).

Ontology evaluation is an important task that is needed in many situations.
For example, during the process of building of an ontology, ontology evaluation
is important to guarantee that what is built meets the application requirement.
Fernandez et al. (1999) presents a life cycle for ontologies (Fig. 5.1). The life cycle
is mainly based on Software Engineering processes. Their cycle includes three sets
of activities: Management (that includes control and quality control), technical (that
includes tasks for building an ontology), and support (that includes activities that are
performed at the same time as the technical tasks). In this methodology, ontology
evaluation was presented as an ongoing process throughout the ontology lifecy-
cle in both the management and the support activities to illustrate its importance.
Ontology evaluation is also important in cases where the ontology is automatically
populated from different resources that might not be homogeneous, leading to dupli-
cate instances, or instances that are clustered according to their sources in the same
ontology, both of which may decrease the usefulness of the ontology. For example,
the search for semantic associations (Anyanwu and Sheth, 2003) between entities in
ontologies has been a major focus for the semantic web. These associations capture
the complex relationships between entities that might be involve several other enti-
ties and can’t be easily captured by human users in the midst of a large dataset. If a

S. Tartir (X)
Faculty of Information Technology, Philadelphia University, Amman 19392, Jordan
e-mail: startir@philadelphia.edu.jo

R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications, 115
DOI 10.1007/978-90-481-8847-5_5, © Springer Science+Business Media B.V. 2010

116 S. Tartir et al.

Management activities

< i >
< Qualty Gl >

Technical activities J\ L.
(et) (Cormpaaion) (_Formazaion) ((inarariaion)— (_Nanorarcs)
Support activities ﬁ

< Acquisition
< Integration
< Evaluation

Documentation

VVVvYy

< Configuration Management

Fig. 5.1 Ontology life-cycle in meth ontology

user is interested in this type of search, she will also be interested to know about the
presence of clusters of instances in the ontology, or the lack of a diverse set of rela-
tionnships that might be of importance to her, because this knowledge will directly
affects results return by this type of search.

In addition to the need during the process of building an ontology, evaluation
and validation of ontologies are also useful for end users in domains where sev-
eral ontologies with similar areas of interest are common. For example, many
ontologies have been created for bioinformatics, and a researcher building an appli-
cation that utilizes ontologies about genes might use an ontology search engine [e.g.
Swoogle (Finin et al., 2005)] or an ontology library (e.g. Protégé Ontologies Library
[Protégé]) find an ontology that best fit his research (e.g. MGED [MGED], GO
[GO], OBO [OBOY]) but will often find several ontologies that cover genes and it
will be difficult for the user to simply glance through the resulting ontologies to find
the most suitable ontology. In this and similar domains, a tool that would provide
an insight into the ontology and describe its features in a way that will allow such a
researcher to make a well-informed decision on the ontology that best fits her needs
is needed (Fig. 5.2).

The OntoQA (Tartir et al., 2005) technique we present in Section 5.4 for ontol-
ogy analysis and evaluation was developed after facing some of the issues presented
above in the continuing process of building SWETO (the Semantic Web Technology

5 Ontological Evaluation and Validation 117

Fig. 5.2 Selecting the “best”

ontology ~

\

\

“““‘*-xm_\; /i T

| '}Qﬁr:j
/ ' Selec:lc\nw

Candidate
Ontologies

i T g

——

Evaluation Ontology; Aleman-Meza et al., 2004). SWETO is a large-scale general
purpose ontology that was populated with hundreds of thousands of instances that
were mostly automatically extracted from different resources. This population pro-
cess introduced a few problems. For example, SWETO includes some knowledge
about geographical entities, like countries, states, and cities, and it was noticed that
due to the nature of the sources instances were extracted from, that most of rela-
tionships extract were instances of the “located_in" relationship, or that most of the
instances were about authors and publications. These and similar problems will pre-
vent, for example, the discovery of interesting and useful relationships that connect
people by their presence at the same location at the same time. Such problems would
lower the efficiency and usefulness of some of the Semantic Web techniques such
as the Semantic Association search mentioned above.

The rest of this chapter is organized as follows: Section 5.2 illustrates the need of
ontology evaluation and validation. Section 5.3 introduces the current approaches in
ontology evaluation and validation. Section 5.4 describes the OntoQA technique for
ontology quality evaluation. Finally, Section 5.5 draws some conclusions and future
recommendations.

