# Asymptotic Enumeration of Integer Matrices with Large Equal Row and Column Sums 

E. Rodney Canfield*<br>Department of Computer Science<br>University of Georgia<br>Athens, GA 30602, USA<br>erc@cs.uga.edu

Brendan D. McKay ${ }^{\dagger}$<br>Department of Computer Science<br>Australian National University<br>Canberra ACT 0200, Australia<br>bdm@cs.anu.edu.au

May 9, 2011


#### Abstract

Let $s, t, m, n$ be positive integers such that $s m=t n$. Let $M(m, s ; n, t)$ be the number of $m \times n$ matrices over $\{0,1,2, \ldots\}$ with each row summing to $s$ and each column summing to $t$. Equivalently, $M(m, s ; n, t)$ counts 2 -way contingency tables of order $m \times n$ such that the row marginal sums are all $s$ and the column marginal sums are all $t$. A third equivalent description is that $M(m, s ; n, t)$ is the number of semiregular labelled bipartite multigraphs with $m$ vertices of degree $s$ and $n$ vertices of degree $t$. When $m=n$ and $s=t$ such matrices are also referred to as $n \times n$ magic or semimagic squares with line sums equal to $t$. We prove a precise asymptotic formula for $M(m, s ; n, t)$ which is valid over a range of $(m, s ; n, t)$ in which $m, n \rightarrow \infty$ while remaining approximately equal and the average entry is not too small. This range includes the case where $m / n, n / m, s / n$ and $t / m$ are bounded from below.


## 1 Introduction

Let $m, s, n, t$ be positive integers such that $m s=n t$. Let $M(m, s ; n, t)$ be the number of $m \times n$ matrices over $\{0,1,2, \ldots\}$ with each row summing to $s$ and each column summing to $t$.

[^0]Lemma 1. Let $\varepsilon^{\prime}, \varepsilon^{\prime \prime}, \varepsilon^{\prime \prime \prime}, \bar{\varepsilon}, \Delta$ be constants such that $0<\varepsilon^{\prime}<\varepsilon^{\prime \prime}<\varepsilon^{\prime \prime \prime}, \bar{\varepsilon} \geq 0$, and $0<\Delta<1$. The following is true if $\varepsilon^{\prime \prime \prime}$ and $\bar{\varepsilon}$ are sufficiently small.

Let $\hat{A}=\hat{A}(N)$ be a real-valued function such that $\hat{A}(N)=\Omega\left(N^{-\varepsilon^{\prime}}\right)$. Let $\hat{a}_{j}=\hat{a}_{j}(N)$, $\hat{B}_{j}=\hat{B}_{j}(N), \hat{C}_{j k}=\hat{C}_{j k}(N), \hat{E}_{j}=\hat{E}_{j}(N), \hat{F}_{j k}=\hat{F}_{j k}(N)$ and $\hat{J}_{j}=\hat{J}_{j}(N)$ be complexvalued functions $(1 \leq j, k \leq N)$ such that $\hat{B}_{j}, \hat{C}_{j k}, \hat{E}_{j}, \hat{F}_{j k}=O\left(N^{\bar{\varepsilon}}\right)$, $\hat{a}_{j}=O\left(N^{1 / 2+\bar{\varepsilon}}\right)$, and $\hat{J}_{j}=O\left(N^{-1 / 2+\bar{\varepsilon}}\right)$, uniformly over $1 \leq j, k \leq N$. Suppose that

$$
\begin{aligned}
f(\boldsymbol{z})=\exp ( & -\hat{A} N \sum_{j=1}^{N} z_{j}^{2}+\sum_{j=1}^{N} \hat{a}_{j} z_{j}^{2}+N \sum_{j=1}^{N} \hat{B}_{j} z_{j}^{3}+\sum_{j, k=1}^{N} \hat{C}_{j k} z_{j} z_{k}^{2} \\
& \left.+N \sum_{j=1}^{N} \hat{E}_{j} z_{j}^{4}+\sum_{j, k=1}^{N} \hat{F}_{j k} z_{j}^{2} z_{k}^{2}+\sum_{j=1}^{N} \hat{J}_{j} z_{j}+\delta(\boldsymbol{z})\right)
\end{aligned}
$$

is integrable for $\boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{N}\right) \in U_{N}$ and $\delta(N)=\max _{\boldsymbol{z} \in U_{N}}|\delta(\boldsymbol{z})|=o(1)$, where

