
METU Object�Oriented DBMS

Asuman Dogac� Cetin Ozkan� Budak Arpinar�

Tansel Okay� Cem Evrendilek

Software Research and Development Center
Scienti�c and Technical Research Council of Turkiye
Middle East Technical University
������ Ankara Turkiye

Abstract

METU Object�Oriented DBMS � includes the implementation of a database
kernel� an object�oriented SQL�like language and a graphical user interface� Ker�
nel functions are divided between a SQL Interpreter and a C�� compiler� Thus
the interpretation of functions are avoided increasing the e�ciency of the system�
The compiled by C�� functions are used by the system through the Function
Manager� The system is realized on Exodus Storage Manager �ESM�� thus ex�
ploiting some of the kernel functions readily provided by ESM� The additional
functions provided by the MOOD kernel are the optimization and interpretation
of SQL statements� dynamic linking of functions� and catalog management�

An original query optimization strategy based on the object�oriented features
of the language is developed� For this purpose formulas for the selectivity of a
path expression� and for the cost of forward and backward path traversals are
derived� and join sizes are estimated� New strategies for ordering the joins and
path expressions are also developed�

A graphical user interface� namely MoodView is implemented on the MOOD
kernel� MoodView provides the database programmer with tools and function�
alities for every phase of OODBMS application development� Current version
of MoodView allows a database user to design� browse� and modify database
schema interactively� MoodView can automatically generate graphical displays
for complex and multimedia database objects which can be updated through
the object browser� Furthermore� a database administration tool� a full screen
text�editor� a SQL based query manager� and a graphical indexing tool for the
spatial data� i�e�� R Trees are also implemented�

� Introduction

In this paper we describe the METU Object�Oriented DBMS �MOOD�� MOOD
has a type system derived from C��� eliminating the impedance mismatch
between MOOD and C��� It has a SQL�like query language �MOODSQL� and
is developed on top of the Exodus Storage Manager �ESM� �ESM 	
�� �Car ���
This provides MOOD the following kernel functions available through ESM �

� The code is available from asuman�vm	cc	metu	edu	tr

 Asuman Dogac et	 al	

� storage management

� controlling data access and concurrency

� backup and recovery of data�

Additionally� MOOD kernel provides the following functions �

� optimization and interpretation of SQL statements and dynamic linking of
functions

� catalog management�

The main problem in designing a kernel for an object�oriented DBMS is
the late binding of methods to the objects� In MOOD we propose to solve this
problem by dividing the labor between an object�oriented SQL interpreter and
a C�� compiler� Since database environment enforces run�time modi�cation of
schema and objects� late binding is essential�

There are two other alternatives that we considered but are not chosen� These
are building a system based on a persistent programming language such as C��
or using a full C�� interpreter and extending it with DBMS functionality�

In the �rst alternative� all other subsystems communicate via the persistent
C�� which are compiled externally� The compiled programs may be executed
separately� or they may be activated by using dynamic linker �dld�� The disad�
vantage of this alternative is that it is completely orthogonal to the nature of a
database management system� A DBMS provides an on�line environment rather
than a database tool box where there are calls to separately compiled programs
for database operations� The advantage on the other hand� is to be able to use
the full power of the chosen programming language�

The second alternative although eliminates the previous disadvantage� there
is a problem of performance decrease with this alternative due to interpretation�
The advantage is again to be able to use the full power of C���

The proposed approach� on the other hand� is uniform in that interfaces
access the database through SQL statements interpreted by the kernel� But
the code for the member functions of the classes are not interpreted� They
are separately compiled with C�� and executed by SQL interpreter through a
dynamic linker�dld�� The advantage of this approach is that the interpretation
of the functions are avoided increasing the overall e�ciency of the system�

MOOD�s kernel is described in Section
� Section � contains brief descrip�
tions of MOOD data model� MOODSQL and MOOD Algebra� In Section ��
cost model parameters are given and formulas for the selectivity of path expres�
sions are derived which forms the basis of the cost calculations for the query
optimizer� Section � summarizes the cost analysis of basic �le operations� In sec�
tion � the costs of realizing an implicit join operation through several di�erent
techniques are presented� Section � contains the general description of the exe�
cution of MOODSQL queries� Section � describes query optimization in MOOD�
MoodView� the graphical user interface is then presented in Section 	� Finally
summary is presented in Section ���

METU Object�Oriented DBMS �

� MOOD Kernel Implementation

The general structure of the MOOD system is shown in Figure
��� In MOOD�
data can be de�ned through MOODSQL data de�nition language or through
C��� When data is de�ned through MOODSQL data de�nition language� the
de�nitions are stored in the CATALOG and a C�� header �le is created for
future compilation� To handle the case where data is de�ned in C��� we have
modi�ed cfront such that cfront extracts the catalog information and stores it
into the CATALOG�

The basic types supported by the MOOD are Integer� Float� LongInteger�
String� Char� and Boolean� The type constructors are Tuple� Set� List� and
Reference� A complex type may be created by using basic types and recur�
sive application of the type constructors� A type �or class� in the system has
a unique type identi�er and name� The functions typeId�char �typeName� and
typeName� int typeId� return type identi�er and name of a type �or class� re�
spectively�

MOOD CLIENT

CLIENT

KERNEL

SQL FUNCTION
INTERPRETER BUFFER

CATALOG OBJECT
BUFFER BUFFER

EXODUS STORAGE MANAGER DLD

Figure 2.1. An Overview of the MOOD System

The di�erences between a type and a class from the implementation point of
view are�

� A class has a default extent that contains the instances created�
� Values which are instances of types have copy semantic�
� Classes are organized into a class hierarchy�

The catalog contains the de�nition of classes� types� and member functions
in a structure similar to a compiler symbol table� In order to achieve late bind�
ing at run time� it is necessary to carry compile time information to run time�
This is accomplished by the use of the classes MoodsType� MoodsAttribute and

� Asuman Dogac et	 al	

MoodsFunction� The MoodsType class keeps track of all the types used in the
system� The MoodsAttribute stores the information about the attributes of these
classes� The instances of the MoodsFunction class keeps information about the
member functions� Figure
�
 shows the structure of the catalog on ESM�

Root page of ESM

Database Catalog

Type Catalog

User Defined Types System Classes
User Defined Classes

Basic Types

Type Catalog
Function Catalog
Attribute Catalog

Figure 2.2. Representation of catalog in ESM

MOODSQL interpreter is responsible for �

� optimization of MOODSQL queries�
� interpretation of arithmetic and Boolean expressions�
� dynamic de�nition and linking of member functions�

For interpretation of arithmetic and Boolean expressions� the types of operands
are necessary at run time� This information is provided by the class Operand�
DataType� As an example �

OperandDataType x�INT��� y�INT�
�� z �DOUBLE��
x����
y����
z��x���x�����y����� �� this expression can be evaluated and result�s

�� type is casted to double since z is double�

The code for the interpretation of arithmetic and Boolean expressions mainly
overloads addition� subtraction� multiplication� division and mode operation op�
erators in the order � �� ���� �� � � for arithmetic expressions� It evaluates AND�
OR� NOT� and comparison operators for Boolean expressions� Type checking
and conversion of results are performed at run�time�

METU Object�Oriented DBMS �

The power of object oriented applications lies in the interpretation and late
binding which necessitate the system to be an interpreter� Only by interpretation
can the user requests be handled dynamically� whereas if the application is static
�i�e� compiled� dynamic changes are impossible�

In our approach a Function Manager responsible for adding� updating� delet�
ing and invoking the member functions of the classes is developed� The basic con�
cept is to store the C�� source after some processing into the class hierarchy�
In order to compile newly de�ned functions� MOOD keeps track of the textual
de�nition of classes in the hierarchy� Starting from the root class in a directory
hierarchy� every class has its own directory containing its textual de�nition and
function object �les and a shared object� A class named FUNCTION handles
basic dynamic linking operations by the use of the Shared Object �les� All of
the basic types �i�e� Integer� Float� LongInteger� String� Char� and Boolean� are
automatically replaced with MOOD type classes�

The member function declarations in the source code are extracted and
inserted into the CATALOG� The information extracted is the member function
signature information�

When a function is invoked through the SQL interpreter� the signature of
the function is created by using class name to which the function is applied
and its parameter list� This signature is used in locating the function in the
CATALOG� When function signature is found in the CATALOG� Shared Object
File of the Class is opened and the function is loaded into memory� At the point
the function is called� parameters are passed to the function� Function is kept in
memory until the scope changes in the program�

At run�time� adding a new function to the system has no e�ect on the server
program� since it is separately pre�processed and compiled� The shared library
of the class will be unavailable only during the time it takes to write the new
function� We provide locking for this operation�

All system errors� including signals that terminate processes are handled
by our Exception class� Thus although the functions are compiled� their error
messages are handled as if they are interpreted�

With Function Manager the only cost is the preprocessing and compilation
of the added functions for once� It is clear that during this process the server
is active� there is no need to recompile the server� This is a dynamic system�
where both time and memory are e�ciently utilized because the interpretation
time is saved and the code is loaded into memory when it is requested�

� MOODSQL

As part of MOOD� a SQL�like object�oriented query language� MOODSQL� to�
gether with a query optimizer has been designed and implemented�

Several SQL like query languages for OODBMSs have been proposed such as
CQL�� �Dar 	
�� O
Query �Deu 	��� EXCESS �Car ���� and the query language
of ORION �Kim 	���

� Asuman Dogac et	 al	

��� An Overview of MOOD Data Model and MOODSQL

A detailed description of the MOOD data model and MOODSQL is given in
�Ozk 	��� In this section the general structure of the data model and the query
language are presented brie�y�

In the MOOD data model the basic data types are Integer� Float� LongIn�
teger� String� Char� and Boolean� Any complex data type is de�ned using these
types and by the recursive application of the Tuple� Set� List and Reference type
constructors� The data model also supports multiple inheritance and strongly
typed methods� MOODSQL is designed to support ad�hoc queries in MOOD�
General syntax of the query language is as follows�

SELECT projection�list
FROM class�name r��

class�name r��
���
class�name rn

� GROUP BY attribute�list � HAVING predicate � �
� WHERE search�expression �
� ORDER BY attribute�list �

As an example� consider the database schema given below� which also illus�
trates the data de�nition language of MOODSQL� The classes have extensions�

CREATE CLASS Vehicle
TUPLE �

id Integer�
weight Integer�
drivetrain REFERENCE � VehicleDriveTrain��
manufacturer REFERENCE � Company�

METHODS�
lbweight �� Integer�
weight �� Integer�

�
CREATE CLASS VehicleDriveTrain

TUPLE �
engine REFERENCE �VehicleEngine��
transmission String��
�

�
CREATE CLASS VehicleEngine

TUPLE �
size Integer�
cylinders Integer

�
CREATE CLASS Company

TUPLE �

METU Object�Oriented DBMS

name String��
��
location String��
��
president REFERENCE �Employee�

�
CREATE CLASS Employee

TUPLE �
ssno Integer�
name String��
��
age Integer

�
CREATE CLASS Automobile

INHERITS FROM Vehicle
CREATE CLASS JapaneseAuto

INHERITS FROM Automobile
int Vehicle��lbweight��
f return weight�
�
���� g
int Vehicle��weight��
f return weight� g

MOOD System handles the methods only by keeping information on their
name� return type� and names and types of their parameters� The body of meth�
ods are coded in C�� and dynamically linked through Function Manager�

The following example MOODSQL query �nds the automobiles which have
automatic transmission� more than � cylinders and produced by a non�Japanese
company�
SELECT c
FROM EVERY Automobile � JapaneseAuto c� VehicleEngine v
WHERE c�drivetrain�transmission � �AUTOMATIC� AND
c�drivetrain�engine � v AND v�cylinders � �

The minus operator in the FROM clause is used for excluding the instances
of a subclass� which would otherwise be included due to an IS�A relationship�

��� MOOD Algebra

In this section� the de�nitions of the MOOD algebra operators are given� In
these de�nitions� the parameter argi denotes a set of objects� or set of object
identi�ers� or an object itself� The operators are divided into three categories
according to their usage�

� general operators
� collection operators
� conversion operators�

General Operators� These operators handle the naming operation in the
MOOD kernel and the operations on a single object�

