

Discovery of Semantic Relations between Web Services

Lin Lin & I. Budak Arpinar

LSDIS (Large Scale Distributed Information Systems) Lab
Department of Computer Science, University of Georgia

Athens GA 30602-7404, {lin, budak}@cs.uga.edu

Abstract

 Discovering and assembling individual Web
services into more complex yet new and more useful
Web processes has received significant attention from
academia recently. In this paper, we explore using pre
and post-conditions of Web services to enable their
automatic composition. Also, we present a novel
technique for discovering semantic relations between
pre and post-conditions of different services using
their ontological descriptions. This enables
determining services with complementary functions
and generating a semantic Web of services. Our
technique takes semantic similarity of pre and post-
conditions into account and builds on our earlier work
on discovering semantic relationships between
interfaces (input and output) of Web services. A
comprehensive classification of existing composition
techniques is also included.

1. Introduction

 Web services (WSs) extend the current Web from a
distributed source of information to a distributed
source of services. They are designed to provide
interoperability between diverse applications, i.e., the
platform and language independent interfaces of WSs
allow the easy integration of heterogeneous
applications. For example, the languages such as
Universal Description, Discovery, and Integration,
Web Services Description Language and Simple
Object Access Protocol define standards for service
discovery, description and messaging protocols.

The semantic Web is also an extension of the
current Web in which information is given well-
defined meaning, consequently better enabling
computer and human to work in cooperation. Semantic
Web aims to add machine-interpretable information to
Web content in order to provide intelligent access to
heterogeneous and distributed information. In a similar
way, ontological concepts are used to define semantic
Web services i.e., services supporting automatic

discovery, composition, invocation and interoperation.
As part of the DARPA Agent Markup Language
program, OWL-S, an ontology of services is developed
as a set of language features arranged in those
ontologies to establish a framework within which the
Web services may be described in this semantic Web
context.

Developing efficient automatic discovery and
composition techniques is among the most important
challenges for the success of semantic Web services.
Finding a suitable way to put these two features
together has become one of the key points to convert
the Web into a distributed source of computation, as
they enable the location and combination of distributed
services to provide a required functionality. To
contribute towards this goal, we developed an
Interface-Matching Automatic (IMA) composition
technique earlier [1 & 2]. The possible compositions
are obtained by checking semantic similarities between
interfaces of individual services without any
predefined template and user’s involvement in
specification and adaptation. An optimum composition
which can best satisfy a user’s needs considering the
semantic similarity and quality is selected. However,
our experiments show that without functionality
constraints, IMA technique is more appropriate for the
information-retrieval services, which always return
relatively simple results based on the user-supplied
inputs [1]. This is mainly due to the fact that WSs with
the same interface could have different functions and
the difficulty of mapping of input and output
parameters for many services.

In order to overcome the problems we encountered
in our previous work [9 & 10], we propose a discovery
technique based on pre and post-conditions of WSs.
We believe that the pre and post-conditions can
semantically express the capabilities of services in a
simple manner if they are expressed as a set of RDF
(Resource Description Framework) triples. In this
paper, we present a novel technique to identify
possible relations between pairs of WSs by checking
semantic similarities between their pre and post-
conditions. Using an ontology, we can discover

mailto:budak%7D@cs.uga.edu

relations between two services even the conditions
don’t match each other syntactically. This technique
also addresses the issue of relaxed matching in the
sense that pre-condition of one service can be satisfied
by two or more WSs.

In particular, our work targets the following
problem: given a set of WSs, the semantic relations
between pre and post-conditions of these services need
to be established, and then a semantic network of
services with complimentary functions can be
constructed according to these relations. Therefore, the
subsequent step of composition according to a specific
task at hand can be viewed as a path traversal problem.
An extended version of this work can be found in [9].

The rest of the paper is organized as follows:
Section 2 reviews the related work on WS composition
techniques. Section 3 reviews our earlier work on
IMA technique. Section 4 presents the technique for
discovering semantic relations between pre and post-
conditions of WSs. Section 5 describes the system
architecture and experimental results, and finally
Section 6 provides the conclusions.