5.2 Current Approaches in Ontology Evaluation and Validation

The increasing interest in the Semantic Web in recent years resulted in creating a
large number of ontologies, and in increasing the amount of research on techniques
to evaluate ontology quality and validity. With this growth in the number of ontolo-
gies, there have been some attempts to study the different approaches and tools for
ontology evaluation and validation (Hartmann et al., 2004). Below is a description
of the major current approaches currently in use for the evaluation and validation of
ontologies.

5.2.1 Evolution-Based

This approach tracks an important characteristic of ontologies, change over time.
Ontologies change over time by nature. More knowledge is always added to

118 S. Tartir et al.

domains, and it needs to be properly added to ontologies that model these domains.
This approach tracks changes in the same ontology across different versions to get
an indication of the quality of the ontology, and to detect (and possibly recover) any
invalid changes made to the ontology. Ontologies change over time (evolve) due to
three causes as proposed in Noy and Klein, (2004):

1. Changes in the domain,
2. Changes in conceptualization,
3. Changes in the explicit specification.

Changes in the domain are the most common, and are caused by change or addi-
tion in knowledge in the domains the ontology is modeling. For example, the more
information about the genetic structure of a certain species are discovered, they need
to be added to the ontology that models it.

Changes in conceptualization can result from a changing view of the world and
from a change in usage perspective. Different tasks may imply different views on
the domain and consequently a different conceptualization. For example, the view
of a university from a faculty perspective is much different than the view from a
student perspective, and the adoption of a certain perspective may result in a change
of the ontology.

Changes in the explicit specification occur when an ontology is translated from
one knowledge representation language to another. The languages differ not only
in their syntax, but also (and more importantly) in their semantics and expressivity.
Therefore, preserving the semantics of an ontology during translation is a non-trivial
task.

An example of this approach is the technique presented in Plessers and De Troyer
(2005). In this technique, when a change is needed on the ontology, a request is
first added to the change log using CDL (Change Definition Language). Then, the
change is implemented in the ontology. The technique finally matches the actual
change with the change request from the log, if they are the same, the change is
considered valid and it is propagated.

The technique in Haase et al. (2005) detects the two types of inconsistencies
in evolving ontologies (user-defined and language-based) and repairs inconsisten-
cies in ontologies across the different versions of the ontology by eliminating the
statements that cause inconsistency.

5.2.2 Logical (Rule-Based)

Logical and rule-based approaches to ontology validation and quality evaluation use
rules which are built in the ontology languages and rules users provided to detect
conflicts in ontologies. Examples of first type are when two objects in an OWL
ontology are said to be different from each other (owl:differentFrom), the ontology
can’t say that they are the same thing (owl:sameAs), or when two classes are said to

5 Ontological Evaluation and Validation 119

be disjoint of each other (owl:disjointWith) and the ontology can not have statements
that mention an instances as being a member to both classes. Users can also identify
properties that are considered in conflict in the domain. For example, a user can
define that property motherOf conflicts with property marriedTo.

Several applications have adopted this approach. In Arpinar et al. (2006), a rule-
based technique to conflict detection in ontologies is introduced. In this approach
users identify conflicting rules using RuleML Boley et al. (2001) and the application
will then list any cases were these rules are violated.

Authors of Parsia et al. (2005) use a logic model they call Swoop to detect
unsatisfiable concepts in OWL ontologies. The technique is intended to be used by
ontology designers to evaluate the quality of their work and to indicate any possible
problems.

5.2.3 Metric-Based (Feature-Based)

Metric-based techniques to evaluate ontologies offer a quantitative perspective of
ontology quality. These techniques scan through the ontology to gather different
types of statistics about the knowledge presented in the ontology, or ask the user to
input some information that is not included in the ontology itself. These techniques
might consider classes’ locations in the ontology schema graph as an indication
of the type of knowledge the ontology focuses on. Some techniques also consider
the instances of populated ontology in the measurement of quality metrics. The
distribution of instances on the classes of the schema might also give an indication
on the quality of the ontology.

