
Technical Report UGA-CS-TR-98-006, 1998

ORBWork: A CORBA-Based Fully Distributed, Scalable and
Dynamic Workflow Enactment Service for METEOR

Krys J. Kochut, Amit P. Sheth, John A. Miller
Large Scale Distributed Information Systems Lab

Computer Science Department, University of Georgia
Athens GA 30602-7404 USA

http://lsdis.cs.uga.edu

Second generation workflow management systems need to deal with heterogeneity of platforms within and across cooperating enterprises
along with legacy applications and data. At the same time, there is increasing demand for advanced features for supporting mission-
critical processes, including adaptability through dynamic changes and scalability. The workflow management system METEOR is based
on open systems and standards and utilizes CORBA and Java. This allows METEOR to provide high-end workflow management combined
with application and data integration capabilities in increasingly network-centric environments.

1.Introduction
Workflow management is the automated coordination, control and communication of work as is required
to satisfy workflow processes [Sheth et al. 96]. A Workflow Management System (WfMS) is a set of
tools providing support for the necessary services of workflow creation (which includes process
definition), workflow enactment, and administration and monitoring of workflow processes [WfMC]. The
developer of a workflow application relies on tools for the specification of the workflow process and the
data it manipulates. The specification tools cooperate closely with the workflow repository service, which
stores workflow definitions. The workflow process is based on a formalized workflow model that is used
to capture data and control-flow between workflow tasks.
The workflow enactment service (including a workflow manager and the workflow runtime system)
consists of execution-time components that provide the execution environment for the workflow process.
A workflow runtime system is responsible for enforcing inter-task dependencies, scheduling tasks,
managing workflow data, and ensuring a reliable execution environment. Administrative and monitoring
tools are used for management of user and work group roles, defining policies (e.g., security,
authentication), audit management, process monitoring, tracking, and reporting of data generated during
workflow enactment.
A number of applications posing substantial challenges to the currently available WfMSs have been
discussed in [Sheth and Kochut 98]. The applications demand that a WfMS be easily scalable and able to
handle dynamic workflows. Moreover, a WfMS must be able to operate on a wide variety of hardware and
software platforms and be able to incorporate legacy applications and data sources within the administered
workflows. Such a WfMS must include suitable design and development tools that can be used to design a
workflow and then dynamically introduce changes to the whole workflow process definition (schema), or
even just individual workflow (instances). The system must also include a flexible enactment system,
capable of supporting scalability, where new resources (computers, database servers, end-users, etc.) can
be easily incorporated within the workflow system, and adaptive workflows- where workflow
specification can be changed or extended, including addition or modifications of tasks and inter-task
dependencies.
The METEOR project is represented by both the research system [METEOR], and a suite of commercial
offering - METEOR1 Enterprise Application Suite of tools and services (EAppS)
[Infocosm], that addresses the above challenges by providing an open-systems based high-end workflow
management solution as well as an enterprise application integration infrastructure. This article focuses
on ORBWork, a METEOR’s enactment service that exploits CORBA, Java and Web technologies in
meeting the above challenges. In Section 2, we provide a brief overview of the METEOR WfMS by
focusing on its architecture. In Section 3, we provide an overview of the ORBWork enactment service.
Section 4 presents technical features of ORBWork, followed by a description of ORBWork’s
implementation in Section 5. The article ends with conclusions.
1 METEOR = Managing End-To-End Applications

Technical Report UGA-CS-TR-98-006, 1998

2.METEOR Architecture

METEOR’s architecture includes a collection of four services: EAppBuilder,
EAppRepository, EAppEnactment, and EAppManager. EAppEnactment
includes two services- ORBWork and WebWork. Both ORBWork and WebWork use
fully distributed implementations. WebWork [Miller at al 98], an entirely Web-based enactment service,
is a comparatively light-weight implementation that is well-suited for a variety of enterprise workflow
process applications that involve limited data exchange and do not need to be dynamically changed.
ORBWork (discussed in this article) is better suited for more demanding, mission-critical enterprise
applications requiring high scalability, robustness and dynamic modifications. The overall architecture of
the system is shown in Figure 1.

