Automatic Semantic Web Services Composition
Zixin Wu, Ajith Ranabahu, Karthik Gomadam, Amit P. Sheth, John A. Miller

LSDIS Lab, University of Georgia, Athens, Georgia

{todo} @cs.uga.edu
Abstract

Web service composition has quickly become an important area of research in the services oriented architecture community. One of the challenges in composition is the existence of heterogeneities between independently created and autonomously managed Web service requesters and Web service providers. Most of the previous work in this area either involve too much human effort or overlook the problem of data heterogeneities, thus cannot automatically generate executable workflow for real-world problems. In this paper we present a planning-based approach for solving the problem of protocol heterogeneity and a service-based approach for data heterogeneity, without human intervention. Our system successfully outputs a BPEL file which correctly and completely solves the problem in SWS Challenge 2006, which is a typical real-world problem.
1. Introduction

Web services are software systems designed to support interoperable machine-to-machine interaction over a network. They are the preferred standards-based way to realize Service Oriented Architecture computing (SOA). A problem that has seen much interest from the research community is that of automated composition of Web services to realize Web service compositions or Web processes by leveraging the functionality of autonomously created services. While SOA is promising for its flexibility of loosely coupling, it brings heterogeneities to the table inevitably. These heterogeneities in general may exist at many different levels, such as the data level or a communication/protocol level. It is necessary and critical to overcome the heterogeneities in order to organize autonomously created Web services into a process to aggregate their power.

Previous work in this regard has considered various approaches to composition, and have included use of HTN[1, 2], Golog

[3-5] ADDIN EN.CITE , classic AI planning[6], Rule-based planning[7, 8], model checking

[9-11] ADDIN EN.CITE , theorem proving

[12-15] ADDIN EN.CITE , etc. Some solutions involve too much human effort; some overlook the problem of data heterogeneities. Overcoming both protocol and data heterogeneities is the key to automatic generation of executable process.

The way to measure the flexibility of a solution is to see how much human effort is needed if the scenario is changed. Our solution involves very few human efforts. Only the specification of the task, i.e., initial state and goal of the task, has to be changed, suppose all Web services are already semantically annotated.

In our solution, we extend the AI planning algorithm GraphPlan to generate the control flow of a Web process automatically. Our extension is that besides the precondition and effect of the operations, we also take into consideration in the planning algorithm the structure and semantic of the input and output message. Our approach for the problem of data heterogeneities is a dedicated data mediation Web service. Let us say that message M1 need to be converted into message M2 since they have different structure and/or semantic. The data mediation service takes as input the message M1 and the semantically annotated schemas of M1 and M2, gives as output the message of M2 automatically. By separating the data mediation from the protocol mediation, our system is highly loosely coupled. The protocol mediation system may concentrate on generating the control flow, and make it easier to analyze the control flow.

We test our solution by solving the problem in SWS Challenge 2006, which is a typical real-world problem. Our system generates a BPEL process automatically according to the specification of initial state and goal, and semantically annotated Web service descriptions. The generated BPEL process can be executed successfully and accomplishes the task.
 We consider our contributions as follows:

1. Our solution can generate executable workflow (BPEL) automatically, including the control flow and data flow.
2. We extend GraphPlan algorithm for Web services composition.
3. We propose and implement a loosely coupled data mediation Web service.
4. We propose a context-based ranking algorithm for Data Mediation (We will discuss this in the section of data mediation).
5. We propose a pattern-based approach for loop generation in planning.

