
ClickMiner: Towards Forensic Reconstruction of
User-Browser Interactions from Network Traces

Christopher Neasbitt†, Roberto Perdisci†‡, Kang Li†, and Terry Nelms�‡
†Department of Computer Science, University of Georgia
‡College of Computing, Georgia Institute of Technology

�Damballa, Inc.
cjneasbi@uga.edu, {perdisci,kangli}@cs.uga.edu, tnelms@gatech.edu

ABSTRACT
Recent advances in network traffic capturing techniques have made

it feasible to record full traffic traces, often for extended periods

of time. Among the applications enabled by full traffic captures,

being able to automatically reconstruct user-browser interactions

from archived web traffic traces would be helpful in a number of

scenarios, such as aiding the forensic analysis of network security

incidents.

Unfortunately, the modern web is becoming increasingly com-

plex, serving highly dynamic pages that make heavy use of script-

ing languages, a variety of browser plugins, and asynchronous con-

tent requests. Consequently, the semantic gap between

user-browser interactions and the network traces has grown signif-

icantly, making it challenging to analyze the web traffic produced

by even a single user.

In this paper, we propose ClickMiner, a novel system that aims to

automatically reconstruct user-browser interactions from network

traces. Through a user study involving 21 participants, we collected

real user browsing traces to evaluate our approach. We show that,

on average, ClickMiner can correctly reconstruct between � 82%

and � 90% of user-browser interactions with false positives be-

tween 0.74% and 1.16%, and that it outperforms reconstruction

algorithms based solely on referrer-based approaches. We also

present a number of case studies that aim to demonstrate how Click-

Miner can aid the forensic analysis of malware downloads triggered

by social engineering attacks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

General Terms
Security

Keywords
Forensics; Network Traffic Replay

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.

Copyright 2014 ACM 978-1-4503-2957-6/14/11...$15.00.

http://dx.doi.org/10.1145/2660267.2660268 .

1. INTRODUCTION
Recent advances in network traffic capturing techniques have

made it feasible to record full traffic traces, often for extended pe-

riods of time (e.g., a sliding window of several days). This ability

is important to enable fine-grained, off-line traffic inspection, for

example to allow for a detailed postmortem analysis of security

breaches or other significant network events or anomalies.

The ability to perform detailed traffic inspection is orthogonal to

host-based event recording and forensic analysis, and can be espe-

cially useful in those cases in which host-based instrumentation in-

troduces high overhead, is inconvenient, or is simply not practically

feasible (e.g., in networks with permissive bring-your-own-device

policies).

Among the applications enabled by full traffic captures, being

able to automatically reconstruct user-browser interactions from

archived web traffic traces would be useful in a number of scenar-

ios. For example, malware infections through social engineering

attacks [15] specifically target the browser and its user. Therefore,

it is important to enable an after-the-fact analysis of such events,

traveling back in time to study what actions the user performed be-
fore she arrived to the social engineering attack page. This may

in turn allow us to better understand browsing behavior patterns

related to such attacks, and suggest new defense mechanisms.

Besides computer forensics, reconstructing user-browser interac-

tions from traffic traces may benefit other interesting applications,

such as web-usage mining [14], whose main goal is to understand

how users interact with web pages to enhance their browsing ex-

perience or to improve on personalized advertisement strategies [5,

11].

Unfortunately, the modern web is becoming increasingly com-

plex, serving highly dynamic pages that make heavy use of script-

ing languages, a variety of browser plugins, and asynchronous con-

tent requests. Visiting a single web page often requires the browser

to generate numerous HTTP requests to fetch all objects neces-

sary to render it correctly. Consequently, the semantic gap be-

tween user-browser interactions and the packets captured by net-

work traces has grown significantly, making it challenging to ana-

lyze the traffic produced by even a single user’s browsing sessions

to reconstruct what activities the user performed.

Research Goals and Approach. In this paper, we aim to answer

the following research questions:

• Is it at all possible to accurately infer user-browser interac-
tions from full packet network traces?

• With what precision can we reconstruct the sequence of web
pages explicitly requested (or “clicked”) by the user, while

filtering out automatically requested objects due to browser

rendering and plugins?

• Can we infer what element in a web page was “clicked” by
the user to reach the next desired resource?

To answer these research questions and measure the reconstruc-

tion accuracy, we propose ClickMiner, a novel system for recon-

structing user-browser interactions from network traces. We also

compare ClickMiner to a “naive” referrer-based click inference

(RCI) approach based on ReSurf [17], a recently proposed web traf-

fic analysis system. For both ClickMiner and RCI, we assume to be

given a (possibly partial) recording of the web traffic generated by

a user within a given time window of interest. Our main goal is to

reconstruct the sequence of “clicks” that the user performed within

the browser. Notice that we focus only on user-browser interactions

that cause the browser to initiate an HTTP request for a new web

page, and that our definition of click goes beyond mouse clicks,

and includes other events such as typing an URL directly, pressing

Enter on the keyboard to follow a link, etc. (see Section 2).

