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Words From Fiction

I knew I had been appointed from outside the Royal Aircraft
Establishment as a new broom to do a bit of sweeping. I
hope I did it with sympathy and understanding, because the
problem of the aging civil servant engaged in research is
not an easy one. There comes a time when the research
worker . . . becomes detached from all reality. He tends to
lose interest in the practical application of his work . . . and
turns more and more to the ethereal realms of
mathematical theory; as bodily weakness gradually puts an
end to physical adventure he turns readily to the adventure
of the mind, to the purest realms of thought where in the
nature of things no unpleasant consequences can follow if
he makes a mistake.

No Highway a novel by Nevil Shute
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Thanks

Collaborators: Warwick de Launey, David Levin, Brendan
McKay

Organizing & Sponsoring: CCR La Jolla
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Definition

Let n, t be positive integers.
An n× t partial Hadamard matrix
is an n× t matrix over {−1,+1}
whose rows are orthogonal.

We let Hnt equal the number of such matrices.
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Theorem

Let ε > 0. Then,

Hn t ∼
2nt+(n−1)2

(2πt)d/2
, d =

(

n

2

)

,

along any infinite sequence of (n, t) with 4|t and t > n12+ε.

Warwick de Launey & David Levin
A Fourier-analytic Approach to Counting Partial Hadamard
Matrices
Cryptography and Communications – Discrete Structures,
Boolean Functions and Sequences
Volume 2 (2010) pages 307–334.
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The Circle Method

an = [zn]f(z)

=
1

2πi

∮

|z|=r

f(z)

zn+1
dz

=
1

2πrn

∫ +π

−π

f(reiθ)

eniθ
dθ

=
1

2πrn

[

∫ +δ

−δ
· · · +

∫

δ≤|θ|≤π
· · ·

]
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Stirling’s Formula

1

n!
= [zn]ez =

1

2πi

∮

|z|=r

exp(z)

zn+1
dz =

1

2π

∫ +π

−π

exp(reiθ)

rneniθ
dθ

=
er

2πrn

[

∫ +δ

−δ
exp

(

(r − n)iθ − (1/2)rθ2 + O(r|θ|3)
)

dθ

+O(1)

∫

δ≤|θ|≤π
exp

(

−crθ2
)

dθ
]

=
en

2πnn

[

√

2π

n
(1 + o(1)) .

]
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W. K. Hayman

A generalisation of Stirling’s formula

Journal für die reine und angewandte Mathematik

vol 196 (1956) 67–95.
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Integer Matrices

Let ms = nt and M(m,n; s, t) be the number of m× n
matrices over the integers w/ row, col sums s and t; then,

M(m,n; s, t) = [xs
1 · · · xs

my
t
1 · · · yt

n]
∏

1≤j≤m

1≤k≤n

(1 − xjyk)
−1

=
1

(2π)m+n

(1 − r2)−mn

rsm+tn

×
∫ π

−π
· · ·

∫ π

−π

∏

j,k

(

1 − λ(ei(θj+φk) − 1)
)−1

exp(is
∑

j θj + it
∑

k φk)

where λ = r2

1−r2
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Saddlepoint Equations

(

1 − λ(ei(θj+φk) − 1)
)−1

= exp
(

iλ(θj + φk) − (1/2)λ(1 + λ)(θj + φk)
2 + · · ·

)

Equations: (1) λn = s, (2) λm = t
So, λ is the average entry
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Primary Region R

|θ + φ| ≤ (1 + λ)−1(mn)−1/2+ε

|θ̂j | ≤ (1 + λ)−1(n)−1/2+ε, 1 ≤ j ≤ m

|φ̂k| ≤ (1 + λ)−1(m)−1/2+ε, 1 ≤ k ≤ n

exp



−(1/2)λ(1 + λ)
∑

jk

(θj + φk)
2





4π

√
mn

2

(

2π

Amn

)−1/2 (

2π

An

)−(m−1)/2 (

2π

Am

)−(n−1)/2

A = λ(1 + λ).
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An Integration Lemma

Separate pdf file
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Secondary

A : cos(θj + φk) ≤ cos δ for at least (1/3) min(mnε,mεn) pairs.
For X ⊆ (−π, π], Nθ(X), Nφ(X) count j : θj ∈ X, k : φk ∈ X.
R(`) : Nθ([(`− 4)δ, (`+ 4)δ]) ≥ m−mε,

and Nφ([(−`− 4)δ, (−`+ 4)δ]) ≥ n− nε.

U =
⋃N−1

`=0 R(`).

A ∪ U = [−π, π]m+n
∫

A |F | = O(e−n)I0
∫

U∩Rc |F | = O(e−nε

)I0.
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A Deduction

Conjecture: for m,n→ ∞

M(m,n; s, t) =

(n+s−1
s

)m(m+t−1
t

)n

(mn+λmn−1
λmn

)

× exp

(

1

2
+ o(1)

)
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Orthogonal Arrays

0, 1 matrices with n columns, q2k distinct rows
Each k-pattern appears q times in any k-set of columns

N(n, k) =
∑

q

N(n, k, q)

is the number of order k correlation-immune Boolean
functions of n variables

Hnn = 2nn!N(n− 1, 2, n/4), n > 2
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Gen. Func.

Ik = {S ∈ 2[n] : |S| ≤ k}
M =

∑k
j=0

(n
j

)

variables {xS : S ∈ Ik}

F (x) =
∏

α∈{±1}n



1 +
∏

S∈Ik

xαS

S



 ,

where
αS =

∏

j∈S

αj

N(n, k, q) = constant term in x−q2k

∅ F (x)
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Results

N(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2

M =
k

∑

j=0

(

n

j

)

and Q =
k

∑

j=1

j

(

n

j

)

1 ≤ k ≤
(

log 2

6
− ε

)

n

log n

Denisov
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Latin Rectangles

Another two-parameter asymptotic counting problem

How many k × n Latin rectangles are there ?

Erdos & Kaplansky 1946 k = O(log n)3/2−ε)

Yamamoto 1951 k = o(n1/3)

Stein 1978 k = o(n1/2)

Godsil & McKay 1990 k = o(n6/7)

(n!)k
(

(n)k
nk

)n (

1 − k

n

)−n/2

e−k/2
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Integral Formula

With d =
(n
2

)

,

Hnt =
2nt

(2π)d
×

∫ +π

−π
· · ·

∫ +π

−π
ψ(λ)t

ψn(λ) = 1 +
∑

G∈Meven(n)

∏

jk

(iλjk)
µjk(G)

µjk(G)!
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