Several techniques have adopted this approach. The authors of Lozano-Tello
and Gomez-Perez (2004) propose a hierarchical framework they call OntoMetric
that consists of 160 characteristics spread across five dimensions to evaluation the
quality and suitability of ontologies to users’ system requirements. The dimensions
defined are: content of the ontology, language, development methodology, building
tools, and usage costs. Users of OntoMetric will have the major task of supplying
the application with several values that will be used to measure the suitability of an
ontology for the given system requirements.

In Supekar et al. (2004) the authors propose a model for evaluating ontology
schemas. The model contains two sets of features: quantifiable and non-quantifiable.
Their technique is based on crawling the web to search for ontologies and store them
locally, and then use information provided by the user, like the domain and weights
for their proposed metrics to return the most suitable ontology.

Alani et al. (2006) presents a technique called AKTiveRank that finds a set of
related ontologies to a set of terms the user enters. It uses an aggregation of the
values of the four measures AKTiveRank includes to evaluation ontology schemas
to select one of the ontologies to be the most suitable. The measures they developed
are: class match, density, semantic similarity, and betweenness.

Corcho et al. (2004) introduce the ODEval tool that can be used for the automatic
detection of possible syntactical problems in ontologies, such as the existence of

120 S. Tartir et al.

cycles in the inheritance tree of the ontology classes, inconsistency, incompleteness,
and redundancy of classes and instances.

Mostowfi and Fatouhi (2006) define eight features they use to measure the quality
of ontologies. These features are used to define a set of transformations to improve
the quality of ontologies. For example, the authors suggest if a class (Student) has a
property (Salary) that does not always have values (because it only holds for student
assistants), then the class needs to be split into two: Student and Student Assistant.
Other transformations attempt to make changes in properties or data types to make
the ontology more consistent.

Another example technique is oQual (Gangemi et al., 2006), which evaluates
ontologies on three dimensions: Structural: which uses a set of 32 features to study
the syntax and formal semantics of the ontology. Functional: which uses a set of five
qualitative measures to study the relationship between the ontology and its intended
meaning. And finally, Usability profiling: which focuses on the communication
(annotation) context of the ontology.

OntoClean (Guarino and Welty, 2004) also follows a feature-based approach
to ontology evaluation and validation. A user of this technique would assign a
set of four features to each of class in the ontology (Rigidity, Identity, Unity, and
Dependence) and then use these features to identify problematic areas that needs to
be reexamined. Based on these four features, classes might move up or down the tax-
onomy, and new classes might be added or removed to correct problems discovered
through the detection of violations of a set of rules built using the four features.

The OntoQA framework we introduced in the abstract is one of the metric based
approaches as well. In OntoQA we define the quality of a populated ontology as a set
of five schema quality features and nine knowledgebase (or instance-base) quality
features. An overview of OntoQA is presented in the next section.

Table 5.1 below provides a summary of the techniques mentioned above. The
table compares the techniques on whether they target developers or end-users,
whether users have to provide information to the technique (which might affect the
training needed to be able to use the technique), whether it targets the schema or
both the schema and the knowledgebase (KB), and whether users have to provide
the ontologies or the application would crawl the internet for candidates.

It can be seen that among the techniques studied, most of them:

e Only work with schemas: This might miss problems and ignore knowledge
available in the KB of a populated ontology.

e Require the user to provide the ontology: This might be problematic for a novice
end-user who is not aware of ontologies available for his domain.

e Target developers (rather than end-users): Although evaluation and validation
are important during the development process, it is important to provide end-
users with tools they can use to select an error-free ontology that best fits their
applications.

e Are feature-based: this is possibly due to the fact that a combination of metrics
can provide insights about an ontology from different perspectives leading to a
better understanding of the nature of the ontology.