ObjId�o�� This operator returns the object identi�er of an object o�

� Asuman Dogac et	 al	

TypeId�o� � This operator returns the type identi�er of an object o� Note
that every object in MOOD has a typeid associated with it�

Deref�oid�� The dereferencing operator which is used in referring to the object
with the identi�er oid �

isA�path�� The input parameter is a path expression that starts with a class
name� The return value is the class name of the last attribute of the given path�

Bind�arg� aName� � The naming operator of the algebra� It gives the name
aName to arg �
Collection Operators� The objects can be accessed through the following col�
lections�

� Object identi�ers stored in a set object

� Object identi�ers stored in a list object
� Objects stored in extents�

Another way to access an object is to give a unique name to an object �Named
Objects�� Also indices �conventional indices� binary join indices� or path indices�
can be used in accessing the objects� In this section we present the operators
dealing with these collections�

Select�arg� P�� It selects the objects from the argument arg satisfying the
predicate P�

Table �� The return types of the Select operator

arg type Extent Set List Named Obj	
return type Extent or Set Set List Named Obj	

The possible types of the argument arg are Extent� Set� List and a Named
Object� and the returned types are given in Table ��

IndSel�arg� index type� P�� It selects the set of object identi�ers satisfying
predicate P from an extent or a group of extents named as arg by using the index
of type index type� The indexing mechanisms available for simple selection are
the B��tree indexing and hash indexing supported through the Exodus Storage
Manager� The return value of this operation is a set of object identi�ers�

Project�aTupleCollection� attribute list�� The project operator is similar to
the relational project operator except that aTupleCollection may be an extent
of tuple type objects� or a list or a set of object identi�ers of tuple type objects
in our system� In case of a list or a set� the elements are dereferenced� The
result of the operator Project is the extent of the tuple type values projected
onto attribute list� Notice since MOOD allows for dynamic schema changes� it is
possible to dynamically de�ne a class for those tuple type values and to make
them objects�

Join�arg�� arg�� join method� P�� This operator joins arg� and arg� with join
predicate P using the join method identi�ed as join method � The return types

METU Object�Oriented DBMS �

of this operator are as shown in Table
� The join method can be one of the
following�

� forward traversal
� indexed join �B� tree index� binary join index or path index�
� backward traversal
� pointer based hash�partition join

Partition�aTupleCollection� attribute list�� This operator divides the objects
in aTupleCollection into groups of objects with respect to attribute list � Each
group is composed of objects having the same value in their corresponding at�
tribute�s�� The return value is the set of groups of objects �partitions��

Sort�aTupleCollection� sort method� attribute list�� This operator sorts the
collection aTupleCollection with respect to attribute list by using sort method
without duplicate elimination� The only supported sort method for the time
being is heap sort with merging� If aTupleCollection is a set or a list then the
sorted set or list of the object identi�ers are the result of the sort operator� In
the case of an extent� the result is the sorted extent of the objects� It is clear
that the set and list cases require the dereferencing of objects identi�ers�

Table �� The return types of the Join operator

arg� Extent Set List Named Obj	
arg�

Extent Extent Extent Extent Extent
Set Extent Set Set Set

List Extent Set List List
Named Obj	 Extent Set List Object

DupElim�arg�� This operator eliminates duplicates from the arg � The return
types of this operator are given in Table ��

Union�arg�� arg�� � This operator takes the union of arg� and arg� and returns
the set of objects�

Intersection�arg�� arg� � � This operator returns the set of objects common
to arg� and arg��

Di�erence�arg�� arg� � � This operator returns the set of objects in arg� but
not in arg��

Table �� The return types of DupElim operator

type of arg DupElim�arg�

Set not applicable
List list of ordered distinct object identi�ers
Extent Extent of the distinct object according to the deep equality check

�� Asuman Dogac et	 al	

The types of the arguments for Union� Intersection� Di�erence operators are
set or list and the return types are shown in Table �� If both arguments are lists�
union corresponds to array concatenation�

Table �� The return types Union� Intersection� Di�erence operators

type of arguments Set List
Set Set Set
List Set List

Conversion Operators� The type conversion functions may be carried out
as a result of optimization� or their usage may be forced explicitly by the user
query�

asSet�arg� � This operator converts arg to a set� Table � presents the return
types for this operator�

Table �� Return types for asSet and asList operators

type of arg elements of the resulting set or list

Extent Object identi�ers of the objects in the extent arg
Set Object identi�ers of the set arg
Set Object identi�ers of the list arg

Named Object Object identi�ers of the named object

asList�arg� � This operator converts arg to a list� Table � presents the return
types for this operator�

asExtent�arg� � This operator converts its argument into an extent� The pos�
sible types for the arg are set and list and the return types are as shown in Table
�

Table 	� Return types for the asExtent operator

type of arg asExtent�arg�

Set extent of dereferenced objects of the elements of the set
List extent of dereferenced objects of the elements of the set

Unnest� aTupleCollection� � This operator is borrowed from the �NF algebra�
Its output is also aTupleCollection� As an example� consider the extent for the
following tuples� e�f� o�� fo
� o�g�� �o�� fo�g�g then Unnest�e� will be a
new extent� e�� such that e� � f �o��o
�� �o�� o��� �o�� o�� g

METU Object�Oriented DBMS ��

The possible types for aTupleCollection for the unnest operation are pre�
sented in Table �� Note that the return type is the extent of the tuples resulting
from the unnest operation for all argument types�

Table
� Possible argument types for the Unnest operator

Possible argument types for aTupleCollection

Extent for the tuple type objects

Set�object identi�ers of tuple type objects�
List�object identi�ers of tuple type objects�
A tuple type object

Nest�aTupleCollection� � Nest operator functions as the inverse of Unnest
operator�

Flatten�arg� � This operator is similar to the unnest operation in the sense
that a set or a list is �attened� The Flatten operator converts arg into the set of
object identi�ers� Notice that the result of the Flatten operator is always a set�
The following is an example to the Flatten operation�

Flatten�foid�� oid
g� foid�gg � foid�� oid
� oid�g

� Cost Model Parameters

In this section cost model parameters are de�ned and calculated along with the
speci�cation of the physical parameters describing the system� These parame�
ters are used in various selectivity calculations which form the basis of the cost
function employed in query optimization� Notice that the cost model parameters
are analogous to the ones given in �Kem 	���

In Table �� the cost model parameters are presented where C is a class� A is
an attribute�

The number of the total references from class C to class D through attribute
A is denoted by totlinks�A�C�D� and is given by the following equation �

totlinks�A�C�D� 	 fan�A�C�D� � jCj �

The probability that an instance of class D is referenced by the instances of
class through attribute A is

hitprb�A�C�D� 	 totref�A�C�D�
 jDj �

In Table 	� the information kept by the system for a B��tree index I is shown�

Physical parameters of the disk� which are used in the cost evaluation process
are as shown in Table �� �Sal ����

�
 Asuman Dogac et	 al	

Table �� Cost Model Parameters

Parameter De�nition

jCj Total number of instances of C
nbpages�C� Total number of pages in which class C is stored
size�C� Size of an instance of class C

notnull�A�C� The proportion of the instances in class C with attribute A
being not null

fan�A�C�D� The average number of instances of class D that are referenced
by the instances of class C through attribute A

totref�A�C�D� The total number of objects in class D which are referenced
by at least one object in class C through attribute A

dist�A�C� Number of distinct values of the atomic attribute A of class C
max�A�C� The maximum value of the atomic attribute A of class C
min�A�C� The minimum value of the atomic attribute A of class C

Table � Parameters for a B��tree

Parameter De�nition

v�I� Order of the B� tree
level�I� Number of levels

leaves�I� Number of the leaves
keysize�I� Size of the key value
unique�I� Unique �ag

��� Selectivity

Selectivity is a parameter used with a predicate to denote the ratio of the ele�
ments of a collection satisfying a given predicate� When optimizing the queries�
selectivity of a predicate is estimated assuming that the values are uniformly dis�
tributed� The traditional uniformity and randomness assumptions about value
distributions tend to overestimate costs� However more sophisticated techniques
require more statistical information about the database� The question of how
to maintain such information within tolerable overhead is not yet fully resolved
�Jar ����

A simple predicate in the system is a triplet of the form �P� � �� oprnd��

Table ��� Physical Parameters for hard disk

Parameter De�nition

B block size
btt block transfer time

ebt e�ective block transfer time
r average rotational latency
s average seek time

METU Object�Oriented DBMS ��

where P� is a path expression� � is a comparison operator � �� ��� ��� ��� ��
� �� and oprnd is either a constant or another path expression�

Selectivity for Atomic Attributes The well�known selectivity calculations
assuming the uniform distribution of the atomic values described in �Ozk 	��
will be used throughout the derivations presented in this paper�

The selectivity of the expression �s�A � constant�� denoted fs� where s is a
bind variable of class C� and A is an atomic attribute� is given by the following
formula�

fs�s�A� 	 �
 dist�A�C�

The selectivity of the expression � s�A � constant � is

fs�s�A� 	 � max�A�C� � constant �
 � max�A�C� � min�A�C� �

The selectivity of the expression �s�A BETWEEN cons� and cons�� is

fs�s�A� 	 � cons� � cons� �
 � max�A�C� � min�A�C� ��

Selectivity of Path Expressions Assume that there exists a path expres�
sion that contains m attributes� A� through Am� A� through Am�� being con�
structed using set and reference constructors� and Am is an atomic attribute�
Ai being an attribute of class Ci� Then� for the single path expression predicate
�p�A��A����Am � c�� where � is a comparison operator and c is a constant� the
selectivity� fs� p�A��A����Am� � � is to be calculated� For this calculation we de�
�ne the shorthand notation for some of the previously mentioned parameters as
follows�

fani	 fan�Ai�Ci�Ci���
totrefi	 totref�Ai�Ci�Ci���

totlinksi	 totlinks�Ai�Ci�Ci��� where � � i � m���

The calculation of the selectivity of �Am � c�� fs�Am�� is clear from the
previous section� Therefore the expected number of instances of Cm� denoted by
km� satisfying �Am � c� is�

km 	 j Cm j � fs�Am�

In forward traversal� assuming that we start with k objects of class C� and
traverse the path p�A��A����Ai in forward direction � the expected number of
objects of class Ci�� � denoted by fref� is given by the following formula�

fref�p�A����Ai� k� �

�
k �i � �
c�totlinksi� totrefi� fref�p�A����Ai��� k� � fani� � i � �

where� c�n�m�r� is de�ned to be an approximation to the number of di�erent
colors� when r objects are chosen out of n objects uniformly distributed over m
colors given as follows �Cer ����

�� Asuman Dogac et	 al	

c�n�m� r� �

��
�
r � r � m

�
�r�m�

� � m� � r �
m
m � r�
m

Note that better approximations to this problem are given in �Yao ���� �Car
���� However it has been validated that c�n�m�r� well serves our purposes� Start�
ing with one instance of class C�� we denote the number of objects of class Cm ob�
tained at the end of forward path traversal by fref�p�A����Am������ On the other
hand� km objects have been selected through the predicate Am � c� Then the
selectivity of a path expression which is assumed to be the probability of at least
one object being in common in two sets with cardinalities fref�p�A��A����Am�����
and km�hitprb�Am���Cm���Cm� respectively� is given by

fs� p�A��A����Am � 	 o�totrefm�� � fref�p�A��A����Am�� ����km�
hitprb�Am���Cm���Cm��

where o�t�x�y� is the probability that there exists at least one common object in
two sets selected with replacement out of t distinct objects and is de�ned as

o�t�x�y� 	� � C �t�x�y�
 C�t�y�

where C stands for combination� and x and y are the cardinalities of the two sets
respectively� The term C �t�x�y�
 C�t�y� is the probability that the sets with
cardinalities x and y never intersect�

� Cost Analysis of Basic File Operations

In this section the costs of sequential� random and indexed accesses are given�
The cost of sequential access to b pages is denoted by SEQCOST�b� and calcu�
lated as

SEQCOST�b� 	 s � r � b � ebt �

The assumption that pages of a �le are stored consecutively on disk may not
be true in all systems� For example in ESM� a �le is stored as a B� tree and
therefore the sequential access cost of a �le is equal to its random access cost�

The cost of random access to b pages� denoted by RNDCOST�b� is

RNDCOST�b� 	 b � � s � r � btt ��

The cost of accessing object identi�ers for k random keys from a secondary
index I � referred to as INDCOST�k�� is