The remainder of this paper is organized as follows. We first give some background information of the problem of Web service composition in section 2, and then introduce a motivating scenario in section 3. In section 4, we discuss our approach for automatic Web service composition. The system architecture and implementation is briefly introduced in section 5, and the evaluation result is given in section 6. Finally we draw a conclusion in section 7.
2. Background and related work
2.1 Background
There are two categories of partners that are described within the web services domain, namely the service provider and service requester.
 A service provider presents its web service functionality by providing a set of operation specifications (or operations for abbreviation). These operations allow service requesters to use these services by simply invoking them. These operations might be inter-dependent. The dependency can be represented as precondition, effect, input, and output specification of an operation. Using these available operations, a service requester performs one or more inter-related steps, also known as tasks, to achieve the desired goal. Tasks can be best viewed as activities in a process and can be divided into smaller and more concrete sub-tasks, and eventually invocations of concrete operations. These tasks may be organized into a process specification which may consist of one or more activities that may be executed one or more times.
Service requesters and providers are oftentimes autonomously created. This causes heterogeneity to exist between the requester and provider when Web services are aggregated to perform a task. These heterogeneities in general may exist at many different levels, such as the data level or at a communication/protocol level. We say that protocol heterogeneity exists when the goal of the service requester cannot be achieved by atomically invoking exactly one operation once. On the other hand, data heterogeneity exists when the output message of an operation has different structure or semantics from the input message of the consecutive operation. In the above cases, process composition is needed.
SAWSDL: We describe Web services and Semantic Templates (see next item) in SAWSDL. SAWSDL[16] is a W3C standard to add semantics in Web services. “SAWSDL does not specify a language for representing the semantic models, e.g. ontologies. Instead, it provides mechanisms by which concepts from the semantic models that are defined either within or outside the WSDL document can be referenced from within WSDL components as annotations.”
 Semantic annotations facilitate process composition by eliminating ambiguities. We annotate a Web service by specifying the Model Reference attribute of its operations, the Model Reference and Schema Mappings of the input and output message of its operations. We also extend SAWSDL by adding precondition and effect in operation for protocol mediation, which will be discussed in later sessions.
Semantic Templates: While a semantic Web service description represents a service provider on a concrete level, a semantic template captures the semantic capabilities of a service provider on an abstract level. It is the way a service requester defines its task specifications. We again represent a semantic template in SAWSDL, very similar to Web service description, except that it is the specifications of a task, not of a specific Web service. We will discuss the formal model of semantic templates in a later session.
2.2 Related work
[6] is similar to our work. They also use GraphPlan algorithm to generate the process. While it is good to consider the interaction with the users, their approach suffers from the extent of automation. An important difference of their work from ours is that they don’t consider the input/output message schema when generating the plan. This issue is important, as an operation’s precondition may be satisfied while there is no suitable data for its input message. Another problem of their work is that the only workflow pattern their system can generate is Sequence, although the composition process may contain other patterns. As the read may find in the motivation scenario, other patterns such as Loop are also frequently used.

[17] discusses using the pre- and post-conditions of actions and automatic synthesis of Web services by finding a backbone path as the first step. One problem of their work is that they assume task predicates are associated with ranks (positive integer), thus their algorithm gives priority to the tasks with higher rank. This is infeasible if the Web services (tasks) are developed by independent organizations, which is the common case and the main reason leading to heterogeneities.
The authors in [18] found a correlation between Hierarchical task network (HTN) planning and web service representation in the OWL-S framework. HTN planning uses the approach of refining plans by applying action, or task, decompositions. The idea is to divide high-level tasks into smaller and smaller sub-tasks until more primitive tasks can be performed directly. The benefit of this approach is that planning complexity may be reduced for tasks that require many actions. However, how to divide high-level tasks itself is a problem. If human’s intervention is needed, it also suffers from the extent of automation.

[11] proposes an approach of planning as model checking. They encode OWL-S process models as state transition systems, and claim their approach can handle nondeterminism, partial observability, and complex goals. But it relies on the specification of OWL-S process models, i.e. the user need to specify the interaction between the operations.

[19] refers to this problem of protocol mediation as orchestration. [20] presents a graphical tool to guide the user to composite a process.

METEOR-S Configuration approach (Karthik)
3. Motivation scenario
The SWS Challenge 2006 mediation scenario version 1 is a typical real-world problem where distributed organizations’ systems are trying to communication with each others
. A customer (depicted on the left side of the figure) desires to purchase goods from a provider (depicted on the right side of the figure) offering retail services. The anticipated process is in the mediator (depicted on the middle of the figure).

Figure 1. SWS Challenge 2006 mediation Scenario
Both protocol and data heterogeneities exist in this scenario. For instance, from the point of view of the service requester, i.e. Blue, placing an order is a one-step job (send PO), while the service provider, i.e. Moon, involves 4 operations (searchCustomer, createNewOrder, addLineItem, closeOrder). The message schemas they use are not exactly the same. For example, Blue uses “fromRole” to specify the partner who wants to place an order, while Moon uses “billTo” to mean the same thing. The structures of the message schemas are also different. To make it worse, an input message may involves information from two or more output message, for example, the operation “addLineItem” requires information from the order request message by Blue and the newly created order ID from the output message of operation “createNewOrder”.

