Quantum Computation: a computational perspective

Rod Canfield

erc@cs.uga.edu

Department of Computer Science
University of Georgia

UGA Physics Department Colloquium
April 14, 2011

Outline of Talk

What is a quantum computer
Aspects of parallelism
The role of probability
The killer ap
The complexity zoo

Definition

A quantum computer is a peripheral device (black box) attached to your (non-quantum) computer which is capable of executing four commands:

1. Reset
2. Apply U on bit i
3. 〈 to-be-revealed〉
4. Read output (used once only, at the end of the computation)

Mental picture

Conceptually, the black-box stores an array of $N=2^{n}$ complex numbers

$$
a_{0}, a_{1}, \ldots, a_{N-1}
$$

Array

index	contents
000	a_{0}
001	a_{1}
010	a_{2}
011	a_{3}
100	a_{4}
101	a_{5}
110	a_{6}
111	a_{7}

n is the number of bits in an address; $N=2^{n}$ is the size of the array
Each stored value a_{i} is a complex number

Array - Pairing 0

index	contents	pairing 0
000	a_{0}	a_{0}, a_{1}
001	a_{1}	
010	a_{2}	a_{2}, a_{3}
011	a_{3}	
100	a_{4}	a_{4}, a_{5}
101	a_{5}	
110	a_{6}	a_{6}, a_{7}
111	a_{7}	

Array - Pairing 1

index	contents	pairing 1
000	a_{0}	a_{0}, a_{2}
001	a_{1}	a_{1}, a_{3}
010	a_{2}	
011	a_{3}	
100	a_{4}	a_{4}, a_{6}
101	a_{5}	a_{5}, a_{7}
110	a_{6}	
111	a_{7}	

Array - Pairing 2

index	contents	pairing 2
000	a_{0}	a_{0}, a_{4}
001	a_{1}	a_{1}, a_{5}
010	a_{2}	a_{2}, a_{6}
011	a_{3}	a_{3}, a_{7}
100	a_{4}	
101	a_{5}	
110	a_{6}	
111	a_{7}	

Meaning of Command 1

"Reset" means to initialize the array:

$$
a_{0}:=1, \text { and } a_{i}:=0, \text { for } 0<i<N
$$

Meaning of Command 2

"Apply U on bit i " means to apply the 2×2 matrix U to each of the pairs

$$
\left[\begin{array}{c}
a_{0} \\
a_{2^{i}}
\end{array}\right],\left[\begin{array}{c}
a_{1} \\
a_{2^{i}+1}
\end{array}\right] \ldots
$$

For example, when $n=3$, "Apply U on bit 1 " causes

$$
\begin{array}{ll}
{\left[\begin{array}{l}
a_{0} \\
a_{2}
\end{array}\right] \leftarrow\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{2}
\end{array}\right]} & {\left[\begin{array}{l}
a_{1} \\
a_{3}
\end{array}\right] \leftarrow\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{3}
\end{array}\right]} \\
{\left[\begin{array}{l}
a_{4} \\
a_{6}
\end{array}\right] \leftarrow\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{l}
a_{4} \\
a_{6}
\end{array}\right]} & {\left[\begin{array}{l}
a_{5} \\
a_{7}
\end{array}\right] \leftarrow\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{l}
a_{5} \\
a_{7}
\end{array}\right]}
\end{array}
$$

Meaning of Command 4

"Read output" means for the black box to return to the master computer an integer i in the range $0 \leq i<N$,
(that is, an index)
chosen according to the probabilities

$$
\left|a_{0}\right|^{2},\left|a_{1}\right|^{2}, \ldots\left|a_{N-1}\right|^{2}
$$

The importance of being unitary

When the "Read output" command is executed, we would like

$$
\sum_{i=0}^{N-1}\left|a_{i}\right|^{2}=1
$$

This can be assured by requiring each 2×2 matrix U used in Command 2 to be a unitary matrix

What is a_{i} ?

We never "see" any of the complex numbers a_{i}
The device is"storing" them for the ultimate purpose of making a random choice

Quantum Pretender

If we stick with only commands 1,2 , and 4 then fairly large arrays can be simulated efficiently.