Workflow Builder

Workflow
Repos itory

EApp Builder

WEBWork
Workflow

Engine

Workflow
Translator/
Generator

ORBWork
Workflow
Engine EApp Enactment

EApp Repository

Figure 1: METEOR Architecture

2.1Workflow Builder Service
This service consists of a number of components that are used to graphically design and specify a
workflow, in some cases leaving no extra work after a designed workflow is converted to a workflow
application by the runtime code generator. Its three main components are used to specify the entire map of
the workflow, data objects manipulated by the workflow, as well as the details of task invocation,
respectively. The task design component provides interfaces to external task development tools (e.g.,
Microsoft’s FrontPage to design the interface of a user task, or a rapid application development tool). This
service supports modeling of complex workflows consisting of varied human and automated tasks in a
conceptual manner using easy to use tools. In particular, the designer of the workflow is shielded from the
underlying details of the infrastructure or the runtime environment. At the same time, very few restrictions
regarding the specification of the workflow are placed on the designer.
The workflow specification created using this service includes all the predecessor-successor dependencies
between the tasks as well as the data objects that are passed among the different tasks. It also includes
definitions of the data objects, and the details of the task invocation details. The specification may be
formatted to be compliant with the Workflow Process Definition Language (WPDL) of the Workflow
Management Coalition [WfMC]. This service assumes no particular implementation of the workflow
enactment service (runtime system). Its independence from the runtime supports separating the workflow
definition from the enactment service on which it will ultimately be installed and used. Workflow process
definitions are stored in the workflow repository.
Detailed information concerning this service (earlier referred to as METEOR Designer, MTDes, is given
in [Lin 97, Zheng 97].

2.2Workflow Repository Service
The METEOR Repository Service is responsible for maintaining information about workflow definitions
and associated workflow applications. The graphical tools in the workflow builder service communicate
with the repository service and retrieves, updates, and stores workflow definitions. The tools are capable of
browsing the contents of the repository and incorporating fragments (either sub-workflows or individual

Technical Report UGA-CS-TR-98-006, 1998

tasks) of already existing workflow definitions into the one being currently created. The repository service
is also available to the enactment service (see below) and provides the necessary information about a
workflow application to be started.
The current implementation of the repository service implements the Interface I API, as specified by
WfMC [WfMC]. A detailed description of the first design and implementation of this service is presented
in [Yong 98].

2.3Workflow Enactment and Management Services
The task of the enactment service is to provide execution environment for processing workflow instances.
At present, METEOR provides two different enactment services: ORBWork, presented in this paper, and
WebWork. Each of the two enactment services has a suitable code generator that can be used to build
workflow applications from the workflow specifications generated by the building service or those stored
in the repository. In the case of ORBWork, the code generator outputs specifications for task schedulers
(see below), including task routing information, task invocation details, data object access information,
user interface templates, and other necessary data. The code generator also outputs the code necessary to
maintain and manipulate data objects, created by the data designer. The task invocation details are used to
create the corresponding “wrapper” code for incorporating legacy applications with relative ease. Details
of code generation for WebWork are presented in [Miller et al. 98]. The management service support
monitoring and administering workflow instances as well as configuration and installation of the
enactment services.

3.Overview of ORBWork
The current version of ORBWork, the one of the two implementation of the METEOR EAppS enactment
services been designed to address a variety of shortcomings found in today’s workflow systems by
supporting the following capabilities:
 provide an enactment system capable of supporting dynamic workflows,
 allow significant scalability of the enactment service,
 support execution over distributed and heterogeneous computing environments within and across

enterprises,
 provide capability of utilizing or integrating with new and legacy enterprise applications and

databases 2 in the context of processes,
 utilize open standards, such as CORBA due to its emergence as an infrastructure of choice for

developing distributed object-based, interoperable software,
 utilize Java for portability and Java with HTTP network accessibility,
 support existing and emerging workflow interoperability standards, such as JFLOW [JFLOW] and

SWAP [SWAP], and
 provide standard Web browser based user interfaces, both for the workflow end-users/participants as

well as administrators of the enactment service and workflows.
In this article, we emphasize two of the features—scalability and support for adaptive workflows. Other
important issues including improved support for exception handling for robust and survivable execution
are not discussed for brevity.
Scalability