5 Ontological Evaluation and Validation 121

Table 5.1 Comparison of different ontology evaluation techniques

Automatic/
Technique Approach Users manual Schema/KB Ontology
Plessers and De Evolution Developers Manual Schema Entered
Troyer (2005)
Haase et al. (2005) Evolution Developers Manual Schema Entered
Arpinar et al. (2006) Logical Developers Manual Schema + KB Entered
Swoop Logical Developers Automatic ~ Schema Entered
OntoMetric Metric Developers Manual Schema Entered
Supekar et al. (2004) Metric D+E Automatic ~ Schema Crawled
AKTiveRank Metric D+E Automatic ~ Schema Crawled
Mostowfi and Metric Developers Automatic ~ Schema Entered
Fatouhi (2006)
oQual Metric D+E Manual Schema Entered
OntoClean Metric Developers Manual Schema Entered
OntoQA Metric D+E Automatic Schema + KB Entered

Several researchers have studied the current approaches for ontology evaluation
and validation. For example, Gémez-Pérez and Suarez-Figueroa (2003) compared
several DAML/OIL and RDF(S) ontology checkers, validators, parsers and plat-
forms (e.g. OilEd, OntoEdit, etc) and showed how most of the current tools were
unable to find errors in ontologies. The authors also compared the tools with respect
to three major problematic aspects: inconsistency, incompleteness, and redundancy.
They concluded that tools that detect these errors are important for ontologies to be
used more often.

5.3 OntoQA: Metric-Based Ontology Quality Analysis

In this section we describe OntoQA, our ontology evaluation tool. As mentioned
in the previous section, OntoQA is a feature-based method for the evaluating
ontologies (Fig. 5.3). OntoQA’s main characteristic that distinguishes it from other

Populsted Ontologies =
Coglogy Schemas » KB

é% | Input

|
Ontology
(ROF or
owL)

———
Knowledge
Base (KB’

Fig. 5.3 OntoQA architecture

| Inpu

122 S. Tartir et al.

ontology quality tools is that it works on populated ontologies, thus enabling it from
utilizing knowledge represented in the instances to gain a better measure of the
quality of the ontology. OntoQA also uses much simpler techniques compared to
others in that it doesn’t require a lot of training as user involvement is minimal.
In OntoQA, metrics (features) are divided into two groups: schema metrics that
address the design of the ontology schema and instance metrics that address the
way instances are organized within the ontology.

Metrics proposed in OntoQA describe certain aspects of the ontology rather
than describing an ontology as merely “effective or ineffective” or “good or bad”,
because, in most cases, the way the ontology is built is largely dependent on the
domain in which it is designed. For example, ontologies modeling human activities
(e.g., travel or terrorism) will have distinctly different characteristics from those
modeling the natural (or physical) world (e.g. genes or complex carbohydrates).

We divided the metrics into two related categories: schema metrics and knowl-
edgebase (instance) metrics. The first category evaluates ontology design and its
potential for rich knowledge representation. The second category evaluates the
placement of instance data within the ontology and the effective utilization of the
knowledge modeled in the schema. Below is a description of both categories of
metrics.

5.3.1 Schema Metrics

Schema metrics address the design of the ontology. Although we cannot definitely
know if the ontology design correctly models the domain knowledge, metrics in this
category indicate the richness, width, depth, and inheritance of an ontology schema
design. The most significant metrics in this category are described next.

5.3.1.1 Relationship Richness

This metric reflects the diversity of the types of relations in the ontology. An ontol-
ogy that contains only inheritance relationships usually conveys less information
than an ontology that contains a diverse set of relationships. The relationship rich-
ness is represented as the percentage of the (non-inheritance) relationships between
classes compared to all of the possible connections that can include inheritance and
non-inheritance relationships.

Definition 1: The relationship richness (RR) of a schema is defined as the ratio
of the number of (non-inheritance) relationships (P), divided by the total num-
ber of relationships defined in the schema (the sum of the number of inheritance
relationships (H) and non-inheritance relationships (P)).

R |P|
|H| + |P|

5 Ontological Evaluation and Validation 123

5.3.1.2 Inheritance Richness

Inheritance Richness (IR) measure describes the distribution of information across
different levels of the ontology’s inheritance tree or the fan-out of parent classes.
This is a good indication of how well knowledge is grouped into different cate-
gories and subcategories in the ontology. This measure can distinguish a horizontal
ontology (where classes have a large number of direct subclasses) from a vertical
ontology (where classes have a small number of direct subclasses). An ontology
with a low inheritance richness would be of a deep (or vertical) ontology, which
indicates that the ontology covers a specific domain in a detailed manner, while an
ontology with a high IR would be a shallow (or horizontal) ontology, which indi-
cates that the ontology represents a wide range of general knowledge with a low
level of detail.