2. Related Work

2.1 Template-based Techniques

 Template-based techniques compose an application
from a given service template. A service template
defines types or rules of the components required for
composing an application, as well as structure of the
application. A user can choose a service template from
a repository or create it him/herself. An adaptation of
these template-based techniques, called process-driven
techniques, is emerging as a promising approach to
integrate business applications within and across
organizational boundaries. In this approach, individual
WSs are federated into composite WSs whose business
logic is expressed as a process model. This process
model identifies the functionalities required by the
services to be composed (i.e., the tasks of the
composite service) and their interactions (e.g., control
and data flow, and transactional dependencies).
Component services that are able to provide the
required functionalities are then associated with the
individual tasks of the composite services and invoked
during each execution of the composite service. In
eFlow [6], the process is modeled as a graph that
defines the control and data flow. MWSCF [16]
captures semantics of the activities in the process. The
activities are not bound to WS implementations but
defined using semantic descriptions.

 The adaptability of the template-based systems is
limited since they cannot compose the applications
whose templates are not available. Also, creating
service templates requires technical knowledge and
experience. In addition, many of the existing template-
based systems, such as eFlow [6], adopt a centralized
architecture where centralized servers store and
process service templates.

2.2 Interface-based Techniques

 Interface-based techniques use interface
information of WSs (i.e., a set of inputs and outputs)
instead of service templates in order to compose an
application. A user requests an application by
submitting interface information of the application s/he
needs. The requested application is composed through
combining services such that the combination of the
services accepts the requested inputs and generates the
requested outputs.
 The interface-based techniques have limited
flexibility since certain services cannot be represented
through a set or inputs and outputs. For example, a
service that sends a text message to a specified email
address cannot be modeled as a set of inputs and
outputs since it does not output any data. Also,
services may have more than one input and output
parameters, and their interfaces may not match
syntactically. [1] addressed this issue by proposing
ontology-driven techniques, which will be discussed in
Section 3. Furthermore, interface information usually
provides little or no semantic information about the
internal functionality of WSs.

2.3 Logic-based Techniques

 Logic-based techniques extend the interface-based
approach by usually adding first-order formula as pre
and post-conditions into interface information. A user
requests an application by submitting a formula
representing the logic that must be satisfied by the
application. The requested application is composed
through combining components such that the
conjunction of the logics specified in the components
is equivalent to the logic specified by the user.
SWORD [13] and SHOP2 [18] follow this approach.

2.4 Ontology-driven Techniques

 Ontology-driven techniques extend the interface-
based approach by bridging the concept gaps in
interface parameters and other parts of the descriptions
of services [17]. For example, MWSAF (METEOR-S

Web Services Annotation Framework) was designed to
annotate WSDL files with relevant ontologies [12].
MWSCF (METEOR-S Web Services Composition
Framework) makes use of ontologies in template
definition to allow much richer description of activity
requirements [16].
 The use of ontologies for matching interface
parameters leads to different degree of similarity
matches. For example, if the output parameter of the
former service subsumes the input parameter of the
succeeding service, the properties of the parameters
could be partially satisfied. Thus, this kind of weak
matches may not always guarantee the correctness of
the composition.

2.5 Quality-driven Techniques

 The quality-driven techniques extend the process-
driven techniques by adding the selections of
component services based on a set of quality criteria
during execution of a composite service. The number
of services providing a given functionality, although
with different levels of pricing and quality, may be
large and constantly changing. Consequently, it may be
inappropriate to compose composite services that
require the identification of the exact services at the
design-time. A WS can be selected during execution
based on some operational metrics of non-functional
properties, such as reliability, execution price,
duration, reputation, availability, and security. The
runtime selection of component services during the
execution of a composite service has been put forward
as an approach to address this issue. For example, [5]
presents a QoS model for workflow components.

2.6 Automata-based Techniques

 The automata-based techniques use Finite State
Automata (FSA) to model a WS composition. FSA is
widely known as a simple but powerful formalism,
which allows to model the behavior of a system as a
sequence of transitions. In [4] a service is modeled as a
Mealy machine, with input and output messages, and a
queue is used to buffer messages that were received
but not yet processed. [3] describes a composition
model involving activity-focused FSA. One input to
this approach is a set of descriptions of component
WSs, each given as an automaton. The second input is
a desired global behavior, also specified as an
automaton, which describes the possible sequences of
activities. The output is a subset of the component
services, and a mediator.