Scalability of the enactment system is becoming increasingly important for enterprises that wish to entrust
their workflow management system with mission-critical processes. The number of concurrent
workflows, the number of instances of the workflows processed during a given time period, and the
average number of tasks in a workflow, all have an impact on the architectural issues.
We have leveraged the functionality offered by Iona’s OrbixWeb and Name Service that allow us to place
various components of the enactment service or other run-time components of the workflow instances,

2 Data integration capability is supported by integrating METEOR’s enactment services with I-Kinetics’s
DataBroker/OpenJDBC, a CORBA and Java based middleware for accessing heterogeneous and legacy data sources.

Technical Report UGA-CS-TR-98-006, 1998

such as task schedulers, task managers, data objects, and even actual tasks on different hosts, at the same
time providing transparency of their locations.
Adaptability and Dynamic Workflows

Recently, there has been an increasing interest in developing WfMSs capable of supporting adaptive and
dynamic workflows. The majority of current work addresses relevant issues at modeling and language
levels [Krishnakumar and Sheth 95, Ellis et al. 95, Jablonski et al. 97, Han 97], with few efforts on
implementations underway [McClatchey et al. 97, Taylor 97, Reichert and Dadam 98]. A particularly
different approach to supporting adaptive workflow (capable of reacting to the changes in local rules and
other conditions) is being developed using the notion of migrating workflows [Cichocki et al. 97]. Related
issues of integrating workflow or coordination technologies and collaboration technologies are
investigated in [Guimaraes et al. 97, Sheth 97].
Developing systems that are able to support dynamic and adaptable workflow processes stands out as one
of the difficult new challenges in the future evolution of WfMSs. Such systems must be uniquely sensitive
to a rapidly changing process execution triggered by collaborative decision points, context-sensitive
information updates, and other external events. Some research issues in this area that have been raised in
the context of modeling and specification aspects appear in [Han and Sheth 98] and the relevant issues
involving organizational changes appear in [Ellis et al. 95, Hermann 95]. However, the literature that
addresses some of the enactment service issues is scarce.
The ORBWork scheduler and its supporting components have been designed in such a way that the
enactment service can be used to support a variety of dynamic changes both to the workflow schema and
to the individual workflow instances. The fully distributed scheduler (described later) maintains the full
workflow specification. The workflow administrator can easily modify the workflow schema at runtime
by acquiring new information from the workflow repository, or even by modifying the specification by
direct interaction with the scheduler.

4.Enactment System of ORBWork
ORBWork provides a fully distributed, scalable enactment system for the METEOR workflow
management system. The enactment system has been implemented to support workflows in heterogeneous,
autonomous and distributed (HAD) systems. It utilizes the World Wide Web in providing a consistent
interface to end-users and workflow administrators from commonly available Web browsers, and also
utilizes the HTTP protocol for distribution of task definitions and task routing information.

4.1ORBWork Architecture
ORBWork’s architecture includes the scheduler, workflow specification repository, workflow manager,
and the monitor. An overview of the ORBWork system organization is depicted in Figure 2.