Definition 2: The inheritance richness of the schema (/R) is defined as the average
number of subclasses per class.

_ il

IR =
IC]

5.3.1.3 Attribute Richness

The number of attributes (slots) that are defined for each class can indicate both
the quality of ontology design and the amount of information pertaining to instance
data. In general we assume that the more slots that are defined the more knowledge
the ontology conveys.

Definition 3: The attribute richness (AR) is defined as the average number of
attributes (slots) per class. It is computed as the number attributes for all classes
(att) divided by the number of classes (C).

|att|

AR = —
IC]

5.3.2 Knowledgebase Metrics

The way data is placed within an ontology is also a very important measure of
ontology quality because it can indicate the effectiveness of the ontology design and
the amount of real-world knowledge represented by the ontology. Instance metrics
include metrics that describe the KB (Knowledgebase) as a whole, and metrics that
describe the way each schema class is being utilized in the KB.

124 S. Tartir et al.

5.3.2.1 Class Richness

This metric is related to how instances are distributed across classes. The number of
classes that have instances in the KB is compared with the total number of classes,
giving a general idea of how well the KB utilizes the knowledge modeled by the
schema classes. Thus, if the KB has a very low Class Richness, then the KB does
not have data that exemplifies all the class knowledge that exists in the schema. On
the other hand, a KB that has a very high CR would indicate that the data in the KB
represents most of the knowledge in the schema.

Definition 4: The class richness (CR) of a KB is defined as the percentage of
the number of non-empty classes (classes with instances) (C') divided by the total
number of classes defined in the ontology schema (C).

€]
CR=—
&

5.3.2.2 Class Connectivity

This metric is intended to give an indication of what classes are central in the ontol-
ogy based on the instance relationship graph (where nodes represent instances and
edges represent the relationships between them). This measure works in tandem
with the importance metric mentioned next to create a better understanding of how
focal some classes function. This measure can be used to understand the nature
of the ontology by indicating which classes play a central role compared to other
classes.

Definition 5: The connectivity of a class (Conn(Cj)) is defined as the total number
of relationships instances of the class have with instances of other classes (NIREL).

Conn(C;) = INIREL(C))|

5.3.2.3 Class Importance

This metrics calculates the percentage of instances that belong to classes at the
inheritance subtree rooted at the current class with respect to the total number of
instances. This metric is important in that it will help in identifying which areas of
the schema are in focus when the instances are added to the KB. Although this mea-
sure doesn’t consider the domain characteristics, it can still be used to give an idea
on what parts of the ontology are considered focal and what parts are on the edges.

Definition 6: The importance of a class (Imp(C;)) is defined as the percentage of
the number of instances that belong to the inheritance subtree rooted at C; in the KB
(inst(C;)) compared to the total number of class instances in the KB (CI).

5 Ontological Evaluation and Validation 125

[nst(Cy)|

Imp(Cy) = IKB(CD)|

5.3.2.4 Cohesion

In a semantic association discovery, relationships between instances are traced to
discover how two instances are related. If the instances have disconnections among
themselves, this may hinder such a search. This metric can be used to indicate the
existence of such cases where the KB has more than one connected component (one
being the ideal situation where all instances are connected to each other), indicat-
ing areas that need more instances in order to enable instances from one connect
component to connect to instances in other connected components.

Definition 7: The cohesion (Coh) of a KB is defined as the number of connected
components (CC) of the graph representing the KB.

5.3.2.5 Relationship Richness

This is an important metric reflecting how much of the relationships defined for the
class in the schema are actually being used at the instances level. This is another
good indication of the utilization of the knowledge modeled in the schema.

Definition 8: The relationship richness (RR) of a class C; is defined as the percent-
age of the number of relationships that are being used by instances /; that belong to
C; (P(I;,1j)) compared to the number of relationships that are defined for C; at the
schema level (P(C;,C))).

In addition to these eight metrics (Tartir et al., 2005), includes other metrics that
evaluate the ontology on other design aspects.

5.3.3 OntoQA Results

Figures 5.4 and 5.5 and Table 5.2 below show the OntoQA results when it is run on
the three ontologies: SWETO (a general-purpose ontology with a focus on scien-
tific publications), TAP (Guha and McCool 2003) (a general-purpose ontology) and
GlycO (Sheth et al., 2004) (an ontology for the field of glycomics). It can be seen
how different each one is by looking at the classes most instances in the ontology’s
KB fall into.