INDCOST �k� � �
Plevel�I�

i�� dc�ni�mi� ri�e� �RNDCOST ���

where ni � leaves�I� � �
v�I��ln
�i��� mi � leaves�I� � �
v�I��ln
�i��� and

METU Object�Oriented DBMS ��

ri �

�
k � i � �
c�ni���mi��� ri��� � otherwise�

Finally� the cost of a range query using a B��tree index I � given by RNGX�
COST�fract�� is obtained by the equation

RNGXCOST�fract� 	 fract � leaves�I� � �s � r � btt�

where fract is the proportion of the speci�ed range to the whole domain�

� Cost of Implicit Join Operation

Throughout the following cost analysis� it is assumed that kc objects of Class
C are to be joined �implicitly� through the attribute A of the class C with kd
objects of Class D� which can be explicitly shown as C�A�D�self� Note that if
there are no previous selections kc � jCj and kd � jDj�

��� Cost of Forward Traversal

When there are kc�fan�A�C�D� number of references from class C to D induced
by a group of kc objects from C� the expected number of pages of class D to be
retrieved to realize the join operation is given by the following formula�

ftc	RNDCOST�nbpgc��RNDCOST�kc�fan�A�C�D��

where nbpgc	nbpages�C���������
nbpages�C� �kc ��
This is worst case formula where there are no page hits in the bu�er allocated

for the objects of Class D�

��� Cost of Backward Traversals

In order to backward traverse kd objects of the class D into kc objects of class
C� to perform the join C�A�D�self� it is necessary to make a sequential scan
over the extent of class C� Therefore the cost is given by the following formula�

btc � SEQCOST �nbpages�c�� � kc � fan�A�C�D� � kd �CPUCOST

�

�
� if D is accessed previously
SEQCOST �nbpages�D�� else

��� Cost of Using Binary Join Indices

The cost of using a binary join index for k objects of either class C or D is

bjc 	 INDCOST�k�

�� Asuman Dogac et	 al	

��� Cost of Using Pointer�based Hash Partition Join

The cost of Hash�Partition Join in relational databases for two relations is given
as �Sal ���

��b�b���ebt�����b�
b���nsg���r�s�

where b and b� are the number of blocks in outer and inner relations respectively�
and nsg denotes the number of segments of the smaller relation�

In case of pointer�based Hash�Partition Join� the referencing class� i�e�� class
C is hashed on the pointer �eld A and partitions are created� Then for each
object of class C� the pointer� C�A� is chased to retrieve the object from class D�
So the cost of joining kc objects of class C with the objects of class D by using
pointer�based hybrid hash join can be given as follows�

hhc 	 � kc
 jCj�SEQCOST�nbpages�C�� RNDCOST�nbpg� �

where nbpg � nbpages�D� � � � � � � � �
nbpages�D���� and
��c�jCj�fan�A�C�D�� totref�A�C�D�� kc�fan�A�C�D���

Note that this join technique can only be applied when constructor of at�
tribute A is Reference�

� General Description of the Execution of MOODSQL

Queries

The MOODSQL queries are executed in a prede�ned order of MOODSQL clauses�
The sequence of execution of these clauses is shown in Figure ���� It should be
noted that� this order is� in fact� implied by the nature of the language�

SELECT clause
�

ORDER BY clause
�

GROUP BY� HAVING clause
�

WHERE clause

Figure
��� The sequence of execution of a MOODSQL query

Also within a WHERE clause� there is a prede�ned order of algebraic opera�
tors as shown in Figure ��
� In our implementation� this order is enforced by the
nature of our object oriented data model together with the well�accepted query
optimization principles in relational DBMSs�

Usually� after generating the parse tree of a query� it is modi�ed according
to the algebraic transformations to obtain the �nal optimized tree �Ull ���� In

METU Object�Oriented DBMS �

UNION operator
�

PROJECT operator
�

JOIN operator
�

SELECT operator

Figure
��� Order of execution of algebraic operators in a WHERE clause

our implementation� the �nal tree structure is created in a single pass with
the help of the tables constructed during query parsing� along with the cost
calculations performed for optimization� The query processor augmented with
the query optimizer works as follows �

� The query is parsed�
� The expressions are simpli�ed�
� The predicates in the WHERE and HAVING clauses in the query are trans�
formed into disjunctive normal form� Such an expression takes the form

�p�� AND p�� AND ��� AND p�m� OR �p�� AND p�� AND ��� AND p�r� OR
���where each pij is a predicate and �pi� AND pi� AND ���� is called an AND�term�
Thus� the UNION operation is performed after evaluating the predicates for the
AND�terms�

We classify the selection predicates into three types�
Immediate Selection � Selection depends on an atomic attribute or a param�

eterless method� These type of predicates have the following form �s�A � c��
where s� A� �� and c are a range variable� an atomic attribute or a parameterless
method� a comparison operator� and a constant respectively� The information
related to these kinds of predicates are kept in a dictionary� called ImmSelInfo�
The structure of the ImmSelInfo dictionary is given in Table ���

Table ��� Structure of the Dictionary ImmSelInfo

Range Predicate Selectivity Indexed Sequential Access
Variable Access Access Type

Cost Cost

Path Selection� Selection depends on a path expression� General form for
this type is �s�A����Am � c �� where s�A����Am� �� and c are a path expression� a
comparison operator� and a constant respectively� Notice that a path expression
implies an implicit join� The structure of PathSelInfo dictionary is given in Table
�
�

Other Selections� Other predicates which are not classi�ed as one of the
above types� The examples for such predicates include methods and complex

�� Asuman Dogac et	 al	

Table ��� Structure of the Dictionary PathSelInfo

Range Predicate Selectivity Forward
Variable Traversal Cost

predicates� The main problem for this type is that it is not so easy to calculate
the selectivity� and hence� the cost� The related information is stored in the
OtherSelInfo dictionary� The data structure for this dictionary is also the same
as that of ImmSelInfo�

� The optimal execution order of immediate and path selections are decided
as explained in Section ��

� To decide on a near optimal execution plan among feasible alternatives� a
new heuristic is developed for ordering joins as explained in Section �� After
executing the joins projections are performed�

� Finally� all the subaccess plans generated are combined using the UNION
operation�

� Query Optimization in MOOD

Currently� query optimization for object�oriented database management systems
is a challenging research area� The goal of the query optimization is to �nd an
execution plan for a speci�c query in order to minimize a cost function� The
steps involved in this process can be considered at two levels� the logical query
optimization �query rewriting� that uses semantic properties of the language in
order to �nd expressions equivalent to the one given by the user and the physical
query optimization� that is based on a cost model to choose the best algorithm
for evaluating the query �Clu 	
��

In the following� optimization strategies of MOODSQL are presented�

	�� Ordering of Atomic Selections

For the immediate selection predicates in the ImmSelInfo dictionary� the selec�
tivity of the predicates and the cost of sequential scan for each range variable are
calculated� For predicates involving an indexed attribute� indexed access costs
are calculated and for each range variable in an AND term these index costs are
sorted in the ascending order� Note that for common predicates in AND terms�
the cost is calculated only once� Let costi denote the indexed access cost of ith

item in the sorted order which is calculated as follows�

costi �

�
INDCOST ��� � � is ���
RNGXCOST �fs�Pi�� � otherwise

where fs �Pi� is as given in Section ���� Then the number of indices to be used
is the maximum value k satisfying the inequality

METU Object�Oriented DBMS ��

Pk

i�� costi � RNDCOST �jCj �
Qk

i�� fs�Pi���SEQCOST �nbpages�C��

where C is the class to which the range variable is bound�
The remaining predicates for each range variable in an AND term are sorted

in increasing order of their estimated selectivities and applied in this order� The
heuristic used here is analogous to short circuiting used in compilers for Boolean
expression evaluation� evaluating the predicates from the least selective to the
most so that minimum number of predicates are evaluated for each object�

	�� Determining the Optimum Execution Order of Path Expressions

Given m path expressions in an AND�term �
p�a���a�����a�n�
p�a���a�����a�n�
�
�
p�am��am����amnm

the problem of �nding the least costly execution order of these path expres�
sions can be stated as the following minimization problem�

Find a permutation of the integers � through m stored in i��� through i�m�
which minimizes

f � Fi��	 � si��	�Fi��	 � si��	�si��	�Fi��	 � ��� � si��	�si��	� ��� si�m��	�Fi�m	

where Fj and sj� j i��� through i�m�� are the cost of traversing and the selectivity
of the jth path expression respectively� In other words� we are trying to minimize
the objective function f� denoting the total cost of executing m path expressions
in the order induced by the array i�

Assume � denotes a permutation of the integers � through m such that path
expression indices are sorted in ascending order of Fi � � � � si � values� such
that ��i�m� This � minimizes the objective function f�

The formal treatment of this problem is provided in the Appendix�
Algorithm 	���The Evaluation Order of Path Expressions

� Calculate the forward traversal cost Fi for each path expression�
� Calculate the forward traversal selectivity � si � for each path expression�
� Order the path expressions by sorting them according to Fi � � ��si � values�

Example 	��

Let us assume that the statistics given in Tables ����� and �� have been collected

for an example database�
Consider the example query�
Select v
From Vehicle v
where v�company�name � �BMW� and v�drivetrain�engine�cylinders �

The PathSelInfo dictionary for the example query is given in Table ��
The order of the path expressions is P
 followed by P�� After applying algo�

rithm ��
 given in section ��� to the path expression P
� the following subaccess
plan is generated�

� Asuman Dogac et	 al	

Table ��� Statistics on the example database

Class jCj nbpages�C� size�C�

Vehicle
����
��� ���
VehicleDriveTrain ����� �� ���

VehicleEngine ����� ����
���
Company
�����
��� ���

Table ��� Statistics on the example database

Class Attribute dist max min

VehicleEngine cylinders �� �

Company name
����� � �

T� � JOIN�
BIND�Vehicle� v��
SELECT�BIND�Company� c�� c�name � �BMW��� HASH PARTITION�
v�company � c�self �

Then applying algorithm ��� by taking into account the e�ect of the path
expression P�� the following access plan is generated�

JOIN�
JOIN� T�� BIND�VehicleDriveTrain�d��

FORWARD TRAVERSAL� v�drivetrain � d�self ��
SELECT�BIND�VehicleEngine� e�� e�cylinder�
��

FORWARD TRAVERSAL� d�engine � e�self �

	�� Join Optimization

Join optimization� i�e�� deciding on the execution order of join operations is one
of the most important decisions that is made by the optimizer� Join optimization
does not become a simpler problem due to the precomputed joins �stored refer�
ences� and path indices� instead� it becomes a more complex problem because
the number of join strategies grows with the number of alternative access paths
�Bla 	��� In this section we propose an algorithm for ordering implicit joins in a
path expression� In realizing the implicit joins one of the following join strategies
is used�

Table ��� Statistics on the example database

Class Attribute fan totref totlinks hitprb

Vehicle drivetrain � �����
���� �
Vehicle manufacturer �
����
���� �	�
VehicleDriveTrain engine � ����� ����� �

METU Object�Oriented DBMS
�

Table �	� PathSelInfo dictionary contents for Example �	�

Range Predicate fs Forward cost����fs�
Variable Traversal Cost

v P��v	drivetrain	 �	
�e�
 �	�
� �
�	
��
engine	cylinders�

v P
�v	company	 �	��e�� �
�	�
� �
�	�
�
name��BMW�

� Forward traversal
� Backward traversal
� Index�based join �Binary Join Indices�
� Pointer�based hash partition join

Let us assume that there is a path expression p�a��a����an where p is bound
to C
 and ai references to the instances of the class Ci �� � i � n���� jcij� and
jsij will denote the individual cost and selectivity of the temporary collection Cij

obtained from joining class Ci and class Cj respectively� is the set of all classes
which are candidates for join in each iteration of the algorithm�

We use a greedy heuristic in solving this problem such that at each iteration
the join pair with lowest cost and highest selectivity are favored at the same
time� The function f�jc� js��jc����js� where jc is the cost of the join and js is
the selectivity of the join� satis�es the required selection criterion�
Algorithm 	��� Implicit Join Ordering