Figure 2: ORBWork organization

Technical Report UGA-CS-TR-98-006, 1998

The scheduler accesses workflow specifications through the HTTP protocol, directly from the repository.
The monitor records all of the events for all of the workflows being processed by the enactment service. It
provides a user interface for the workflow administrator, who can access the information about all of the
current workflow instances. The workflow manager is used to install new workflow processes (schemas),
modify the existing processes, and keep track of the activities of the scheduler. The workflow
administrator, using the available interface, controls the existing workflows as well as controls the
structure of the scheduler. The structure of the scheduler can be altered by adding more resources, or by
migrating fragments of the scheduler to other hosts, for example with lower processing loads. Some
schedulers may be replicated, in case the load of workflow instances is too high for a host running just a
single scheduler.
ORBWork’s scheduler is composed of a number of small schedulers, each of which is responsible for
controlling the flow of workflow instances through a single task. The individual schedulers are called task
schedulers. In this way, ORBWork implements a fully distributed scheduler in that all of the scheduling
functions are spread among the participating task schedulers that are responsible for scheduling individual
tasks. In this sense, the ORBWork scheduler is composed of a network of cooperating task schedulers.
Each task scheduler controls the scheduling of the associated task for all of the workflow instances
“flowing” through the task. Each task scheduler maintains the necessary task routing information and task
invocation details (explained later).
As a workflow instance progresses through its execution, individual task schedulers create appropriate
task managers that oversee execution of associated tasks. Each workflow instance receives its own task
manager, unless the task has been designed to have a worklist, in which case all of the instances are
processed by the same task manager.
A workflow is installed by first creating an appropriate workflow context in the Naming Service. (The
context is used for storing the object references for all of the participating components.) Then the
installation continues by activating and configuring all of the necessary task schedulers and registering
them with the Naming Service. All of the component task managers are also registered with the Interface
Repository of the underlying ORB.

4.2ORBWork Scheduler
ORBWork utilizes a fully distributed scheduler in that the scheduling responsibilities are shared among a
number of participating task schedulers, according to the designed workflow map. Each task scheduler

TASK
Scheduler

TASK
Scheduler

TASK
Manager

TASK

WEB WR

WDE

TASK
Scheduler

TASK
Manager

TASK

...

Workflow scheduler

ORBWork
Manager

Meteor
Monitor

Technical Report UGA-CS-TR-98-006, 1998

receives the scheduling specifications at startup from the Workflow Repository (currently, the repository
service sends the specifications via the HTTP protocol). Each set of task specifications includes the input
dependency (input transitions), output transitions with associated conditions, and data objects sent into
and out of the task. In case of the human task (performed directly by end-users), the specifications include
an HTML template of the end-user interface page(s). In case of a non-transactional automatic task
(typically performed by a computer program), the specifications also include a task description and the
details of its invocation. Finally, in case of a transactional task, the specification includes the details of
accessing the desired database and the database query.
When a task is ready to execute, a task scheduler activates an associated task manager. The task manager
oversees the execution of the task itself. Figure 3 presents a view of the ORBWork’s distributed scheduler.
Note that scheduling components and the associated tasks and task managers are distributed among four
different hosts. The assignment of these components to hosts can be modified at runtime by the workflow
administrator.
The partitioning of various components (scheduler’s layout), including task schedulers, task managers and
tasks, among the participating hosts is flexible. An ORBWork administrator may move any of the
components from one host to another. In the fully distributed layout, it is possible to place all of the
workflow components on different hosts.

TASK

Scheduler
TA SK

Scheduler

TA SK

Scheduler
TA SK

Scheduler
TASK

Scheduler

TA SK

Manager

TASK

Manager

TA SK

Manager

TASK
TASK

TASK
HOST 1

HOST 2

HOST 3

HOST 4

Figure 3: ORBWork’s Distributed Scheduler

Each task scheduler provides a well-constrained subset of the HTTP protocol, and thus implements a
lightweight, local Web server. This enables an ORBWork administrator to interact directly with a selected
task scheduler and modify its scheduling specifications from a common Web browser. It also enables the
end-user to access workflow instances residing on the task’s worklist. This set up naturally supports a
mobile user.

4.3Support for Dynamic Workflows
One of the design goals of ORBWork has been to provide an enactment framework suitable for supporting
dynamic and adaptive workflows. However, we must point out that the issues concerning the correctness
of the dynamically introduced changes are handled outside of the enactment system by sub-components of
the METEOR's design services, or by stand-alone correctness verification tools. The ORBWork’s
enactment system performs only basic validation of deployed workflows. Nevertheless, the architecture of
the enactment system has been designed to easily support dynamic changes and serve as a platform for
conducting research in the areas of dynamic and collaborative workflows.