2.7 Petri net-based Techniques

 These techniques use Petri nets to model processes.
Petri nets are well founded process modeling technique
that has formal semantics. After a Petri net is defined
for each service, composition operator, such as
sequence, selection and iteration, are used to perform
composition. For example, [11] encodes WS
descriptions in a Petri net formalism and provides
decision procedures for WS simulation, verification
and composition. [7] proposes a Petri net-based
algebra for composing Web services. The formal
semantics of the composition operators is expressed in
terms of Petri nets by providing a direct mapping from
each operator to a Petri net construction. Thus, any
service expressed using the algebra constructs can be
translated into a Petri net representation. A colored
Petri net-based approach proposed in [19] captures
both complex conversation protocols and process
compositions.

3. Semantic Relations between Inputs and

Outputs

 Our earlier work investigated the semantic relations
between inputs and outputs of WSs by checking their
semantic similarities [1 & 2]. We developed an
Interface-Matching Automatic (IMA) composition
technique that aims for generation of complex WS
compositions automatically. This requires capturing
user’s goals (i.e., expected outcomes), and constraints,
and matching them with the best possible composition
of existing services. Therefore, inputs and outputs of
the composite service should match the user-supplied
inputs, and expected outputs, respectively.
Furthermore, the individual services placed earlier in
the composition should supply appropriate outputs to
the following services in an orchestrated way similar to
an assembly line in a factory so they can accomplish
the user’s goals.

In IMA, we navigate the process ontology to find
the sequences starting from the user’s input parameters
and go forward by chaining services until they deliver
the user’s expected output parameters. The
composition terminates when a set of WSs that
matches all expected output parameters is found, or the
system fails to generate such a composition of services.

The goal of this technique is to find a composition
that produces the desired outputs within shortest
execution time and better data-flow (i.e., better
matching of input and output parameters). Note that
input parameters may not match syntactically yet they
can be semantically equivalent. The degree of semantic

match is calculated using a function of quality rate and
semantic similarity value.

However, our experiments show that sometimes
IMA technique can fail to produce correct
compositions due to the fact that some WSs, with same
input and output parameters, provide quite different
functionalities. Thus we have developed a (Human-
Assisted Automatic) HAA composition technique to
help users in selecting appropriate WSs among a
ranked list, and build a composition incrementally [2].
We believe exploiting semantic relations between pre
and post-conditions can further enhance quality and
usability of produced compositions,

4. Semantic Relations between Pre and

Post-conditions

 The problem of composing autonomous WSs
automatically to achieve new functionality is
generating considerable interest in recent years in
academia and industry as mentioned earlier. Automatic
services composition requires an approach based on
semantic descriptions, as the required functionality has
to be expressed in a high-level and abstract way to
enable reasoning procedures.

The required high-level functionality description
can be viewed as the capability of the service.
However, different services can provide the same
capability (e.g., booking a flight) and the same service
can provide different capabilities (e.g., searching a
book or a movie through the same service). In this
sense, capabilities must be naturally described
separately from specific service descriptions so that
generic functionalities can be expressed [8]. For
example, several services offering the same
functionality but with different inputs and outputs
should be related to the same generic high-level
capability. However, several services having same
inputs and outputs but offering different functionalities
should be distinguished from each other.

In order to compose services based on
functionalities, there has to be a way to express the
functionality of a service. Since pre and post-
conditions can be used to define the capability of the
service in terms of the information needed to use the
service and the results of its invocation, functionalities
of services can be expressed in terms of these
conditions. So the problem of investigating the degree
of interoperability of WSs based on semantic relations
of their pre- and post-conditions becomes very
important during WS composition.

4.1 Relationships among Web Services

 We define two WSs to have a relationship as either
these two services can be somehow plugged together
to perform a valued added service or one of service can
be substituted by the other. Let service Sm and service
Sn be two services, and a relationship R between
services Sm and Sn can be identified as follows:
• Prerequisite Relationship: (Sm → Sn) The

prerequisite relationship means that one service has
to finish before the other starts. Service Sm has to
finish before service Sn starts. For example, the
booking service has to be done before the payment
service.