In order to solve this problem successfully and automatically, the composition system at least should be able to do the following: generate the control flow of the mediator that involves at least two workflow patterns (Sequence and Loop) based on the specification of the task and the candidate Web service(s), and convert (and combine if needed) to a format of an input message.
4. METEOR-S approach for automatic Web service composition
4.1 Semantically annotated Web service description
WSDL is a widely accepted industry standard for describing Web services, and SAWSDL is a W3C standard to add semantics in Web services. SAWSDL is expressive for functional and data semantics, and sufficient to solve the problem of semantic discovery and data mediation. We extend SAWSDL by adding precondition and effect in the operations for protocol mediation. Precondition and effect are necessary because not all the states of a Web service are represented by the input/output message. For example, both a book buying service and book renting service may take as the input the user ID and the ISBN, and give as the output the status “succeed” or “fail”.
Formal model of Web service: Before giving our formal model of Web service, we need to introduce some definition of the basic building block of our model. Most classical AI planning problems are defined by the STRIPS representational language (or its variants like ADL), which divides its representational scheme into three components, namely, states, goals, and actions. For the domain of Web service composition, we extend the STRIPS language as the base representational language of our method.

· Extended State. We extend a traditional workflow state by adding a set of semantic data types in order to ensure the input of an operation is available before it is invoked. An extended state s has two components: s = <SF, SDT>, where:

· SF is a conjunction of a set of status flags representing the status of a process by using concepts in a domain ontology. We use propositional logic for status flags, thus a status flag is a propositional variable. Status flags with False value are prefixed by [image: image2.wmf]Ø

. We also assume an open-world assumption, i.e., any status flag not mentioned in the state is unknown.

· SDT is a set of semantic data types representing the availability of data by using concepts in a domain ontology. We use description logic for semantic data types. An example state could be:

<ontology1#orderPlaced & [image: image3.wmf]Ø

ontology1#orderPaid, (ontology2#orderID)>
· Condition. A condition also has two components as a state, except that a condition is a requirement for a state.

· For example,
 <ontology1#orderPaid, ontology2#paidAmount>
· Semantic Web Service[21]. Our definition of a semantic Web service is based on the definition of WSDL and proposed SWS specifications – OWL-S and WSDL-S, with Interaction Protocol included.

SWS = (
[image: image4.wmf]U

i

}

{sop

i

)
Where, SWS is the union of a set of semantic operations (sop).
sop = <op:FunctionalConcept, input:SemanticType, output:SemanticType, Pre, Effects, fault:SemanticFault>
Where, a semantic operation (or operation) (sop) is defined as a 6- tuple of the following:

· op is an operation mapped to a functional concept in a domain ontology.

· Pre is the precondition. It is a conjunction of status flags stating which status flags must be true (or false) before an operation can be executed.

· Eff is the effect. It is a conjunction of status flags describing how the status flags in a state changes when the action is executed. Status flags prefixed by [image: image5.wmf]Ø

 are called negative effects, whereas others are called positive effects.

· input is mapped to a set of semantic data types stating what data are required in order to execute the operation.

· output is mapped to a set of semantic types stating what data are available after the operation is executed.

· fault is the exceptions of the operation represented using concepts in a domain ontology.
Table 1 illustrates an example of the representation of part of the Order Management System Web service described in our running scenario. Using our definition, we allocate the state parameters for “CreateNewOrder”, “AddLineItem”, “CloseOrder”, and “PlaceOrder” accordingly.
Table 1. Representation of order management system Web wervice
	Operation name
	Precondition
	Input
	Effect
	Output

	CreateNewOrder
	haveCustomerID
	CustomerIdentification
	haveOrderID^

[image: image6.wmf]Ø

completeOrder^

[image: image7.wmf]Ø

closeOrder
	OrderIdentification

	AddLineItem
	haveOrderID^
[image: image8.wmf]Ø

completeOrder
	LineItemEntry
	completeOrder
	LineItemSubmission

	CloseOrder
	completeOrder
	OrderIdentification
	closeOrder
	ConfirmedOrder

4.2 Semantic Template
While a semantic Web service definition represents a service provider on a concrete level, a semantic template captures the semantic capabilities of a service provider on an abstract level. It is the way a service requester defines its task specifications
Formal model of Semantic Template
ST =
[image: image9.wmf]i

{sopt}

i

U

sopt = <Actiono, Io, Oo, Preo, Effo, Fo>
Where, a semantic operation template (sopt) is an abstract representation of the functionality of an operation. It is defined as a 6-tuple which is similar to a sop, except that it is the requirement for an operation.
The following table shows the representation of a semantic operation template SendPO from the scenario in section 2.
Table 2. Representation of semantic template
	Operation name
	Precondition
	Input
	Effect
	Output

	SendPO
	haveCompanyInfo
	OrderInformation
	completeOrder^

closeOrder
	Acknowledgement

4.3 Semantic discovery (1/2 page)
Based on modelReference

Based on WS-Policy

4.4 Automatic Web service composition.
4.4.1 Formal definition of Web service composition. A semantic Web service composition problem is composing a set of semantic Web services (SWSs) to fulfill the requirement of one specific semantic operation template. Before we give the definition of the problem, we need to define the initial state, the goal, the “apply” and “satisfy” operator for the problem.