Technical Report UGA-CS-TR-98-006, 1998

Since ORBWork uses a fully distributed scheduler, the scheduling information must be easily provided to
all of the participating task schedulers at runtime. Each scheduler receives the information about the
transitions leading into and out of it. In addition, the scheduling information includes the list of data
objects to be created (a task may originate a data object).
At startup, each task scheduler requests scheduling data and upon receiving it configures itself
accordingly. Furthermore, the configuration of an already deployed workflow is not fixed and can be
changed dynamically. At any given time, a workflow designer, or in some permitted cases an end-user,
may decide to alter the workflow. The introduced modifications are then converted into the corresponding
changes in the specification files and stored in the repository. A “reload specification” signal is then sent
to the affected task schedulers. As a result, the schedulers reload their specifications and update their
configurations accordingly, effectively implementing the desired change to the existing workflow.
As one possibility, the changes introduced to a workflow may include adding a new task and connecting it
to an already installed and active workflow application. Such a change must also include modifications of
output transitions in the predecessor task schedulers and input dependencies in the successor task
schedulers.

4.4Support for Scalability and Fault Tolerance
The fully distributed architecture of ORBWork yields significant benefits in the area of scalability. As
already mentioned, all of the workflow components of a designed and deployed workflow (this includes
individual task schedulers, task managers, and task programs) may be distributed to different hosts.
However, in practice it may be sufficient to deploy groups of less frequently used task
scheduler/manager/programs to the same host. At the same time, heavily utilized tasks may be spread out
across a number of available workflow hosts, allowing for greater load sharing.
The features of ORBWork designed to handle dynamic workflows are also very useful in supporting
scalability. As load increases, an ORBWork administrator may elect to move a portion of the currently
running workflow to a host (or hosts) that become available for use in the workflow. The migration can
be performed at the time the deployed workflow is running. Simply, the workflow administrator may
suspend and shutdown a given task scheduler and transfer it to a new host. Because of the way task
schedulers locate their successors, the predecessors of the moved task scheduler will not notice the
changed location of the task. If the associated task must be executed on a specific host (for example it is a
legacy application), the associated task manager may be left in place, while only the scheduler is
transferred.
In case a group of task schedulers is deployed to the same host, the ORBWork administrator has an option
of combining them into a single “master” scheduler. Such a master scheduler controls a number of
individual task schedulers that share the same heavy weight process. This allows the administrator to
control the utilization of the participating host even further, where having many individual operating
system-level processes (task schedulers) could potentially burden the host system.
The distributed design of ORBWork offers no single point of failure for an ongoing workflow instance.
Since the individual task schedulers cooperate in the scheduling of workflow instances, a failure of a
single scheduler does not bring the whole system down, and other existing workflow instances may
continue execution.
The error handling and recovery framework for ORBWork (initial design has been described in [Worah et
al 97]) has also been defined in a scalable manner. All errors are organized into error class hierarchies,
partitioning the recovery mechanism across local hosts, encapsulating and handling errors and failures as
close to the point of origination as possible, and by minimizing the dependence on low-level operating
system-specific functionality of the local processing entities.

5.ORBWork Implementation
One of the most important considerations while designing the ORBWork workflow management system
has been its flexible and easily modifiable distributed architecture. The current version of the system has
been implemented in Java and OrbixWeb 3.0, Iona’s CORBA system with Java binding. In addition,

Technical Report UGA-CS-TR-98-006, 1998

Iona’s Naming Service has been utilized as a way of providing location transparency for all of the
ORBWork components.
Using CORBA, and especially Iona’s OrbixWeb and Naming Service, as the underlying middleware
system offers a number of advantages for implementing a distributed workflow enactment system. In
addition to the obvious features provided by CORBA, ORBWork relies on a number of specific services
that proved extremely useful in implementing ORBWork. The following table summarizes the features
used.

Feature Application
Dynamic Object

Activation
Allows for automatic activation and deactivation of ORBWork components,

reducing the load on the host system(s)
Dynamic Invocation

Interface (DII)
Only object references are transferred; data object are accessed

dynamically, according to their interfaces
Object Loaders Data objects, task schedulers, and other ORBWork components use loaders

to automatically save/restore state
Naming Service Task schedulers are located with the use of the Name Service; this allows

for flexible and transparent placement of the schedulers and their possible
migration at runtime

Table 1: CORBA/Orbix features used in ORBWork

All of the ORBWork components are implemented as CORBA objects. ORBWork relies on the Orbix
Activator to start the necessary server when its functions are necessary for the activities of the distributed
scheduler and also shutdown the servers once no services have been requested within a specified time
interval. In this way, certain portions of a large, distributed workflow (for example those less frequently
used) may become inactive, reducing the overhead on the host systems to the necessary minimum.