In this algorithm jc is the minimum cost join technique among the four join
algorithms given above�
�� Initialize the list � with the classes in the path expression
� � f C
� C������ Cn��g

� For i�� to n�
 compute jci�i�� and jsi�i���
�� Sort the items with respect to jc � ��js values in ascending order�
�� Select the minimum pair �Ci� Ci��� in the sort order and name it Ck�
�� Delete ith and i��st items�
� Compute jci���k � jsi���k� jck�i��� and jsk�i���
�� Insert �Ci��� Ck� and �Ck� Ci��� to the sorted list�
�� if the number of elements in � is � goto 	 else goto ��
	� Generate an access plan for this join�
Example 	��

This example is provided to clarify the implicit join ordering algorithm� Con�
sider the query� Select v

From Vehicle v
Where v�drivetrain�engine�cylinders �

The initial cost and selectivity estimations for the example query are given

in Table ���
At the end of the �rst iteration the following subaccess plan is generated�

T� � JOIN�BIND�VehicleDriveTrain� d��

 Asuman Dogac et	 al	

Table �
� The initial cost and selectivity estimations for Example �	

CLASS CLASS ftc btc bjc hhc fs cost����fs�

Vehicle VehicleDriveTrain ��	��
�	�
 � ��	�� �	���� ��	��
VehicleDriveTrain VehicleEngine ��	
� ��	�
 � �	
 �	���� �	

SELECT�BIND�VehicleEngine� e�� e�cylinders�
��
HASH PARTITION� d�engine �e�self �

The �nal execution plan is as follows�
JOIN� BIND�Vehicle� v�� T�� HASH PARTITION� v�drivetrain � d�self ��

	 MoodView
 the Graphical User Interface

MoodView is the graphical front end to MOOD �Arp 	��� It allows the user to
browse� edit and query the database schema and the objects� MoodView provides
an environment which conforms to the requirements of object�oriented systems�
It is a sophisticated� but easy to use interface� It provides visual access to the
database without requiring expertise from the database user�

�� Design Principles

MoodView is based on the graphical direct manipulation paradigm and is im�
plemented in C�� using X Windows�Motif toolkit�

Conventional interfaces such as C�� and SQL are also integrated into the
GUI �Graphical User Interface�� Class hierarchy of C�� code can be displayed
visually and C�� code can be generated from the visual de�nitions� MoodView
provides a SQL based query formulation tool� that the user can prepare her
queries and receive results in a graphical environment�

All the schema informationmaintained by MoodView is stored in the database
catalog through the system de�ned classes� MoodView actions are performed
through execution of the methods by the MOOD Kernel on these data�

�� Environment

Upon entering the programming environment� an initial window that contains
the icons for each of the MoodView tools is displayed as shown in Figure 	���a��

Schema Browser� A database schema in MOOD contains class types� their
methods and relationships between those classes� Their inheritance relationships
is represented as a DAG �Directed Acyclic Graph� and MoodView uses a DAG
placement algorithm that minimizes crossovers and makes drawings for graph
nodes as shown in Figure 	���c�� It allows the user to design� browse� and modify
database schema interactively�

Data De�nition in C��� MoodView can display a class hierarchy de�
�ned in C�� �Figure 	���b��� Cfront of C�� translator is modi�ed such that�

METU Object�Oriented DBMS
�

�a�

�b�

�c�

Figure ����a� Initial MoodView Window��b�Data De�nition in C��� �c� Class Hi�
erarchy Browser

when data is de�ned through C��� cfront extracts the schema information and
MoodView can display class hierarchy graphically using the output of Cfront�
MoodView also can convert graphically designed class hierarchy graph into C��
code�

Attributes� Class attributes can be updated through a tool for designing
object oriented data types� One can add� drop attributes� change the name or
the type of an attribute by using this tool as shown in Figure 	�
�c��

Methods� MoodView allows creation and deletion of methods and update
of existing method bodies and parameters as shown in Figure 	�
�a��

�� Object Browsing

MoodView allows complex operations against a set of objects� These include
creation� deletion� update and automatic display of complex and multimedia
objects� and the invocation of methods� Projection� selection and complex query
speci�cation can be done on the objects through the SQL based query manager�

� Asuman Dogac et	 al	

�a�

�b�

�c�

Figure ����a� Method Presentation��b�Class Presentation� �c� Class Designer

Generic Object Presentations� MOOD objects constitute graphs con�
necting atoms and constructors� MoodView has a generic display algorithm for
displaying these object graphs and walking through the referenced objects� Mul�
timedia data such as images in di�erent formats is de�ned through the system
classes�

Updates to Object Presentations�Atomic types such as string or integer
can be the widgets representing complex types� Copy� paste operations are also
allowed for both atomic and complex types� Dynamic type checking is performed
by MoodView to ensure the correctness of updates�

Interactive Method Activation� Methods are attached to object presen�
tations and can be activated interactively�

Query Formulation�Query manager provides a query editor with facilities
for accessing previous queries in a session� Through queries� objects with speci�c
characteristics �selection� or selected portions of the objects �projection� can be
displayed graphically�

METU Object�Oriented DBMS
�

�a�

�b�

Figure ����a� Generic Presentation For a Car Object��b�Generic Presentation For
the Car Objects

�� Implementation

MOOD Kernel interprets provides all the functions needed by MoodView to
manage schema and instance levels�

Use of the Catalog� The MOOD catalog contains all of the information
required to manage schema through MoodView such as the de�nition of classes�
types� and member functions in a structure similar to a compiler symbol table�
The design of MOOD Catalog makes MoodView easily extendible� therefore it
can be used in a straightforward manner for new types and objects added to the
MOOD� For example� MoodView uses this persistent type catalog to determine
how an object of certain type is to be displayed�

SQL Interface Between The Kernel and MoodView� A standard com�
munication protocol is choosen between the database kernel and the GUI� All
the database operations performed by the user through MoodView are converted
to SQL statements and the interpretation of SQL statements is performed by
the Kernel� For example� to create a new instance of employee class� MoodView
produces the following SQL statement�

new Employee � �Budak Arpinar�� �Computer Engineer�� �		�

Object Presentations� A cursor like mechanism which exists commonly
in RDBMSs is designed for displaying objects� It is the Kernel�s responsibility
to identify type and value of an object in the system at run�time using the
MOOD Catalog� The kernel gets the stored representation of the object from
the database and returns a pointer to a bu�er area each element of which speci�es