• Parallel Relationship: (Sm // Sn) Here services Sm
and Sn can execute in parallel but the results of
each service need to be combined to enable further
execution.

• Substitute Relationship: (Sm Sn) Here service Sm
can be substituted by service Sn. The services Sm
and Sn seem to provide the same functionality but
they have different attributes. For example, in the
case of delivery service, service Sm can be an air
courier delivery service while service Sn is a
ground delivery service.

• Include Relationship: (Sm Э Sn) The include
relationship means that one service provides
services that includes the services offered by the
other. The service Sm includes the service Sn. For
example, service Sm can be an express delivery
service that offers both ground and air delivery
while service Sn is a ground delivery service.

4.2 Modeling Pre and Post-conditions

 The problem of determining the relationship
between two services can be addressed through
discovering semantic relations between the pre and
post-conditions of these services using ontologies.
Thus, finding a suitable way to express pre and post-
conditions semantically becomes a very important
issue. It should be simple and expressive enough for
machine processing, and capturing the functionality of
services respectively.

Pre-conditions can be expressed as, but not limited
to, high-level inputs to the service together with
conditions over these inputs. High-level input means
that more specific concepts in the ontology can be
found to replace more abstract concepts in the input
(e.g., indicating payment information as a pre-
condition, instead of credit card information or bank
information). It is important to notice that the pre-
conditions of a service are not independent of each

other, as they all define the functionality. Post-
conditions can also be expressed as, but not limited to,
high-level results of the service execution together
with conditions over these results. As with pre-
condition, they cannot be considered independent, as
the removal of one of them changes the functionality.

There is no strong consensus for representing pre
and post-conditions in a certain specification language.
Hence, we model pre and post-conditions of a WS as
two sets of RDF triples from an ontology. The use of
RDF triples provides a way that is simple yet rich
enough to express pre and post-conditions
semantically. For example, the pre-condition for a
course registration service could be expressed as a set
of triples: (course status available, course has
prerequisite, student pass prerequisite), and the post-
condition could be expressed as another set of triples:
(student register course). Both pre and post-conditions
in this simplistic example are defined at the schema
level of the ontology. For example, the post-condition
expresses that the student should register the course if
the pre-condition is satisfied.

Note that how pre and post-conditions can be
specified or if they can be automatically generated are
out of scope of our work.

4.3 Semantic Relations between
 Conditions

 Each set of RDF triples in a pre or post-condition is
simply called a condition. Thus, a WS can be viewed
as Cond1 Cond2, in which Cond1 and Cond2
represent the pre and post-condition of the WS
respectively. The relationship between two services
can be identified by checking the semantic relations
between these conditions of WSs.

Let service Sm and service Sn be two services, and
service Sm can be represented graphically as
Condm1 Condm2 in Figure 1(a), and service Sn can
also be represented graphically as Condn1 Condn2 in
Figure 1(b). Several semantic relations between
conditions can be identified as follows:
• Condition Condm2 exactly matches to condition

Condn1: Condm2 Condn1. In Figure 1(c), the
exact match relation between conditions Condm2
and Condn1 is represented graphically, and services
Sm and Sn have the prerequisite relationship (e.g.,
→).

• Condition Condm2 is semantically stricter than
condition Condn1. Figure 1(d) shows that Condm1
can be a plug-in (PI) match to Condn1: Condm2
PI Condn1. In this case, services Sm and Sn have
the prerequisite relationship. For example,

condition Condm2 can specify the availability of
payment by MasterCard only, and condition
Condn1 can allow the availability of payment by all
major credit cards.

Figure 1: Semantic Relations between Conditions

• Condition Condm2 only partially satisfies condition

Condn1 so that some other condition(s) are needed
together with Condm2 to completely satisfy Condn1.
We say that Condm2 can be a plus-match to Condn1
as shown in Figure 1(e): Condm2 + Condn1.
Service Sm has the parallel relationship (i.e., //)
with some other services since their results together
enable the execution of service Sn.