Namely, for each i in the range $0 \leq i<N$ we keep up with

$$
p_{i}=\operatorname{Prob}\{\text { bit } i=1\}
$$

and, when asked to make a final report by "Read output" we return the bit string $b_{n-1} \cdots b_{1} b_{0}$ with probability

$$
\phi_{n-1} \times \cdots \times \phi_{1} \times \phi_{0}
$$

where

$$
\phi_{i}= \begin{cases}p_{i} & \text { if } b_{i}=1 \\ 1-p_{i} & \text { if } b_{i}=0\end{cases}
$$

The Pretender's Method

Maintain $2 n$ pairs of complex numbers

$$
\left(w_{0}, z_{0}\right), \ldots,\left(w_{n-1}, z_{n-1}\right)
$$

On "Reset", set $\left(w_{i}, z_{i}\right)$ to $(1,0)$ for all i
On "Apply U on bit i ",

$$
\left[\begin{array}{c}
w_{i} \\
z_{i}
\end{array}\right] \leftarrow\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right]\left[\begin{array}{l}
w_{i} \\
z_{i}
\end{array}\right]
$$

On "Read output", generate b_{i} independently using

$$
p_{i}=\left|z_{i}\right|^{2}
$$

Why it Works

As long as only commands of type 1, 2, or 4 are used, the 2^{n} complex numbers $a_{0}, a_{1}, \ldots, a_{N-1}$ can be remembered by symbolic expansion of the product

$$
\left(w_{n-1}|0\rangle+z_{n-1}|1\rangle\right) \otimes \cdots \otimes\left(w_{0}|0\rangle+z_{0}|1\rangle\right)
$$

Why it Works

As long as only commands of type 1, 2, or 4 are used, the 2^{n} complex numbers $a_{0}, a_{1}, \ldots, a_{N-1}$ can be remembered by symbolic expansion of the product

$$
\begin{gathered}
\left(w_{n-1}|0\rangle+z_{n-1}|1\rangle\right) \otimes \cdots \otimes\left(w_{0}|0\rangle+z_{0}|1\rangle\right) \\
=\cdots+w_{n-1} z_{n-2} \cdots z_{1} w_{0}|0\rangle \otimes|1\rangle \otimes|1\rangle \otimes|0\rangle+\cdots
\end{gathered}
$$

Why it Works

As long as only commands of type 1, 2, or 4 are used, the 2^{n} complex numbers $a_{0}, a_{1}, \ldots, a_{N-1}$ can be remembered by symbolic expansion of the product

$$
\begin{gathered}
\left(w_{n-1}|0\rangle+z_{n-1}|1\rangle\right) \otimes \cdots \otimes\left(w_{0}|0\rangle+z_{0}|1\rangle\right) \\
=\cdots+w_{n-1} z_{n-2} \cdots z_{1} w_{0}|0\rangle \otimes|1\rangle \otimes|1\rangle \otimes|0\rangle+\cdots \\
=\cdots+w_{n-1} z_{n-2} \cdots z_{1} w_{0}|01 \cdots 10\rangle+\cdots
\end{gathered}
$$

Command 3

Apply NOT on bit i under control of bit j
$0 \leq i, j<n, i \neq j$
NOT is the 2×2 unitary

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
w \\
z
\end{array}\right]=\left[\begin{array}{c}
z \\
w
\end{array}\right]
$$

This command is called "Controlled NOT" denoted CNOT

Command 3, continued

Specifying two bits, i and j, partitions the 2^{n} complex numbers into $2^{n} / 4$ quadruples.
For example, $n=4,\{i, j\}=\{1,2\}$

binary	quadruple
$0 * * 0$	$a_{0}, a_{2}, a_{4}, a_{6}$
$0 * * 1$	$a_{1}, a_{3}, a_{5}, a_{7}$
$1 * * 0$	$a_{8}, a_{10}, a_{12}, a_{14}$
$1 * * 1$	$a_{9}, a_{11}, a_{13}, a_{15}$

Command 3, continued

Within each quadruple, swap the two numbers whose control bit is 1. $n=4$ target bit 2 , control bit 1 :

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{0} \\
a_{2} \\
a_{4} \\
a_{6}
\end{array}\right] \leftarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{2} \\
a_{4} \\
a_{6}
\end{array}\right]=\left[\begin{array}{l}
a_{0} \\
a_{6} \\
a_{4} \\
a_{2}
\end{array}\right],} \\
& {\left[\begin{array}{l}
a_{1} \\
a_{3} \\
a_{5} \\
a_{7}
\end{array}\right] \leftarrow\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{3} \\
a_{5} \\
a_{7}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{7} \\
a_{5} \\
a_{3}
\end{array}\right]}
\end{aligned}
$$

etc.