� Asuman Dogac et	 al	

a name� a type and a value of the object�s attributes� MoodView synthesizes
this information and combines widgets to display an object on the screen� It is
also possible to sequence back and forth through the returned objects using the
cursor functions provided by the kernel�

�� Summary

We have discussed the design and implementation of an object�oriented DBMS�
namely METU Object�Oriented DBMS�

The system includes the following components�

� A database kernel which is responsible from catalog management and dy�
namic linking of functions�

� An object algebra
� An object�oriented query language� MOODSQL� and its optimizer
� A graphical user interface�

Acknowledgements

The authors wish to gratefully acknowledge the MOOD project implemen�
tation team� Mehmet Altinel� Ilker Altintas� Ilker Durusoy� Tolga Gesli� Ismail
Tore and Yuksel Saygin�

References

�Arp 	�� Arpinar� I� B�� Dogac� A�� Evrendilek� C�� �MoodView� An Advanced
Graphical User Interface for OODBMSs�� SIGMOD Record� Vol�

� No� �� De�
cember �		��

�Bla 	�� Blakely� J�� Mc Kenna� W� J�� Graefe� G�� �Experiences Building the
Open OODB Query Optimizer� in Proc� ACM SIGMOD Intl� Conf� on Man�
agement of Data� �		��

�Car ��� Cardenas A�F�� �Analysis and Performance of Inverted Data Base Struc�
tures�� Comm� of ACM � Vol� ��� No� �� May �	���

�Car �� Carey� M�� DeWitt� D�� Richardson� J�� Shekita� E�� �Object and File
Management in EXODUS Extensible Database System�� in Proc� of the ��th
Intl� Conf� on VLDB � �	��

�Car ��� Carey M�J�� DeWitt D�J�� Vandenberg S�L�� �A Data Model and Query
Language for EXODUS�� Proc� of the ACM SIGMOD Conf�� �	���

�Cer ��� Ceri� S�� Pelagatti� G�� Distributed Database Systems� McGraw Hill�

METU Object�Oriented DBMS

�	���

�Clu 	
� Cluet S�� Delobel C�� �A General Framework for the Optimization of
Object�Oriented Queries�� in Proc� of the ACM SIGMOD Conf� on Management
of Data� �		
�

�Dar 	
� Dar S�� Gehani N�H�� Jagadish H�V�� �CQL��� A SQL for the Ode
Object�Oriented DBMS�� in Proc� of Extending Database Technology � �		
�

�Deu 	�� Deux� O�� et al�� �The O
 System�� Comm� of the ACM � Vol� ���
No���� �		��

�ESM 	
� Using the Exodus Storage Manager V
����� June �		
�

�Jar ��� Jarke M�� Koch J�� Schmidt J� W�� �Introduction to Query Process�
ing�� in Query Processing in Database Systems� Springer�Verlag� �	��� pp ��
��

�Kem 	�� Kemper A�� Moerkotte G�� � Access Support in Object Bases�� in
Proc� of the ACM SIGMOD Conf�� �		��

�Kim 	�� Kim W�� Introduction to Object�Oriented Databases� The MIT Press�
�		
�

�Oka 	�� Okay� T�� Ozkan� C�� Dogac� A�� �Design and Implementation of a
Database Kernel�� Tech� Rep� ��� TUBITAK Software Research and Develop�
ment Center� March �		��

�Ozk 	�� Ozkan� C�� Dogac� A�� Evrendilek� C�� Gesli� T�� �E�cient Ordering
of Path Traversals in Object�Oriented Query Optimization�� In Proc� of the
Intl� Symp� on Computer and Information Sciences� Istanbul� November �		��

�Ozk 	�� Ozkarahan E�� Database Management Concepts� Design and Practice�
Prentice�Hall� �		��

�Sal ��� Salzberg B�� File Structures� an Analytic Approach� Prentice�Hall� �	���

�Ull ��� Ullman J� D�� Principles of Database and Knowledge�Base Systems�
Vol�
� Computer Science Press� �	���

�Yao ��� Yao S�B�� �Approximating Block Access in Database Organizations��
Comm� of ACM � Vol�
�� No� �� April �	���

APPENDIX

Given m path expressions in an AND�term� the problem of �nding the least

� Asuman Dogac et	 al	

costly execution order of these path expressions may be stated as the following
minimization problem�

Find a permutation of the integers � through m stored in i��� through i�m�
which minimizes
f � Fi��	 � si��	�Fi��	 � si��	�si��	�Fi��	 � ��� � si��	�si��	� ��� si�m��	�Fi�m	

where Fj and sj� j i��� through i�m�� are the cost of traversing and the selectivity
of the jth path expression respectively�
Lemma Assume � denotes a permutation of the integers � through m such
that path expression indices are sorted in ascending order of Fi � � � � si � values�
such that ��i�m� This � minimizes the objective function f�
Sketch of Proof By induction on the number of path expressions�
It is true for
 path expressions�
In this case f�F�� s� F� or f� F� � s� F� �
if F�� s� F� � F� � s� F� then by simple manipulation�
F� � � � � s� � � F� � � � � s� � is found�

Assume it is true for m path expressions and try to show that it is also
true for m�� path expressions� Let us assume that Fi����si� � Fi�� ���si��� for
��i�m��� and assume also that Fj����sj� �Fm������sm��� �Fj������sj��� for
some j where ��j�m�
We claim that
f��F��s�F������s�s����sj��Fj�s�s����sj��sjFm���s�s����sj��sjsm��Fj�������s� min�
imum� Assume on the contrary that�
f��F��s�F������s�s����sk��Fk�s�s����sk��skFm���s�s����sk��sksm��Fk�������s�
minimumwith the assumption that k�j without loss of generality�

First observe that by the induction hypothesis� it can be shown that with the
addition of the m��st path expression� the relative order of the previous path
expression indices do not change�

Therefore� if we parenthesize f� by s�s����sk��sk starting from the k��st term�
we observe that the induction hypothesis stating that aforementioned sort order
minimizes the objective function for m���k�m path expressions � is violated�

This article was processed using the LaTEX macro package with LMAMULT style

