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Abstract

Let s,t,m,n be positive integers such that sm = tn. Let M(m,s;n,t) be the
number of m x n matrices over {0,1,2,...} with each row summing to s and each
column summing to ¢. Equivalently, M (m, s;n,t) counts 2-way contingency tables
of order m x n such that the row marginal sums are all s and the column marginal
sums are all . A third equivalent description is that M (m,s;n,t) is the number
of semiregular labelled bipartite multigraphs with m vertices of degree s and n
vertices of degree t. When m = n and s = t such matrices are also referred to as
n X n magic or semimagic squares with line sums equal to t. We prove a precise
asymptotic formula for M (m,s;n,t) which is valid over a range of (m,s;n,t) in
which m,n — oo while remaining approximately equal and the average entry is not
too small. This range includes the case where m/n, n/m, s/n and t/m are bounded
from below.

1 Introduction

Let m, s,n,t be positive integers such that ms = nt. Let M(m, s;n,t) be the number of
m x n matrices over {0, 1,2, ...} with each row summing to s and each column summing
to t.
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Lemma 1. Let €',&", " &, A be constants such that 0 < & < &’ < ", & > 0, and
0 < A < 1. The following is true if €" and & are sufficiently small.

Let A = A(N) be a real-valued function such that A(N) = Q(N_el). Let
B; = Bj(N), Cj, = Cjx(N), E; = E; (N), Fy, = ﬂk(N) and J; = J;(N) be complea-
Ualued functwns (1<j,k<N) such that B C’ ,ij = O(Na) a; = O(

J = O(N7Y?™) uniformly over 1 < j, k < N Suppose that

N
f(z )—exp( ANZ Z ¥r ‘l'NZBJZJ‘I'ZC]kZZk
: : J 1

7,k=1
N
+N2Eﬁ P B+ Y+ o02)
7,k=1 j=1
is integrable for z = (zy, 2, . . .,ZN) € Uy and 6(N) = max, ey |0(z)| = o(1), where

Uy ={z ||z <NV for 1 <j <N},

where é = &(N) satisfies €' < 26 < . Then, provided the O() term in the following
converges to zero,
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