5.1Task Schedulers
A task scheduler is implemented as a CORBA object. The IDL interface presented to clients (other task
schedulers and other ORBWork components) enables them to invoke various scheduling functions
according to the currently loaded specifications. The interface also enables dynamic modifications of the
scheduling specifications by reloading from the specification server (repository) or by a direct
modification of the specification within the task scheduler.
A task scheduler relies on Orbix Name Service to locate its successors. This enables the ORBWork
administrator to dynamically reconfigure the runtime layout of the scheduler by shifting some components
between hosts, without introducing any changes to the remaining task schedulers, or workflow instances
administered by them.
ORBWork uses the object loader capability supported by OrbixWeb to save/restore the state of a task
scheduler. The state includes the necessary information about forthcoming instances (those with still
unfulfilled input dependency) and those already on the worklist. As the CORBA object representing a task
scheduler is activated (because one of its task predecessors attempts a transfer of the next workflow
instance), the necessary scheduling data is automatically reloaded.

5.2Task Managers
Task managers control execution of all non-human tasks (human tasks have no associated task managers).
Depending on the task type, a task manager is classified as non-transactional or transactional, and is
implemented as a CORBA object. A task manager’s IDL interface allows it to be invoked by the
corresponding task scheduler. Once activated, the task manager stays active until the task itself completes
or generates an exception. Once the task has completed or terminated prematurely with a fault, the task
manager notifies its task scheduler. The task scheduler then continues the flow of the workflow instance.
Orbix Activator automatically activates the task manager, only when needed. The communication
between the task scheduler and the associated task manager is accomplished by asynchronous (one way)
method calls.

Technical Report UGA-CS-TR-98-006, 1998

A transactional task manager uses JDBC to access the requested data source. Currently, ORBWork
provides specific task managers for accessing Oracle and Mini SQL databases, as well as one for the Open
JDBC driver from I-Kinetics. The last of the mentioned task managers allows a uniform access to a wide
variety of database management systems (including those on mainframes) from a single task manager.

5.3Data Objects
Data objects are implemented as CORBA objects, providing an IDL interface for accessing all of the
defined attributes and methods. As in the case of a task scheduler, the data object implementation uses the
object loader to load and save the state of each data object. The CORBA server hosting the data objects is
automatically shut down if no data read/write requests arrive within a specified time period, and the
dynamic loader saves the state of the object.
As task schedulers implement flow of control within a workflow instance, data objects must be made
available at the successor tasks. Instead of the whole object, only its object reference is sent to the task
scheduler. When preparing to run the task, the task scheduler accesses the necessary data object(s) (using
the Dynamic Invocation Interface) and extracts the relevant attribute values.

5.4ORBWork Servers
Typically, a single ORBWork host runs a number of task schedulers, each of which is implemented as a
separate CORBA object. A CORBA object must reside within a CORBA server that typically runs as a
single operating system process. In order to save computer resources, a group of ORBWork task
schedulers may be placed within a single CORBA server that functions as an ORBWork server. Each
ORBWork server is designed to control any number of task schedulers.
A workflow installed on the ORBWork enactment system may utilize any number of heterogeneous hosts
(of course, OrbixWeb must be available on each one of them; clients/browsers may be used anywhere).
Each of the hosts may have any number of ORBWork servers. However, the most common approach is to
keep the number of ORBWork servers close to the number of available processors. Nowadays, some of
the available Java virtual machines are able to take advantage of the available processors to run threads.
Since the implementation of an ORBWork task scheduler is multithreaded, the question of the number of
ORBWork servers may be less critical in that if all of the schedulers are placed within a single server, the
schedulers will be able to utilize all of the available processors.