For convenience, we use Eff(a) to represent the effect of operation a, SF(s) for the set of status flags in state s, SF(eff) for the set of status flags in eff, value(sfs) for the value of status flag sf in state s, value(sfeff) for the value of status flag sf in effect eff, ST(s) for the set of semantic data types in state s, and ST(c) for the set of semantic data types in condition c.
· Initial state. One of the possible extended states when the service requester’s process runs to an activity
 which defined by the semantic operation template soptp. It is defined by the precondition and input of the semantic operation template.
s0 = <Pre(soptp), In(soptp)>

Remember that an extended states included a set of status flags and a set of semantic data types, so does an initial state, since it is an extended state.
· Goal. A goal is a condition which is defined by the effect and output of the semantic operation template soptp.

g = < Eff(soptp), Out(soptp)>

· “Apply” operator. We use the notation “+” for “apply” operator which is a function mapping an extended state s and an operation (or pseudo operation) a to a new extended state s’:

+: (s, a) [image: image10.wmf]a

s’ (Alternatively, we may write s + a = s’)

[image: image11.wmf]))

(

(

)

(

)

'

(

a

Eff

SF

s

SF

s

SF

U

=

[image: image12.wmf])

(

)

(

)),

(

(

)

(

'

a

Eff

s

sf

value

sf

value

a

Eff

SF

sf

=

Î

"

[image: image13.wmf])

(

)

(

)),

(

(

)

(

'

s

s

sf

value

sf

value

a

Eff

SF

sf

s

SF

sf

=

Ï

Ù

Î

"

That is, a positive/negative status flag in eff is also in s’ with the same value, while any status flag in s but not in eff is assumed to remain in s’ with the same value as in s.
ST(s’) = ST(s)∪out

That is, a semantic type in out is added to s’ if it is not in s, while other semantic data types in s are also in s’. We will handle deleting a semantic type when we consider scopes in a process in our future work.
· “Satisfy” operator. We use the notation “→” for “satisfy” operator which is a function mapping an extended state s and a condition c to T or F:

→: (s, c) [image: image14.wmf]a

{T, F}
This function maps to T (we call it “s satisfies c” and we may write it as: s→c) if and only if:
· c[image: image15.png]

s, that is, for each status flag sfc[image: image16.wmf]Î

SF(c), there is a semantically equivalent status flag sfs[image: image17.wmf]Î

SF(s), such that their values are the same. Semantic equivalency can be represented as “equivalentClass” relationship in OWL. And
· [image: image18.wmf])

(

),

(

s

ST

st

c

ST

st

s

c

Î

$

Î

"

|sts[image: image19.png]

stc∨(stc is part of sts), that is for each semantic data type stc[image: image20.wmf]Î

ST(c), there exists a semantic data type sts[image: image21.wmf]Î

ST(s), such that stc subsumes sts, or stc is part of sts. In such case, we say sts is a compatible data type of stc.

· A semantic Web service composition problem is the following function:
p: (sopt, SWSs) [image: image22.wmf]a

plan
Where,

· sopt is a semantic operation template.

· SWSs is the union of the given semantic Web services.

· plan is a partially ordered set of operations. Every sequence (total order) of operations (say a1, a2, … an) that satisfies the partial order must conform to the following restrictions:
s0 → <Pre(a1), In(a1)>

s0 + a1 = s1
si → <Pre(ai+1), In(ai+1)>

si + ai+1 = si+1
sn → g

Where s0 is the initial state, g is the goal, and ai[image: image23.wmf]Î

SWSs. Remember that a condition has two components: set of status flags and set of semantic data types, so the condition for s0 consists of the precondition and input of a1.

4.4.2 Planning for Protocol Mediation. AI planning is a way to generate a process automatically based on the specification of a problem. Planners typically use techniques such as progression (or forward state-space search), regression (or backward state-space search), and partial-ordering. These techniques attempt to use combinatorial exploration methods such as searching, backtracking, and/or branching techniques in order to extract such a solution.
There are two basic operations in every state-space-based planning approach. First, the precondition of an action needs to be checked to make sure it is satisfied by the current state before the operation can be a part of the plan. Second, once the operation is put into the plan, its effect should be applied to the current state and thus produce a consecutive state.

We consider the significant differences between AI planning and semantic Web service composition as follows:

1. Actions in AI planning can be described completely by its name, precondition, and effect, while Web services also include input and/or output message schema.