Net effect

For $n=4$, target bit 2, control bit 1:
$\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \\ a_{6} \\ a_{7} \\ a_{8} \\ a_{9} \\ a_{10} \\ a_{11} \\ a_{12} \\ a_{13} \\ a_{14}\end{array}\right] \quad \mapsto \quad\left[\begin{array}{c}a_{0} \\ a_{1} \\ a_{6} \\ a_{7} \\ a_{4} \\ a_{5} \\ a_{2} \\ a_{3} \\ a_{8} \\ a_{9} \\ a_{14} \\ a_{15} \\ a_{12} \\ a_{13} \\ a_{10}\end{array}\right]$

Quantum Program

Reset, sequence of type 2 \& type 3 commands, read result
The effect of the interior sequence is a $2^{n} \times 2^{n}$ unitary matrix
Can every unitary matrix be fabricated?

Fourier Transform

The $N \times N$ F.T.

$$
\left[\begin{array}{c}
A_{0} \\
\vdots \\
A_{N-1}
\end{array}\right]=\frac{1}{N^{1 / 2}}\left[\begin{array}{cc}
\cdots & \\
\vdots \exp (2 \pi i j k / N) & \vdots \\
\cdots
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{N-1}
\end{array}\right]
$$

$$
|x\rangle \mapsto N^{-1 / 2} \sum_{y \in\{0,1\}^{n}} e|y\rangle
$$

1805, Carl Friedrich Gauss, asteroids Pallas and Juno 1965, J. W. Cooley and John W. Tukey, reinvention \& computerization

Boolean Functions

$$
\begin{aligned}
& f:\{0,1\}^{n} \rightarrow\{0,1\} \\
& y=f\left(x_{0}, \ldots, x_{n-1}\right)
\end{aligned}
$$

Example

$$
\operatorname{MAJ}\left(x_{0}, \ldots, x_{n-1}\right)= \begin{cases}1 & \text { if \# ones } \geq \# \text { zeros } \\ 0 & \text { otherwise }\end{cases}
$$

Fabrication
Every Boolean function can be fabricated from the elementary operations AND, OR, NOT

Associated Unitary Operator

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function. The operator U_{f} acts on the computational basis by the rule

$$
U_{f}\left|x_{n-1} \cdots x_{1} x_{0}, y\right\rangle \stackrel{\text { def }}{=}\left|x_{n-1} \cdots x_{1} x_{0}, y \oplus f\left(x_{0}, \ldots, x_{n-1}\right)\right\rangle
$$

U_{f} is a $2^{n+1} \times 2^{n+1}$ matrix

Operator U_{f} can be fabricated by a number of quantum gates that is proportional to the number of AND's, OR's, NOT's needed for f

Parallelism

* Familiar hypercube architecture (see Graphic 1)
* Obtain state

$$
\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}\left|x_{n-1} \cdots x_{1} x_{0}, f\left(x_{0}, \ldots, x_{n-1}\right)\right\rangle
$$

in time $n+\operatorname{BitComplexity}(f)$.

Hypercube obsolete?

SICORTEX at Argonne
Our system has: 972 nodes

* - 6 cores per node
* - 4 GB/memory per node
* - $1300 \mathrm{MB} / \mathrm{s}$ interconnect bandwidth per node
* -1 us of latency
* - the system has a novel network topology, described at:
http://en.wikipedia.org/wiki/Kautz_graph

Student Comment/Question

"Why doesn't this stuff look anything like what
I did in my quantum mechanics class last semester?"

Probabilistic Aspects

Randomized algorithms can be compared to exponential-sized search spaces with good "odds"

Very popular example within Computer Science is primality testing (see Graphic 2)

Solovay, Robert M. and Strassen, Volker "A fast Monte-Carlo test for primality" SIAM Journal on Computing (1977).

Derandomization

Very active subfield of theory of computation
Major success recently: Lovasz Local Lemma

In the case of primes:
Manindra Agrawal, Neeraj Kayal, Nitin Saxena "PRIMES is in P"
Annals of Mathematics (2004)

Probabilistic Algorithms

1940s, physicists in Los Alamos

Buffon's needle problem
Georges-Louis Leclerc, Comte de Buffon
Essai d'arithmétique morale
Vol. 4 of the Supplément ã l'Histoire Naturelle (1777)

Artificial Randomness

Pseudo-random number generators

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

- v. Neumann
A.M. Ferrenberg, D.P. Landau and K. Binder, "Statistical and Systematic Errors in Monte Carlo Simulations,"
J. Stat. Phys. (1991).