• Condition Condm2 compliments condition Condn1.
For example, condition Condm2 can specify that
book is available to be sold, and condition Condn1
can specify that book is available to be bought.
Buying denotes an action that is compatible to
selling. While [14] defines this compatible relation
in their action-resource ontology, we can define
this kind of relations in condition ontology. We say
that condition Condm2 can be a complimentary
match to condition Condn1: Condm2 CP

Condn1. In this case, services Sm and Sn also have
the prerequisite relationship.

 Figure 1(f) shows that services Sm and Sn have the
substitute relationship (i.e.,) since condition Condn1
exactly matches condition Condm1, and condition
Condn2 exactly matches condition Condm2. Figure 1(g)
shows the include relationship (i.e., Э) between
services Sm and Sn. In this case, condition Condn1 is a
plug-in match to condition Condm1 while condition
Condn2 exactly matches to condition Condm2. For
example, as mentioned earlier, Condm1 can specify that
express delivery, including air and ground deliveries,
is available while Condn1 expresses that only ground
delivery is available. Post-conditions of two services
Condm2 and Condn2 can be the same as they both
express the effect of executing a delivery service.

4.4 Discovery of Semantic Relations

between Conditions

 The degree of similarity between two conditions is
assessed through comparing similarity between triples
of these two conditions. To evaluate the similarity of
two triples, each component from the triples are
compared, and a similarity value is assigned. In the
following, we explain the relation discovery algorithm
in several steps:

1. evaluating the similarity of two triples,
2. calculating the similarity value between two

conditions,
3. identifying the semantic relation between two

conditions using similarity value, and
4. identifying the semantic relations between pre

and post-conditions among services.

The first step is to evaluate the similarity of two
triples. We consider the following cases of similarity
measure for a pair of triples:

1. If all three corresponding components between
two triples are same, the similarity value for these
two triples is maximal.

2. If one or more components from the first triple
are subsumed by the corresponding component(s)
from the second triple, their similarity value is
the second best. For example, the two triples,
book hasAuthor person and mediaObject
hasAuthor agent, fall into this case since book
from the first triple is subsumed by mediaObject
from the second triple, and person from the first
triple is also subsumed by agent from the second
triple.

3. If one or more components from the first triple
subsume the corresponding component(s) from
the second triple, their similarity value is the
third best.

4. If at least one component from first triple is
subsumed by the corresponding component from
second triple (case 2) while the other one or more
components from first triple subsume the
corresponding component(s) from second triple
(case 3), their similarity value is the fourth best.

5. If they have no subsumption relation, the
similarity value can be obtained by using
Tversky’s feature-based similarity model [5].
Usually, in this case, their similarity value is very
small.

We use a linear combination of the similarity

values of each triple in the condition. Currently we
manually set the threshold value that distinguishes
“good” matches from “bad” matches. A triple with
similarity value greater than the threshold value is
considered as a good-matched triple, otherwise it is
considered as a bad-matched triple. In our
experiments, the threshold value is set to be the fourth
best similarity value described in case 4 in the previous
step so that a triple with case 4 or case 5 similarity
value would be considered as a “bad” match. The
reason for the choice of the threshold value is that this
high threshold value will guarantee the correct
semantic relations being identified in the following
steps. Thus, for a pair of conditions, the similarity
values of good-matched triples are combined linearly.
To further obtain the normalized similarity value for
two conditions, the similarity value is divided by the
total number of good-matched triples in the conditions.

The next step is to map this normalized similarity
value to one of three semantic relations between
conditions identified in the previous section or to
ignore it because the value is too small to be
considered.

The final step is to find the semantic relations
between pre and post-conditions among a set of Web
services. For every pair of services, their pre and post-
conditions need to be cross matched to obtain all
possible relations. Suppose service S1 has pre-
condition Pre1 and post-condition Post1, and service
S2 has pre-condition Pre2 and post-condition Post2.
Then, the relations need to be identified between four
pair of conditions: (i) Pre1 and Pre2, (ii) Post1 and
Post2, (iii) Post1 and Pre2, and (iv) Post2 and Pre1.
Here, identifying relations in (i) and (ii) may discover
possible substitute and include relations between two
services; and possible prerequisite and parallel
relations between two services can be discovered by

identifying relations in (iii) and (iv). According to the
identified relations between pre and post-conditions, a
semantic network of WSs can be generated.
 It must be noted that we only address this issue for
services having only a single pre-condition and a
single post-condition. The services having multiple pre
and post-conditions are out of scope of this paper.