2. AI planning, it is assumed there has an agreement within an application on the terms in the precondition and effect. Terms with same name (string) mean the same thing, while terms with different name (string) mean different things. For example, in the famous block world scenario, if both “block” and “box” exist in the precondition/effect, they are treated as different things. This obviously is not scalable in the scope of the Web, thus it is necessary to introduce semantic for semantic Web service composition.

As discussed in the previous sections, both Web services and the specification of the task, i.e. Semantic Template are described in extended SAWSDL standard, so the terms in the precondition, effect, and input/output messages reach an agreement which is captured by the ontologies.

For the two types of differences we mentioned above, to apply AI planning techniques to semantic Web service composition, any state-space-based planning algorithm need to be revised according to the following guideline.

1. State space should include status flags, as in the existing AI planning approaches, and semantic data types to represent the availability of data.

2. For each candidate action, besides checking its precondition against the status flags in the current state, it is also necessary to check its input message schema against the semantic data types in the current state.

3. Since the states and the actions/operations are semantically annotated by referring to ontologies, the checking in the previous step should also refer to the ontologies, not just compare the name of the terms.

4. Once an action/operation is added into the plan, not only the status flags are updated by applying the effect, the semantic data types should also be updated by adding a new data type based on the output message schema.

The idea can be illustrated informally in picture 2.
 SHAPE * MERGEFORMAT

Picture 2. Illustration of protocol mediation
Extended GraphPlan algorithm. Although most AI planning algorithms are suitable for the task here, we use GraphPlan algorithm for its time and space efficiency. The reader may get basic knowledge of GraphPlan in [22]. It is sound and complete, and its compact representation of the states makes it space efficient while doing a breadth-first style search. It also uses mutex links to avoid exploring some irrelevant space.
The general idea of the GraphPlan algorithm is to represent the combination of possible states and actions that may exist in the plan as an expandable graph data structure, where nodes may be represented as state parameters (status flags and semantic types) and actions, and edges representing relations between the state parameters and actions. The structure consists of a sequence of alternating state and action levels which consist of state parameters and actions (operations in the context of Web services), respectively, that may exist at that particular level. The graph is expanded by adding the effects of actions to the existing state. When the goal literals are contained in a state level, the algorithm attempts to extract a plan by backtracking through the action levels of the graph starting from the goal state. Our approach requires an extension to the EXPANDGRAPH function to accommodate the semantic data types defined above. Pseudocode for this procedure is shown in figure 3.
function EXPANDGRAPH(graph)

create new action level ai
create new state level si

for all op [image: image25.wmf]Î

 A

 if pre(op) [image: image26.wmf]Î

 SF(si-1) and in(op) [image: image27.wmf]Î

 ST(si-1)
 add op to ai
 add eff(op) to si
 add out(op) to si
for all op [image: image28.wmf]Î

 ai
 create mutex links (if applicable)

Figure 3. Pseudocode for EXPANDGRAPH

An operation may only be invoked when its preconditions exist in the current state level of the graph (i.e. pre(op) [image: image29.wmf]Î

 current graph level StatusFlags) and there is an input data type (in(op) [image: image30.wmf]Î

 current graph level semantic type). When an operation is placed in the graph, its effects as well as output data types are added to the existing conditions of the previous state. Thus, the new current state level becomes the new effects and output data of the operations in addition to the previous state’s defining literals and data types. Afterwards, mutex links between actions must be evaluated and placed so that they may be used when backtracking through the graph for the solution. Note that the creation of the mutex links should also consider the semantic data types accordingly.
Pattern-based approach for loop generation. GraphPlan algorithm may generate plans only with sequence and AND-split workflow patterns [23]. However, loops are also a frequently used pattern, such as in the motivation scenario, only one line item can be added into the order. Loop generation (or iterative planning) itself is a difficult and open problem in AI. Lots of work on iterative planning is based on theorem-proving[24]. It is believed by Stephan and Biundo[25] and other researchers that iterative planning cannot be carried out in a fully automatic way. [26] proposes a new way that is not tied to proving a theorem, but it is only correct for a given bound or a certain class of simple planning problems.

Here we proposed a pattern-based approach for loop generation. It is based on the observation of frequently used patterns of iterations. For example, in the motivation scenario, the order request includes multiple line items (an array of line items) while the addLineItem operation take as input one line item only. It is obviously that the process needs to iterate all the line items in the order request. We may extract the pattern as follows. If an operation has input message which has semantic data type SDTi (not an array), and the semantic data types in the current state have an array of SDTi (or other suitable SDT, see “satisfy” operator), a loop is needed for this operation to iterate this array.