Probability in Q. Algorithms

By nature, each program is a probabilistic algorithm With a quantum computer, we have a "true" random number generator

Killer Ap

Factoring

The basis of the algorithm is number theoretic
There is some non-trivial classical computing
There is an essential quantum core

The Order

Factor: 1007
Need base a and even exponent r such that

$$
1007 \text { divides }\left(a^{r}-1\right)
$$

and no smaller positive exponent works.

It's Not Even

Factor: 1007
Try $a=16$
1007 divides $\left(16^{117}-1\right)$
and no smaller positive exponent works.

OK, Even, but . .

Factor: 1007
Try $a=29$

$$
1007 \text { divides }\left(29^{234}-1\right)
$$

and no smaller positive exponent works.

$$
\operatorname{GCD}\left(1007,29^{117}-1\right)=1
$$

ЈАСКРОТ!!

Try $a=11$

$$
1007 \text { divides } 11^{78}-1
$$

and no smaller positive exponent works.

$$
\operatorname{GCD}\left(1007,11^{39}-1\right)=19
$$

$$
1007=19 \times 53
$$

The Quantum Core

The quantum computer enables us to find the order

Example: 15

Using 11 qubits

$$
\begin{array}{cccccccc}
x & 0 & 1 & 2 & 3 & 4 & \cdots & 15 \\
7^{x} & 1 & 7 & 4 & 13 & 1 & \cdots & 13 \\
& & & & & & \\
|0\rangle|1\rangle+|1\rangle|7\rangle+|2\rangle|4\rangle+ & \cdots \\
|2\rangle|4\rangle+|6\rangle|4\rangle+|10\rangle|4\rangle+\cdots
\end{array}
$$

FFT: $|0\rangle-|512\rangle+|1024\rangle-|1536\rangle$

Factoring 15

(For real)
Letters to Nature
Nature 414, 883-887 (20 December 2001)
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance
Vandersypen, Steffen, Breyta, Yannoni, Sherwood, \& Chuang

Why Factoring?

Secure data transmission requires that the two parties share a key (Example: AES)

Diffie-Hellman key exchange 1976 Rivest-Shamir-Adelman 1978

Bob and Alice choose prime p, base g
Alice to Bob: $g^{a} \bmod p, a$ secret
Bob to Alice: $g^{b} \bmod p, b$ secret
Now they share $g^{a b} \bmod p$, listeners bewildered

Turing Machines

Provides a way to define complexity
(see Graphic 3)

Two complexity classes: P and PSPACE

Non-deterministic Computation

In the TM's program, for a given state, symbol pair, there are some finite number of moves

Models two important concepts

- parallelism
- it's easier to check than to find

One more complexity class: NP

Complexity Zoo

http://qwiki.stanford.edu/index.php/Complexity_Zoo

494 classes
originally established by Scott Aaronson, 2004 doctoral thesis:
Limits on Efficient Computation in the Physical World

Known Containments

$$
P \subseteq N P
$$

Is the inclusion proper, $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ one of the Clay institute's Millennium Prize Problems

Known Containments

$$
P \subseteq N P \subseteq P S P A C E
$$

$$
P \subseteq B P P \subseteq Q P P \subseteq P S P A C E
$$

Quantum vs NP-c

No NP-complete problem has a known polynomial-time quantum algorithm (presently)

Complexity of Factoring

December 12, 2009
T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A.

Osvik, H. te Riele, A. Timofeev, P. Zimmermann plus researchers from the CWI, the EPFL, INRIA and NTT factored RSA-768, a 232-digit semiprime using the equivalent of almost 2000 years of computing on a single core 2.2 GHz AMD Opteron.
b-bit number:

$$
\exp \left((1+o(1))\left(\frac{64}{9} b\right)^{\frac{1}{3}}(\log b)^{\frac{2}{3}}\right)
$$

GNFS, Generalized number field sieve

Summary

- Based on reliable quantum-mechanical principles, we can envision a model of quantum computation
- The envisioned model can factor integers surprisingly fast as measured by complexity theory and practice
- The integer factorisation problem lies at the heart of a number of secure communication protocols

Acknowledgments

Students who have taken CSCI/MATH/PHYS 4612/6612
Semmy Purewal (2007) and Shahab Razavi (2009)
Special ack: Bob Anderson