6. System Architecture and Experiments

 For the experimental purposes, we have developed
a prototypical system (Fig. 2). The Reasoning Engine
takes the pool of WSs as input, and identifies the
semantic relations between the pre and post-conditions
of each pair of WSs. The Reasoning Engine sends the
RDF triples from pre and post-conditions of services to
the Matching Engine for identifying similarity values.
This engine uses Jena APIs to load and query the
ontology to locate relations between two given
concepts. The resulting semantic Web of services is
visualized through a Touch Graph based graphical user
interface [9].

Figure 2: An Overview of System Architecture

Due to the lack of the standard semantic WSs

dataset we have created a collection of synthetic WSs
using TAP, which is an experimental knowledge base
about people, places, products, etc [15]. We evaluated
our discovery results with respect to those obtained by
a panel of ten human subjects, who are graduate
students in computer science and not familiar with the
research presented here. The human subjects were
given thirty randomly generated services, each
consisting of pre and post-condition. Together with the
dataset, all subjects were provided with the discovery
criteria for three types of relations between conditions.
They were also provided with a graphical

representation of partial domain ontology used to
generate pre and post-conditions for the service
dataset, thus allowing them to evaluate the similarity
between triples within conditions. They then identified
all possible relations between pre and post-conditions
of all thirty services according to the criteria provided.
 In order to demonstrate the effectiveness of our
discovery scheme, we illustrate in Fig. 3 the
performances of human subjects and system. The x-
axis represents ten human objects and system, each
having three columns indicating its performances on
exact match, plug-in match, and plus match relations,
respectively. On the other hand, the y-axis represents
the number of correct relations identified by the system
and human subjects. It is evident in the figure that
there are varying levels of performances in human
subjects’ ability to identify semantic relations between
conditions. Especially, they had difficulty of
identifying plus match relation. Note that the system
identifies more relations than those human subjects.
Fig. 4 shows the performances of the system with
different threshold values. The average performance is
also calculated and displayed in Fig. 4. It is a clear
indication that varying threshold values can produce
varying levels of performances. To obtain a good
system performance, we recommend that the threshold
value is set to the value previously discussed.

Performances of Human Subjects and System

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11

Human Subjects (1-10) and System (11)

Nu
m

be
r o

f C
or

re
ct

Re

la
tio

ns
 Id

en
tif

ie
d

Exact Match
Plug-in Match
Plus Match

Figure 3: Performances of Human Subjects and System

 Our experiments are based on a synthetic dataset of
services with only pre and post-condition
specifications and numerical identifiers. It is not
surprising to see that the performance of the system is
better than those of human subjects in the experiments
since they can not apply their real world experiences to
a synthetic dataset that has no real meanings. If real
services, with a full description of service name, goal,
and i/o parameters as well as pre and post-conditions,
were to be used in the experiments, human subjects
might perform better than the system. Human subjects
are good at identifying relations, for example, using

WS names, when various sources of information are
provided. However, there is a limit for the amount of
WS specifications human subjects can handle at a time.
As the number of services in the dataset increases
significantly, it becomes difficult for them to identify
all possible relations among pre and post-conditions. In
this case, our technique will give a better performance
with large number of services in a dataset. Also,
frequently WS names may not be descriptive enough
so that human subjects may have difficulties in
identifying possible relations in this case as well.

Performances of System with Different Threshold
Values

0

5

10

15

20

1 2 3 4 5 6

Systems with Different Threshold Values
(1-5) and System Average (6)

N
um

be
r o

f C
or

re
ct

 R
el

at
io

ns

Id
en

tif
ie

d Exact Match

Plug-in Match

Plus Match

Figure 4: Performance with 5 Different Thresholds

7. Conclusion and Future Work

 In this paper, we propose a novel technique for
discovering semantic relations between pre and post-
conditions of different services using their ontological
descriptions. Currently, we didn’t test the actual
compositions in our prototype. However, users can
visually browse the generated semantic Web of pre and
post-conditions of services for checking possible
compositions. Also path traversal algorithms can be
applied to our semantic Web of services to obtain
service compositions. Our future work also includes
conducting more experiments when standard semantic
WSs datasets become available.