4.4.3 Data Mediation. Most of the previous work in this area focus on the generation of the control flow, hence overlook the problem of data heterogeneities and assume there are no such problems or it is handled automatically in an unspecified way. We consider data mediation is critical for generating executable workflows for real-world problems. For convenience, let us say that we need to convert a message M1 with schema MS1 into a message M2 with schema MS2, and let us call M1 source message, M2 target message, etc.

There are two types of heterogeneities in the message schema of Web services: semantic and structure.

Semantic heterogeneities in message schema. terms with different names may refer to the same concept, or terms with the same name may refer to different concepts. For example,
<name>John</name>
may be a name of a person or a name of a dog, and
<num_of_kids>5</ num_of_kids> and <num_of_children>5</ num_of_ children >
may mean the same thing. The solution is to annotate the message schema by using ontology concepts. This makes sure different Web services reach an agreement of the semantics of the terms.
Structure heterogeneities in message schema.
<name>John Smith</name> and
<name>
<first_name>John</first_name>
<last_name>Smith</last_name>
</name>
They have the same information but organized in different ways (schemas). There are two solutions for this type of problem.
SchemaMapping in SAWSDL. Similar to the idea of capturing agreements by ontologies, the attribute “LiftingSchemaMapping” and “LoweringSchemaMapping” are to transform different schemas to a shared and agreed schema. The read may refer to [16] for more information.

Matching algorithm. If the SchemaMapping attribute does not exist, but all the information in the target schema exists in the source schema, we use the following algorithm to convert the source message into a target message.
status, mapCopy, mapTransform <- convert(targetElement)
It calls the following recursive program to traverse the target schema tree/DAG.
convert(currentElement)

modelRef <- getMOdelRef(currentElement)

nullable <- whether currentElement is allowed to be empty

if currentElement is a leaf

if modelRef is not null

if there is an element in source with compatible modelRef

if currentElement has schema mapping AND srcElement has schema mapping

handle by schema mapping

else

handle by copying value from source to target

else

return nullable

else
return nullable

if currentElement is an internal node

if modelRef is not null

if there is an element in source with compatible modelRef

if currentElement has schema mapping AND srcElement has schema mapping

handle by schema mapping

else

return convert(children)

else

return convert(children)

else

return convert(children)
Figure 4. Semantic data type algorithm

The basic idea is that we traverse the target schema tree/DAG in a top-down direction, and try to fill up each node by using the data in the source message. Let us say that we are handling the node Nt in the target schema. Nt is filled up if one of the following happens:

· Nt has the annotation of schema mapping and there is another node in the source schema with compatible data type and schema mapping, thus we assume it can be converted into the target format according to the schema mapping and we don’t look into the sub-tree anymore.

· Nt is a leaf and there is another leaf in the source schema with compatible data type.

· All the nodes in the sub-tree of Nt is filled up.

· Nt is allowed to be empty in the target message.

Context-based ranking algorithm. In case more than one node in the source schema is suitable, we have the following context-based ranking algorithm to select the best one automatically. This is necessary because a XSD element may refer to another element by using “ref” attribute. For example,

[image: image31.png]complexType complexType

PartnerRoleDescription

Contactln@
EmailAddress

Figure 5. Semantic difference because of different context
Besides the model reference of the element “name”, we need also look at the model reference of its parents in order to get the most accurate meaning of the data. The algorithm is a variant of edit distance algorithm.

getXpathSim (srcXpath, tarXpath)

srcArray <- ExtractElement(srcXpath)

tarArray <- ExtractElement(tarXpath)

for i<-1 to length(srcArray)

for j<-1 to length(tarArray)

sim[i][j] = 0;

elementSim <- compareElement(srcArray[i], tarArray[j])

if elementSim >= 0

x = (1-fadingFactor) * sim[i-1][j-1] + nameSimMetric;

if x > sim[i][j]

sim[i][j] = x;
x = (1-fadingFactor) * sim[i-1][j];

if (x > sim[i][j])

sim[i][j] = x;

x = (1- fadingFactor) * sim[i][j-1];

if (x > sim[i][j])

sim[i][j] = x;

Figure 6. Context-based data type ranking algorithm
Where “fadingFactor” is to give more weight to the elements near the current one, while make the elements far away less important. This program calls the function below.

compareElement (srcElement, tarElement)

if srcElement has modelRef AND tarElement has modelRef

if srcModelRef = tarModelRef OR isSubClassOf (srcModelRef, tarModelRef)

return 1

else

return 0

else if isCompareNameString

nameSim<-nameStrWeight*compareNames(srcElement,tarElement)
if (nameSim > nameSimThreshold)

return nameSim

else

return 0

else

return 0
Figure 7. Algorithm of comparing two annotated XSD elements
“isCompareNameString” is set by the user to indicate whether compare the similarity of the name of the elements if no model reference is specified. Different string comparison algorithms such as Soundex may be employed in the function “compareNames”. The similarity of the string will be returned only if it is above a preset threshold “nameSimThreshold”.