5.5ORBWork Manager
The ORBWork Manager is used to install workflows (schemas) and activate all of the necessary task
schedulers. In addition to registering with Orbix Name Service, each task scheduler registers with
ORBWork Manager and notifies it of its precise location. In addition, since each task scheduler provides
a subset of the HTTP protocol, the scheduler notifies the ORBWork Manager of the precise URL address
that the end users and the administrator can use to interact directly with it. The URL address is created
when the scheduler is initially installed and it contains the port number that has been assigned to the
HTTP server.
The manager is implemented as a CORBA object. It has an IDL interface that allows ORBWork clients to
install and administer a workflow (schema) as well as create workflow instances. The manager provides
an HTTP protocol, so that the same administrative functions can be performed via the Web, from a
common browser.
In order to provide an easy access to task schedulers, the ORBWork Manager also functions as a URL
redirector, when an end-user wishes to access her task's worklist. This is necessary since the port number
on which the task scheduler's HTTP server is listening is assigned by the system at the time the task
scheduler is activated. The port number is not fixed and cannot be known beforehand.
It is important to note that the role of the ORBWork Manager is necessary only at the time a new
workflow is installed or modified, or when an end-user is connecting for the first time to her designated
task. The manager does not participate in any task scheduling activities.

Technical Report UGA-CS-TR-98-006, 1998

6.Conclusion
ORBWork system provides a flexible, fully distributed implementation of the workflow enactment service
for the METEOR Workflow Management System. The ORBWork scheduler has been designed and
implemented to support dynamic workflows. The scheduler offers significant potential for scalability,
since the workflow administrator can incrementally increase the number of workflow hosts, migrating
and/or replicating some of the scheduling functions to the new hosts.
The ORBWork enactment system has been implemented entirely in Java and is therefore available on a
wide range of computer systems. In our workflow application development (the ORBWork enacment
service has been used to implement a number of workflow applications, mainly in the area of healthcare
[Sheth et al 97]), we have used SUN Solaris and Windows NT as ORBWork hosts. We were able to
integrate disparate distributed and heterogeneous computing environments with ease.
The current ORBWork implementation has been based on open standards. It will also provide support for
workflow interoperability standards (such as SWAP [SWAP] and JFLOW [JFLOW]), once they stabilize.
In fact, we are currently in the process of creating prototype implementations to the two mentioned
interoperability interfaces.
On the research front, we expect to increasingly integrate our workflow research with that of collaboration
to develop a new generation of coordination and collaboration system.

Acknowledgement

We thank Iona Technologies and I-Kinetics for the donation of all their products to the LSDIS Lab, University of
Georgia. This research was partially done under a cooperative agreement with the National Institute of Standards and
Technology Advanced Technology Program (under the HIIT contract, number 70NANB5H1011) and co-sponsored by
the Healthcare Open Systems and Trials, Inc consortium.

Bibliography

[Cichocki et al. 97]A. Cichocki and M. Rusinkiewicz, Migrating Workflows, Advances in Workflow Management
Systems and Interoperability, Istanbul, Turkey, August 1997.

[Das et al. +97] S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah, ORBWork: A Reliable Distributed CORBA-
based Workflow Enactment System for METEOR2, Technical Report UGA-CS-TR-97-001, LSDIS Lab, CS
Department, Univ. of Georgia, February 1997.

[Ellis et al. 95] C. Ellis, K. Keddara, and G. Rozenberg, Dynamic Changes within Workflow Systems in Proc. of the
Conf. on Organizational Computing Systems (COOCS’95), 1995.

[Guimaraes et al. 97] N. Guimaraes, P. Antunes, and A. Pereira, The Integration of Workflow Systems and
Collaboration Tools, Advances in Workflow Management Systems and Interoperability, Istanbul, Turkey, August
1997.

[Han 97] Y. Han, "HOON - A Formalism Supporting Adaptive Workflows," Technical Report #UGA-CS-TR-97-005,
Department of Computer Science, University of Georgia, November 1997.

[Han and Sheth 98] Y. Han and A. Sheth, "On Adaptive Workflow Modeling," the 4th International Conference on
Information Systems Analysis and Synthesis, Orlando, Florida, July, 1998

[Hermann 95] T. Hermann, Workflow Management Systems: Ensuring Organizational Flexibility by Possibilities of
Adaptation and Negotiation, in Proc. of the Conf. on Organizational Computing Systems (COOCS’95), 1995.