8. References

[1] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A.
Maduko., “Ontology-driven Web Services Composition
Platform”, IEEE Intl. Conf. on e-Commerce Technology, San
Diego, California, July 6-9, 2004.
[2] I. B. Arpinar, R. Zhang, B. Aleman-Meza, and A.
Maduko, “Ontology-driven Web Services Composition
Platform”, Journal of Information Systems and e-Business
Management, 3(2):175-199, July 2005.
[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,
and M. Mecella, “Automatic Composition of E-services that

Export Their Behavior”, Proc. of the 1st Intl. Conference on
Service Oriented Computing, 2003.
[4] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation
Specification: A New Approach to Design and Analysis of
E-Service Composition”, Proc. of WWW Conference, 2003.
[5] J. Cardoso, Quality of Service and Semantic Composition
of Workflows, Ph.D. Dissertation, Dept. of Computer
Science, Univ. of Georgia, Athens, GA, 2002.
[6] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and
M.-C. Shan, “Adaptive and Dynamic Service Composition in
eFlow”, Proc. of the Intl. Conf. on Adv. Info. Systems
Engineering, Sweden, 2000.
[7] R. Hamadi and B. Benatallah, “A Petri net-based Model
for Web Service Composition”, Proc. of the 14th
Australasian Database Conf., 2003.
[8] R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D.
Fensel, “Semantic Web Services: Description Requirements
and Current Technologies”, Intl. Workshop on E-Commerce,
Agents, and Semantic Web Services, Pittsburgh, Sept. 2003.
[9] L. Lin, Discovering Semantic Relations between Web
Services Using Their Pre and Post-Conditions, MS Thesis,
Computer Science, University of Georgia, May 2005.
[10] L. Lin, and I. B. Arpinar, “Discovering Semantic
Relations between Web Services Using Their Pre and Post-
Conditions”, 2005 IEEE International Conference on
Services Computing, July 2005, Orlando, Florida (poster).
[11] S. Narayanan and S. Mcllraith. Simulation,
“Verification and Automated Composition of Web Services”,
Proc. of the 11th Intl Conf. on WWW, Hawaii, 2002.
[12] A. Patil, S. Oundhakar, A. Sheth, and K. Verma,
“METEOR-S Web Service Annotation Framework”,
Proceeding of the WWW Conference, July 2004.
[13] S. R. Ponnekanti, and A. Fox, “SWORD: A Developer
Toolkit for Web Service Composition”, Proc. of the 11th Intl
Conf. on WWW, Hawaii, 2002.
[14] M. Stollberg, U. Keller, and D. Fensel, Partner and
Service Discovery for Collaboration Establishment with
Semantic Web Services, Digital Enterprise Res. Inst., Univ.
of Innsbruck, Austria, 2005.
[15] TAP KB, http://tap.stanford.edu/tap/tapkb.html
[16] K. Verma, Configuration and Adaptation of Semantic
Web Processes, PhD Thesis, Computer Science, Univ. of
Georgia, June 2006.
[17] WSDL-S, W3C Member Submission on Web Service
Semantics, http://www.w3.org/Submission/WSDL-S/
[18] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau,
“Automating DAML-S Web Services Composition Using
SHOP2”, Proc. of 2nd Intl. Semantic Web Conference,
Sanibel Island, Florida, October 2003.
[19] X. Yi and K. Kochut, “Process Composition of Web
Services with Complex Conversation Protocols: a
Colored Petri Nets Based Approach”, Proc. of Design,
Analysis, and Simulation of Dist. Sys. Symposium, 2004.

http://www.cs.uga.edu/%7Ebudak/papers/lin05.pdf
http://www.cs.uga.edu/%7Ebudak/papers/lin05.pdf
http://www.cs.uga.edu/%7Ebudak/papers/lin05.pdf
http://www.cs.uga.edu/%7Ebudak/papers/lin05.pdf
http://www.cs.uga.edu/%7Ebudak/papers/lin05.pdf
http://tap.stanford.edu/tap/tapkb.html
http://www.w3.org/Submission/WSDL-S/