For the above example, if the target xpath is “customer/email”, where “customer” is an equivalent class of “fromRole” and “email” is an equivalent class of “EmailAddress”, our system gives score 0.252 and 0.16666667 to the left and right xpath respectively, thus successfully selects the best matched xpath.
Dedicated Data Mediation Web Service. We deploy the above program as a dedicated data mediation Web service which converts and combines messages at run-time, thus alleviate the burden of data mediation from the generated process and make it easier to analyze the control flow. Our system is highly loosely coupled, enhances large-scale reusability and facilitates dynamic partner binding, especially at run-time.
5. Implementation and System Architecture
Picture 8 is the overview of our implemented system. We implement the system in Java, and use Jena to handle the ontology. Note that if more than one ontology is involved, ontology matching/mapping is needed. We develop our SAWSDL API (SA-WSDL4J) to parse semantic templates and annotated Web service descriptions. We use IBM BPWS4J API to generate BPEL, and run it on Oracle BPM engine.

[image: image32]
Figure 8. System architecture

6. Evaluation
Our system generates a BPEL file according to the semantic template we created (part of it is in Figure 9). We run it on Oracle BPM engine, and get the graphical result in Figure 10. It placed an order successfully as we see the record in our account in SWS challenge 2006 server. The only thing we can’t do is the “confirmLineItem” operation, since it use Solicit Response message pattern which is not supported by BPEL.
<wsdl:message name="PIP3A4POR">

<wsdl:part element="por:Pip3A4PurchaseOrderRequest" name="Request" sawsdl:modelReference="Ontology1#PurchaseOrderRequest"/>

</wsdl:message>

<wsdl:message name="PORAck">

<wsdl:part element="ack:ReceiptAcknowledgment" name="Ack" sawsdl:modelReference="Ontology1#PurchaseOrderAck"/>

</wsdl:message>

<wsdl:portType name="MediatorPortType">

<wsdl:operation name="sendPO">

<wsdl:input message="impl:PIP3A4POR"/>

<wsdl:output message="impl:PORAck"/>

<sawsdl:effect expression="confirmedOrder"/>

</wsdl:operation>

</wsdl:portType>
Figure 9. Part of the semantic template
[image: image33.png]Manage Flow Audit Debug Inter

LS N S N IR N N SR NI SN

List of web service activities of this instance:

8 Receive

8 invokeDataMediationService
8 invoke_search

8 invokeDataMediationService
@8 invoke_createNewOrder
8 invokeDataMediationService
8 invoke_addLineItem

8 invokeDataMediationService
@8 invoke_closeOrder

8 invokeDataMediationService
@4 invoke_receiveConfirmation

8 invokeDataMediationService

 [image: image34.png]invoke_recei.

CleanPrevious..

ForDataMlediator

invokeDatal

ExtractConver..

Reply

Figure 10. Part of the invocation result

7. Conclusion
This paper presents an automatic approach for Web service composition, addresses the problem of protocol heterogeneities and data heterogeneities by a planner and a data mediation service. Specifically, an extended GraphPlan algorithm is employed to generate a BPEL process based on the task specification (Semantic Template) and candidate Web services described in SAWSDL. When the BPEL process is running, it calls a dedicated data mediation service to convert (and combine if necessary) the available messages into the format of an input message in order to invoke an operation in the BPEL process. A context-based ranking algorithm is created to select the best element from the source message if more than one element has compatible semantic with the target element.

Our experiment shows that our systems solved the problem in SWS challenge 2006 mediation scenario successfully, which is a typical real-world problem and involves protocol and data heterogeneities. We consider our approach is highly flexible, since the only thing a user need to change for a new scenario is the task specification (semantic template), and perhaps the discover rules/preferences.
8. References
1. Evren Sirin, B.P., Dan Wu, James Hendler, Dana Nau, HTN Planning for Web Service Composition Using SHOP2. Web Semantics Journal, 2004. 1(4): p. 377-396.

2. Evren Sirin, B.P., James Hendler, Template-based composition of semantic web services, in AAAI fall symposium on agents and the semantic web. 2005: Virginia, USA.

3. Srini Narayanan, S.A.M. Simulation, verification and automated composition of Web service. in The 11th International World Wide Web Conference. 2002. Honolulu, Hawaii, USA.