Figure 5.4 shows the most important classes in each of the ontologies. From
the figure, it can be clearly seen that classes related to publications are the dom-
inant classes in SWETO. While, with the exception of the Musician class, TAP
gives consistent importance to most of its classes covering the different domains

S. Tartir et al.

126

Class Importance

u
01edl|gnd oihusIdS

uojeljangd

slojdu
2seQ 108lans~ OV
Juang
oeRy IsHole]
Hodiy
yueg
Ao
1]
aoe|d 8 ©
L o
90UBI8JU0D
— Auedwo)
— uoneziuebiQ
Jayoseasay
~oouslog4eINdwo)n

Class Importance

duigoiwo)

jneuolisy

Aue
dwo000 Leunyoy

Ao

Ansteniun

Aiosereigpaiun

adA]1onpoid

Joog

awen
Jeindwo)euosiad

NI

10}y

Joyiny

aIuY

uepISN

LOWOWO OO
OOANN—

Class

(b)

Class Importance

woye H

ueok|6
-N~@souurw ybly

apueyooesob
110-paALap~ uedA|H
-N~@souuew-ybiy

anpisal~o}
eipAyoqieo ueok|p
“N

Class

ueoA|B-N"xa|dwod

apueyooesob
110 paALBp UBDA|ID
-N"x8|dwoo

|oup|e~|As0oA|Bob
110 paALap~ UedA|B
-N

apueyooesoh
110" paAuap_ uedA|b
“N

OOOTNOVOTNO
A

(©)

Fig. 5.4 Class importance in (a) SWETO (b) TAP and (¢) GlycO

it includes. The nature of the GlycO ontology is reflected in the classes that are

most important. The importance of the “N-glycan_residue” and the “alpha-D-
mannopyranosyl_residue” and other classes show the narrow domain of GlycO

y” class is the most important class

an_moiet

is intended for, although the “glyc

covering about 90% of the instances in the KB.

127

5 Ontological Evaluation and Validation

Class Connectivity

DHOMNOLOSTON—O

uo
neziuebiQ1suoua |

Auedwo)
u
ofedlgnd-oynusIdg

Jayoseasey
~oousiog Jeindwon

uoleolISS
|0 [oAs dol WOV

si01dul
258 108lanS NOY

dleis

IATTe)

uoieolyisse
[D " 1eAs] PAIYL NOV

uoneolIsSe|)
[9A9] PU09aS WOV

yodiy

Jueg

Yoeny istous |

Class

(a)

Class Connectivity

NOUSOAN~—O

SIONOEM

wea| |egeseq

9sINODNIND

1S
nuaiosIendwon

ye
1abuntiomoem

uosiedOeM

uo
I1eo10adSOEM m
avd NNo o
uonedliandning

juspn
1S8renpeiHnND

1snbulrepy

)
oeloldyoleasay

uoslad

Ainoe4NIND

—_

(b

Class Connectivity

ueok|B-N
OYN9ID-Q~ uedA|B

-N"Buionpal

dong
-7-eydjeueok|B-N

dojn
-g-eydieueoh|B-N

difx
-g-e18q~ ueoA|b-N

N\ “osese

Jsuesy”jAujwesoon|B

RISELIEEN]

duepy
-g-e1eq-uedh|b-N

299GnNaN
-eydje"ueok|B-N

dien
-g-eydjeueok|b-N

dieg
-g-e18q " uedA|b6-N

dySneN
-eydje"ueok|b-N

duepy
-g-eydieueoh|B-N

oyNdie
-g-e18q uedA|b-N

Class

(0

Fig. 5.5 Class connectivity in (a) SWETO (b) TAP and (¢) GlycO

Figure 5.5 shows the most connected classes in the three ontologies. From the
figure, it can be seen that SWETO also includes good information about domains
other than publications, including the terrorism domain (Terrorist_Attack and

Terrorist_Or

ganization), the business domain (Bank and Company) and geographic

128 S. Tartir et al.

Table 5.2 Summary of SWETO, TAP, and GlycO

Ontology Classes Relations Instances Class richness
SWETO 44 101 813,217 59.1

TAP 6,959 25 85,637 0.24

GlycO 361 56 660 48.1

information (City and State). In a similar manner, TAP continues to show that it cov-
ers different domains, and its most connected classes cover the education domain
(CMUCourse and CMUSCS_ResearchArea), the entertainment domain (TV and
Movie), and other domains as well. GlycO’s specific-purpose nature is evident from
the Glycan related classes that are most connected.