[Jablonski et al. 97] S. Jablonski, K. Stein, and M. Teschke, Experiences in Workflow Management for Scientific
Computing, Proceedings of the Workshop on Workflow Management in Scientific and Engineering Applications (at
DEXA97), Toulouse, France, September 1997.

[Krishnakumar and Sheth 95] N. Krishnakumar and A. Sheth, “Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations,” Distributed and Parallel Databases Journal, 3 (2), April 1995

[Infocosm] Infocosm home page, http://infocosm.com

[JFLOW] OMG jFlow Submission, ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf

[Lin 97] C. Lin, “A Portable Graphic Workflow Designer,” M.S. Thesis, Department of Computer Science, University
of Georgia, May 1997.

Technical Report UGA-CS-TR-98-006, 1998

[McClatchey et al. 97] R. McClatchey, J.-M. Le Geoff, N. Baker, W. Harris, and Z. Kovacs, A Distributed Workflow
and Product Data Management Application for the Construction of Large Scale Scientific Apparatus, Advances in
Workflow Management Systems and Interoperability}, Istanbul, Turkey, August 1997.

[METEOR] METEOR project home page, http://lsdis.cs.uga.edu/proj/meteor/meteor.html

[Miller et al. 98] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, H. Singh “WebWork: METEOR’s Web-based
Workflow Management System”, Journal of Intelligent Information Systems, (JIIS) Vol. 10 (2), March 1998.

 [Reichert and Dadam 98] M. Reichert and P. Dadam, ADEPT flex: Supporting Dynamic Changes of Workflows
Without Losing Control, Journal of Intelligent Information Systems, 10 (2), March 1998.

[Sheth 97] Sheth, “From Contemporary Workflow Process Automation to Adaptive and Dynamic Work Activity
Coordination and Collaboration,” Proceedings of the Workshop on Workflows in Scientific and Engineering
Applications, Toulouse, France, September 1997.

[Sheth et al. 96] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf,
Eds. Report from the NSF Workshop on Workflow and Process Automation in Information Systems, Technical
Report UGA-CS-TR-96-003, Dept. of Computer Sc., University of Georgia, October 1996.
http://lsdis.cs.uga.edu/lib/lib.html

[Sheth et al 97] A Sheth,D. Worah, K. Kochut, J. Miller, K. Zheng, D. Palaniswami, S. Das, "The METEOR
Workflow Management System and its use in Prototyping Healthcare Applications", Proceedings of the Towards An
Electronic Patient Record (TEPR'97) Conference, April 1997, Nashville, TN.

[Sheth and Kochut 98] A. Sheth and K. Kochut, “Workflow Applications to Research Agenda: Scalable and Dynamic
Work Coordination and Collaboration Systems,” in A. Dogac, L. Kalinechenko, T. Ozsu and A. Sheth, Eds. Workflow
Management Systems and Interoperability, NATO ASI Series F, Vol. 164, Springer Verlag, 1998.

[SWAP] Simple Workflow Access Protocol home page, http://www.ics.uci.edu/~ietfswap/index.html

[Taylor 97] R. Taylor, Endeavors: Useful Workflow Meets Powerful Process, Information and Computer Science
Research Symposium, University of California at Irvine, February 1997. URL: http://www.ics.uci.edu/endeavors/

[WfMC] Workflow Management Coalition Standards, http://www.aiim.org/wfmc/mainframe.htm

[Worah et al 97] D. Worah, A. Sheth, K. Kochut, J. Miller, "An Error Handling Framework for the ORBWork
Workflow Enactment Service of METEOR," Technical Report, LSDIS Lab. Dept. of Computer Science, Univ. of
Georgia, June 1997.

[Yong 98] J. Yong, "The Respository system of METEOR workflow management system", Master Thesis,
Department of Computer Science, University of Georgia, March 1998.

[Zheng 97] K. Zheng, Designing Workflow Processes in METEOR2 Workflow Management System M.S. Thesis,
LSDIS Lab, Computer Science Department, University of Georgia, June 1997.