4. Sheila A. McIlraith, T.C.S., Honglei Zeng, Semantic Web Services. IEEE Intelligent Systems, 2001. 16(2): p. 46-53.

5. Sheila McIlraith, T.C.S. Adapting Golog for composition of Semantic Web services. in Knowledge Representation and Reasoning (KR2002). 2002. Toulouse, France.

6. Jinghai Rao, D.D., Paul Hofmann, Norman Sadeh, A Mixed Initiative Approach to Semantic Web Service Discovery and Composition: SAP's Guided Procedures Framework, in Proceedings of the IEEE International Conference on Web Services (ICWS'06) - Volume 00. 2006, IEEE Computer Society.

7. Shankar R. Ponnekanti, A.F., SWORD: A Developer Toolkit for Web Service Composition, in The 11th World Wide Web Conference 2002: Honolulu, Hawaii, USA.

8. Brahim Medjahed, A.B., Ahmed K. Elmagarmid, Composing Web services on the Semantic Web. VLDB Journal, 2003. 12(4): p. 333-351.

9. Ugur Kuter, D.N., Marco Pistore, Paolo Traverso. A Hierarchical Task-Network Planner based on Symbolic Model Checking. in The International Conference on Automated Planning & Scheduling (ICAPS). 2005. Monterey, California, U.S.A.

10. Paolo Traverso, M.P. Automated Composition of Semantic Web Services into Executable Processes. in The 3rd International Semantic Web Conference (ISWC2004). 2004. Hiroshima, Japan.

11. M. Pistore, P.T., P. Bertoli, A. Marconi. Automated Synthesis of Composite BPEL4WS Web Services. in IEEE International Conference on Web Services (ICWS'05). 2005.

12. Waldinger, R.J., Web Agents Cooperating Deductively, in Proceedings of the First International Workshop on Formal Approaches to Agent-Based Systems-Revised Papers. 2001, Springer-Verlag.

13. Lämmermann, S., Runtime Service Composition via Logic-Based Program Synthesis, in Department of Microelectronics and Information Technology. 2002, Royal Institute of Technology.

14. Jinghai Rao, P.K.u., Mihhail Matskin. Application of Linear Logic to Web Service Composition. in the 1st International Conference on Web Services. 2003. Las Vegas, USA.

15. Jinghai Rao, P.K., Mihhail Matskin. Logic-based Web services composition: from service description to process model. in The 2004 International Conference on Web Services. 2004. San Diego, USA.

16. Joel Farrell, H.L., Semantic Annotations for WSDL. http://www.w3.org/TR/sawsdl/, 2006.

17. Ziyang Duan, A.B., Philip Lewis, Shiyong Lu. A Model for Abstract Process Specification, Verification and Composition. in The 2nd international conference on Service oriented computing. 2004. New York, NY, USA.

18. Coalition, O.S. (2003) OWL-S: Semantic markup for web services. Volume,

19. Dumitru Roman, U.K., Holger Lausen, Jos de Bruijn, Ruben Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler and Dieter Fensel, Web Service Modeling Ontology. Applied Ontology, 2005. 1(1): p. 77-106.

20. Farshad, H., et al., Semantic Web Service Composition in IRS-III: The Structured Approach, in Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC'05) - Volume 00. 2005, IEEE Computer Society.

21. VERMA, K., Configuration and Adaptation of Semantic Web Processes, in Computer Science. 2006, University of Georgia: Athens.

22. Stuart Russell, P.N., Artificial Intelligence: A Modern Approach.

23. Wil M. P. van der Aalst, A.H.M.t.H., YAWL: yet another workflow language. Information Systems, 2005. 30(4): p. 245-275.

24. Biundo, S. Present-day deductive planning. in The 2nd European Workshop on Planning (EWSP-93). 94.

25. Werner Stephan, S.B. Deduction-Based Refinement Planning. in AIPS. 1996.

26. Levesque, H.J. Planning with Loops. in The 19th International Joint Conference on Artificial Intelligence. 2005. Edinburgh, Scotland.

Update

Create

Create

Operation

Update

Semantic data types

Update

Status flags

Operation

Operation

Create

Calls

Candidate

Web services

Initial State

& Goal

Data Mediation

Service

BPEL

Engine

Planner

Discover

Engine

Task

Parser

Semantic

Template

Ontology

� “Web Services Glossary” (http://www.w3.org/TR/ws-gloss/), and the discussion of terminologies (http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#wordonspr).

� http://www.w3.org/2002/ws/sawsdl/

� The reader may find the detail on http://sws-challenge.org/wiki/index.php/Scenario:_Purchase_Order_Mediation.

� There may be more than one initial state for an activity because of the non-deterministic behavior of the activities before. For the time being, we only handle one initial state.

_1229983013.unknown

_1201541260.unknown

