An Asymptotic Approach to the Hadamard Conjecture

Rod Canfield

erc@cs.uga.edu

Department of Computer Science
University of Georgia

W80

(Waterloo Workshop in Computer Algebra)
May 28, 2011

Acknowledgements

Eugene Zima, Ilias Kotsireas
Department of Physics & Computer Science
Wilfrid Laurier University
the C(omputer) A(Igebra) R(esearch) G(roup) Laboratory

Past Co-authors: Jason Gao, Catherine Greenhill,

Brendan McKay, Bob Robinson

Host institution: Australia National University

Collaborators: Warwick de Launey & David A. Levin

NSA Mathematical Sciences Program

HAPPY BIRTHDAY, HERB!

Main Definitions

An $n \times t$ matrix over $\{\pm 1\}$ is a partial Hadamard matrix provided the rows are pairwise orthogonal.

Definition: $H_{nt} :=$ the # of $n \times t$ partial Hadamard matrices

Example. One of the matrices counted by H_{58} :

Example illustrates: $n \geq 3 \& H_{nt} \neq 0 \implies 4|t|$

The Problem

Find an asymptotic formula for H_{nt} valid along certain infinite sequences of pairs (n, t).

The Problem

Find an asymptotic formula for H_{nt} valid along certain infinite sequences of pairs (n, t).

Theorem (de Launey & Levin, 2010) Let (n,t) be an infinite sequence of pairs satisfying 4|t and $t \ge n^{12+\epsilon}$. Then along this sequence

$$H_{nt} \sim \frac{2^{nt+(n-1)^2}}{(2\pi t)^{d/2}}, \quad d = \binom{n}{2}.$$

The Problem

Find an asymptotic formula for H_{nt} valid along certain infinite sequences of pairs (n, t).

Theorem (de Launey & Levin, 2010) Let (n,t) be an infinite sequence of pairs satisfying 4|t and $t \ge n^{12+\epsilon}$. Then along this sequence

$$H_{nt} \sim \frac{2^{nt+(n-1)^2}}{(2\pi t)^{d/2}}, \quad d = \binom{n}{2}.$$

A Fourier-analytic approach to counting partial Hadamard matrices

Cryptography and Communications 2(2010) pp 307–334.

The Hadamard Conjecture

The HADAMARD CONJECTURE states that there exist square Hadamard matrices of size $t \times t$ for $t \in \{1, 2, 4, 8, 12, 16, 20, \ldots\}$.

Various constructions have been found

t = 668 is the first undecided value

t=428 was decided in 2004

Outline of Talk

Circle Method Estimates
Progress on Latin rectangles
The Generating Function
The primary and secondary regions

The Circle Method

$$a_n = [z^n]f(z)$$

$$= \frac{1}{2\pi i} \oint_{|z|=r} \frac{f(z)}{z^{n+1}} dz$$

$$= \frac{1}{2\pi r^n} \int_{-\pi}^{+\pi} \frac{f(re^{i\theta})}{e^{ni\theta}} d\theta$$

$$= \frac{1}{2\pi r^n} \left[\int_{-\delta}^{+\delta} \cdots + \int_{\delta \le |\theta| \le \pi} \cdots \right]$$

Latin Rectangles

Another two-parameter asymptotic counting problem How many $k \times n$ Latin rectangles are there?

Erdos & Kaplansky 1946
$$k = O(\log n)^{3/2 - \epsilon}$$
)

Yamamoto 1951 $k = o(n^{1/3})$

Stein 1978 $k = o(n^{1/2})$

Godsil & McKay 1990 $k = o(n^{6/7})$
 $(n!)^k \left(\frac{(n)_k}{n^k}\right)^n \left(1 - \frac{k}{n}\right)^{-n/2} e^{-k/2}$

Main Symbols

```
n the height of the pHm

t the width

d = \binom{n}{2} the dimension of an integral defines primary/secondary regions.
```

y and Z(y)

Given vector y of height n

$$y = \begin{bmatrix} \vdots \\ y_j \\ \vdots \end{bmatrix} \in \{\pm 1\}^n,$$

define the vector of inner products, Z(y), by

$$Z(y) = \begin{bmatrix} \vdots \\ y_j y_k \\ \vdots \end{bmatrix} \in \{\pm 1\}^d.$$

Example of Z(y)