Table 5.2 shows the differences between the three ontologies by the number
classes, relationships, and instances, and by their class richness metric, which indi-
cate that more of SWETO’s classes are populated with instances compared to TAP
or GlycO, which may indicate that the instance population process was carried out
to cover resources that reflect the diversity of knowledge in the schema.

5.4 Conclusion

Ontologies form the cornerstone of the Semantic Web, and as the Semantic Web
gains acceptance of the different scientific domains, more ontologies will be created
to capture and share the knowledge in these domains. With this comes the need of
being able to evaluate and validate these ontologies to ensure that they correctly rep-
resent the domain knowledge, and to be able to select the ontology among different
ontologies that best fits a certain application. In this chapter we have summarized
the current major trends in evaluating and validating ontologies and given examples
techniques of each trends. We also presented our work in OntoQA and shown how
it can be used to evaluate the ontology across different dimensions to give accurate
metrics describing the ontology.

Still, more work is needed in ontology evaluation and validation to have tech-
niques that can help the user by searching for ontologies instead of requiring the
user to provide one, and have more techniques that target end-users in addition to
developers.

References

Alani, H., C. Brewster, and N. Shadbolt. 2006. Ranking ontologies with aktiverank. In Proceedings
of the 5th International Semantic Web Conference, Athens, GA, 5-9 Nov 2006.

Aleman-Meza, B., C. Halaschek, A. Sheth, I.P. Arpinar, and G. Sannapareddy. 2004. SWETO:
Large-scale semantic web test-bed. In Proceedings of the 16th Seke 2004: Workshop on
Ontology in Action, Banff, AB, 21-24 June 2004, 490-493.

5 Ontological Evaluation and Validation 129

Anyanwu, K., and A. Sheth. 2003. p-Queries: Enabling querying for semantic associations on the
semantic web. In Proceedings of the 12th International. WWW Conference, Hungary.

Arpinar, 1.B., K. Giriloganathan, and B. Aleman-Meza. 2006. Ontology quality by detection of
conflicts in metadata. In Proceedings of the 4th International EON Workshop, Edinburgh, 22
May 2006. Edinburgh; International Conference Center.

Boley, H., S. Tabet, and G. Wagner. 2001. Design rationale of ruleml: A markup language for
semantic web rules. In Proceeding of the 1st Semantic Web Working Symposium. Palo Alto,
CA: Stanford University.

Corcho, O. et al. 2004. ODEval: A tool for evaluating RDF(S), DAML+OIL, and OWL concept
taxonomies. In Proceedings of the 1st IFIP Conference on Artificial Intelligence Applications
and Innovations (AIAI 2004), Toulouse, France, 369-382.

Cristani, M., and R.A. Cuel. 2005. Survey on ontology creation methodologies. International
Journal of Semantic Web and Information Systems (IJSWIS) 1(2):49-69.

Fernandez, M., A. Gomez-Pérez, J. Pazos, and A. Pazos. 1999. Building a chemical ontology using
methontology and the ontology design environment. /[EEE Intelligent Systems Applications.
4(1):3745.

Finin, T, et al. 2005. Swoogle: Searching for knowledge on the semantic web. In Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI 05), Pittsburg, PA.

Gangemi, A., C. Catenacci, M. Ciaramita, and J. Lehmann. 2006 Modelling ontology evalua-
tion and validation. In Proceedings of the 2006 European Semantic Web Conference. Berlin:
Springer.

The Gene Ontology. http://www.geneontology.org

Gomez-Pérez, A., and M. Rojas-Amaya. 1999. Ontological reengineering for reuse. In Proceedings
of the 11th European Workshop on Knowledge Acquisition, Modeling and Management,
Dagstuhl Castle, Germany.