$$
U_{N}=\left\{\boldsymbol{z}| | z_{j} \mid \leq N^{-1 / 2+\hat{\varepsilon}} \text { for } 1 \leq j \leq N\right\}
$$

where $\hat{\varepsilon}=\hat{\varepsilon}(N)$ satisfies $\varepsilon^{\prime \prime} \leq 2 \hat{\varepsilon} \leq \varepsilon^{\prime \prime \prime}$. Then, provided the $O()$ term in the following converges to zero,

$$
\int_{U_{N}} f(\boldsymbol{z}) d \boldsymbol{z}=\left(\frac{\pi}{\hat{A} N}\right)^{N / 2} \exp \left(\Theta_{1}+\Theta_{2}+O\left(\left(N^{-\Delta}+\delta(N)\right) \hat{Z}\right)\right)
$$

where

$$
\begin{aligned}
\Theta_{1}= & \frac{1}{2 \hat{A} N} \sum_{j=1}^{N} \hat{a}_{j}+\frac{1}{4 \hat{A}^{2} N^{2}} \sum_{j=1}^{N} \hat{a}_{j}^{2}+\frac{15}{16 \hat{A}^{3} N} \sum_{j=1}^{N} \hat{B}_{j}^{2}+\frac{3}{8 \hat{A}^{3} N^{2}} \sum_{j, k=1}^{N} \hat{B}_{j} \hat{C}_{j k} \\
& +\frac{1}{16 \hat{A}^{3} N^{3}} \sum_{j, k, \ell=1}^{N} \hat{C}_{j k} \hat{C}_{j \ell}+\frac{3}{4 \hat{A}^{2} N} \sum_{j=1}^{N} \hat{E}_{j}+\frac{1}{4 \hat{A}^{2} N^{2}} \sum_{j, k=1}^{N} \hat{F}_{j k} \\
\Theta_{2}= & \frac{1}{6 \hat{A}^{3} N^{3}} \sum_{j=1}^{N} \hat{a}_{j}^{3}+\frac{3}{2 \hat{A}^{3} N^{2}} \sum_{j=1}^{N} \hat{a}_{j} \hat{E}_{j}+\frac{45}{16 \hat{A}^{4} N^{2}} \sum_{j=1}^{N} \hat{a}_{j} \hat{B}_{j}^{2} \\
& +\frac{1}{4 \hat{A}^{3} N^{3}} \sum_{j, k=1}^{N}\left(\hat{a}_{j}+\hat{a}_{k}\right) \hat{F}_{j k}+\frac{3}{4 \hat{A}^{2} N} \sum_{j=1}^{N} \hat{B}_{j} \hat{J}_{j}+\frac{1}{4 \hat{A}^{2} N^{2}} \sum_{j, k=1}^{N} \hat{C}_{j k} \hat{J}_{j} \\
& +\frac{1}{16 \hat{A}^{4} N^{4}} \sum_{j, k, \ell=1}^{N}\left(\hat{a}_{j}+2 \hat{a}_{k}\right) \hat{C}_{j k} \hat{C}_{j \ell}+\frac{3}{8 \hat{A}^{4} N^{3}} \sum_{j, k=1}^{N}\left(2 \hat{a}_{j}+\hat{a}_{k}\right) \hat{B}_{j} \hat{C}_{j k} \\
\hat{Z}= & \exp \left(\frac{1}{4 \hat{A}^{2} N^{2}} \sum_{j=1}^{N} \operatorname{Im}\left(\hat{a}_{j}\right)^{2}+\frac{15}{16 \hat{A}^{3} N} \sum_{j=1}^{N} \operatorname{Im}\left(\hat{B}_{j}\right)^{2}\right. \\
& \left.+\frac{3}{8 \hat{A}^{3} N^{2}} \sum_{j, k=1}^{N} \operatorname{Im}\left(\hat{B}_{j}\right) \operatorname{Im}\left(\hat{C}_{j k}\right)+\frac{1}{16 \hat{A}^{3} N^{3}} \sum_{j, k, \ell=1}^{N} \operatorname{Im}\left(\hat{C}_{j k}\right) \operatorname{Im}\left(\hat{C}_{j \ell}\right)\right) .
\end{aligned}
$$


[^0]:    *Research supported by the NSA Mathematical Sciences Program
    ${ }^{\dagger}$ Research supported by the Australian Research Council