H_{nt} as a constant term

Define $M = M_n = \{Z(y) : y \in \{\pm 1\}^n\}; |M| = 2^{n-1}$

$$H_{nt} = 2^t \times \#\{(\vec{m}_1, \dots, \vec{m}_t) : \vec{m}_k \in M \& \sum_k \vec{m}_k = \vec{0}\}$$

$$= 2^t \times [x_{12}^0 \cdots x_{n-1n}^0] \left(\sum_{\vec{m} \in M} \prod_{jk} x_{jk}^{m_{jk}}\right)^t$$

H_{nt} as an Integral

Let $x_{jk} = e^{i\lambda_{jk}}$ and define

$$\psi(\lambda) = \frac{1}{|M|} \sum_{\vec{m} \in M} e^{i\lambda \cdot \vec{m}}.$$

Then,

$$H_{nt} = 2^t \times [x_{12}^0 \cdots x_{n-1n}^0] \left(\sum_{\vec{m} \in M} \prod_{jk} x_{jk}^{m_{jk}} \right)^t$$
$$= \frac{2^{nt}}{(2\pi)^d} \times \int_{-\pi}^{+\pi} \cdots \int_{-\pi}^{+\pi} \psi(\lambda)^t d\lambda.$$

Primary/Secondary

Let $\Lambda = \{\lambda : |\psi(\lambda)| = 1\}$, and 4|t.

$$H_{nt} = \frac{2^{nt}}{(2\pi)^d} \left[2^{(n-1)^2} \int_{B_\delta} \psi(\lambda)^t d\lambda + \int_{R_\delta} \psi(\lambda)^t d\lambda \right]$$

$$B_{\delta} = \{\lambda : |\lambda_{jk}| \le \delta\}$$

$$R_{\delta} = [-\pi, +\pi]^{d} \cap \{\operatorname{dist}(\lambda, \Lambda) \ge \delta\}.$$

Primary Integral

Assuming $n\delta \to 0$,

$$\psi(\lambda)^t = \exp\left(-(t/2) \parallel \lambda \parallel^2 + O(tn^3\delta^3)\right).$$

$$\int_{-\delta}^{+\delta} \exp\left(-(t/2)x^2\right) = \sqrt{\frac{2\pi}{t}} \left(1 + O(e^{-t\delta^2/2})\right).$$

Provided $tn^3\delta^3 \rightarrow 0$, $de^{-t\delta^2/2} \rightarrow 0$,

$$\int_{B_{\delta}} \psi(\lambda)^t = \left(\frac{2\pi}{t}\right)^{d/2} \left(1 + o(1)\right).$$

Secondary Integral

de Launey and Levin prove that for any k, $1 \le k \le n$,

$$|\psi(\lambda)|^2 \leq \frac{1}{2} + \frac{1}{2} \prod_{\substack{j=1\\j\neq k}}^n \cos 2\lambda_{jk}$$

This gives

$$\left| \int_{R_{\delta}} \psi(\lambda)^t \right| \leq (2\pi)^d e^{-ct\delta^2}$$

Combining the Two

$$H_{nt} = \frac{2^{nt}}{(2\pi)^d} \left[2^{(n-1)^2} \int_{B_\delta} \psi(\lambda)^t d\lambda + \int_{R_\delta} \psi(\lambda)^t d\lambda \right]$$

$$H_{nt} = \frac{2^{nt}}{(2\pi)^d} \left[2^{(n-1)^2} \left(\frac{2\pi}{t} \right)^{d/2} (1 + o(1)) + O(1)(2\pi)^d e^{-ct\delta^2} \right]$$

$$H_{nt} = 2^{nt} \left[2^{(n-1)^2} (2\pi t)^{-d/2} (1 + o(1)) + O(1) e^{-ct\delta^2} \right]$$

The assumptions: $tn^3\delta^3 \rightarrow 0$, $de^{-t\delta^2/2} \rightarrow 0$.

For sec. = o(prim.), $t\delta^2 = \Omega(d \log t)$

The de Launey Levin Theorem

$$H_{nt} = 2^{nt} \left[2^{(n-1)^2} (2\pi t)^{-d/2} (1 + o(1)) + O(1)e^{-ct\delta^2} \right]$$

We arrive at deLauney and Levin's formula,

$$H_{nt} \sim \frac{2^{nt+(n-1)^2}}{(2\pi t)^{d/2}},$$

obtained under the assumption that

$$\delta = \sqrt{\frac{n^2 \log t}{t}}$$

satisfies $tn^3\delta^3 \to 0$ and $de^{-t\delta^2/2} \to 0$.