Goémez-Pérez, A., and M.C. Suarez-Figueroa. 2003. Results of taxonomic evaluation of RDF(S)
and DAML+OIL ontologies using RDF(S) and DAML+OIL validation tools and ontology plat-
forms import services. In Proceedings of the 2nd International Evaluation of Ontology-Based
Tools Workshop, 20th Oct 2003. Sanibel Island, FL: Sundial Resort.

Guarino, N. and C. Welty. 2004. An overview of ontoclean. Handbook on ontologie, eds. S. Staab,
and R. Studer, 151-159. Berlin: Springer.

Guha, R., and R. McCool. 2003. TAP: A semantic web test-bed. Journal of Web Semantics 1(1):
81-87.

Haase, P, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y.A. Sure. 2005. Framework
for handling inconsistency in changing ontologies. In Proceedings of ISWC2005, Galway,
Ireland.

Hartmann, J., P. Spyns, A. Giboin, D. Maynard, R. Cuel, M. Carmen Sudrez-Figueroa, and Y. Sure.
2004. Methods for ontology evaluation. Knowledge Web Deliverable, D1.2.3, v. 0.1.

Lozano-Tello, A., and A. Gomez-Perez. 2004. ONTOMETRIC: A method to choose the appropri-
ate ontology. Journal of Database Management 15:1-18.

MGED. The MGED Ontology. http://mged.sourceforge.net/ontologies/MO_FAQ.htm

Mostowfi, F., and F. Fotouhi. 2006. Improving quality of ontology: An ontology transformation
approach. In Proceedings of the 22nd International Conference on Data Engineering Workshops
(ICDEW’06), Atlanta, GA.

Noy, N.F, and M. Klein. 2004. Ontology evolution: Not the same as schema evolution. In
Knowledge and information systems.

Open Biomedical Ontologies. http://obo.sourceforge.net

Parsia, B., E. Sirin, and A. Kalyanpur. 2005. Debugging OWL ontologies. In Proceedings of
WWW 2005, 10-14 May 2005, Chiba, Japan.

Paslaru, E., B. Simperl, C. Tempich, and Y. Sure. 2006. ONTOCOM: A cost estimation model for
ontology engineering. In Proceedings of 5th International Semantic Web Conference (ISWC
2006), Athens, GA.

Plessers, P., and O. De Troyer. 2005. Ontology change detection using a version log. In Proceedings
of the 4th International Semantic Web Conference (ISWC-05).

130 S. Tartir et al.

Protégé Ontologies Library. http://protege.cim3.net/cgi-bin/wiki.pl?ProtegeOntologiesLibrary.

Sabou, M., V. Lopez, E. Motta, and V. Uren. 2005. Ontology selection: Ontology evaluation on the
real semantic web. In Proceedings of the 15th International World Wide Web Conference 2005,
Edinburgh.

Sheth. A., et al. 2004. Semantic web technology in support of bioinformatics for glycan expression.
W3C Workshop on Semantic Web for Life Sciences, 27-28 Oct 2004, Cambridge, MA.

Supekar, K., C. Patel, and Y. Lee. 2004. Characterizing quality of knowledge on semantic web.
In Proceedings of AAAI Florida Al Research Symposium (FLAIRS-2004), 17-19 May 2004,
Miami Beach, FL.

Tartir, S., I.B. Arpinar, M. Moore, A.P. Sheth, and B. Aleman-Meza. 2005. OntoQA: Metric-based
ontology quality analysis. In IEEE ICDM 2005 Workshop on Knowledge Acquisition from
Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, 27 Nov
2005, Houston, TX.

	5 Ontological Evaluation and Validation
	5.1 Introduction
	5.2 Current Approaches in Ontology Evaluation and Validation
	5.2.1 Evolution-Based
	5.2.2 Logical (Rule-Based)
	5.2.3 Metric-Based (Feature-Based)

	5.3 OntoQA: Metric-Based Ontology Quality Analysis
	5.3.1 Schema Metrics
	5.3.1.1 Relationship Richness
	5.3.1.2 Inheritance Richness
	5.3.1.3 Attribute Richness

	5.3.2 Knowledgebase Metrics
	5.3.2.1 Class Richness
	5.3.2.2 Class Connectivity
	5.3.2.3 Class Importance
	5.3.2.4 Cohesion
	5.3.2.5 Relationship Richness

	5.3.3 OntoQA Results

	5.4 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