The RCI approach is based on first constructing the referrer graph
as in ReSurf [17], where a node represents an HTTP request, and

two nodes are linked together by a directed edge according to their

Referer request header fields. Then, this graph is pruned using

a number of heuristics to filter out requests that were (likely) au-

tomatically generated by the browser during rendering (see Sec-

tion 3.1).

Our ClickMiner system, instead, takes a very different approach:

it reconstructs user-browser interactions by actively replaying the

recorded HTTP traffic within an instrumented browser. At a high

level, given the HTTP request-response pair (i.e. HTTP exchange)

(q0, r0) related to an initial page in the trace, we force the browser

to issue request q0, and we feed it back response r0 from the trace.

Through the natural rendering of response r0, the browser will is-

sue another number of HTTP requests to retrieve page components.

ClickMiner serves all the related responses to the browser from

the trace. Essentially, the browser consumes the traffic trace un-

til it reaches a resting state, whereby some action is needed for

the browser to continue to consume the remaining HTTP traffic. At

this point, we consider the next yet to be consumed HTTP exchange

in the trace as a candidate user-browser interaction, feed it to the

browser, and continue until all HTTP traffic has been consumed.

In practice, the replay process used by ClickMiner is much more

involved; we therefore defer the details to Section 5.

Contributions. We make the following contributions:

• We propose ClickMiner, a novel system dedicated to auto-

matically reconstructing user-browser interactions from full

packet captures. Our system can benefit a number of im-

portant tasks, such as aiding the forensic analysis of security

incidents involving the browser (e.g., social engineering at-

tacks).

• Through a user study involving 21 participants, we collected

24 different traffic traces from real user browsing sessions.

Using these traces, we evaluate the two aforementioned ap-

proaches. We show that ClickMiner can reconstruct in aver-

age between � 82% and � 90% of user-browser interactions

with false positives between 0.74% and 1.16%, and that it

outperforms RCI.

• We report a case study involving a real social engineering-

based malware download attack, and show that ClickMiner

was able to reconstruct the full chain of user-browser inter-
actions that led the user to the malware download. In par-

ticular, ClickMiner reduced the amount of information to be

analyzed by a forensic analyst from 316 HTTP exchanges to

only 6 nodes in a click graph.

• To make our results reproducible and foster further research,

we released the source code of our ClickMiner software and

all the browsing traces collected through our user study at

http://clickminer.nis.cs.uga.edu.

2. PROBLEM FORMULATION
Goal. Our main goal is to reconstruct the user-browser interac-

tions that occur during a user’s browsing session, given only a full

packet capture of the network traffic generated by the browser. We

focus exclusively on interactions that cause the browser to initiate

a request for a new web page (e.g., a click on a hyperlink). As an

application example, we are interested in helping a forensic ana-

lyst understand what a user’s browsing behavior was during a time

window preceding (and including) a social engineering or phishing

attack, or other relevant security incidents and anomalies.

Assumptions. We assume the recorded traffic we are interested in

replaying was generated by a non-compromised browser. Namely,

we assume that the browser’s code itself had not (yet) been “hi-

jacked”. This includes the replay of traffic generated during social

engineering and phishing attacks, as well as traffic generated before
a browser vulnerability is actually exploited (e.g., via a drive-by at-

tack).

Definition of User-Browser Interaction. In the remainder of the

paper, we will often interchangeably use the terms “user-browser

interaction” and “click”. Our definition of click is intentionally

lax, and broader than a mouse click. A click in our definition in-

cludes the following events: a mouse click on a page element that

initiates a request for a new page; pressing Enter while the focus

is on a page element such as a hyperlink, thus initiating a new page

request; typing a new URL directly in the browser’s address bar, or

equivalently, clicking on a bookmarked link.

Reconstruction Output. As an example, assume that a user visits

a web page p, and that within this page there exists a “clickable”

DOM element e (notice that if e resides in a page frame, we still

consider it as an element within the context of the outmost frame

p). As the user clicks on e, the browser initiates a request q for a

new web page, as well as several other automatic requests due to the

rendering of the new web page (e.g., to load images, frames, etc.).

Our objective is to reconstruct this information by relying only on

the recorded network traffic, and thus to log the tuple (p, e, q). As

we will discuss later in the paper, in some cases the exact DOM

element e may not be reliably identified. Therefore, identifying

and logging the tuple (p, null, q) is also considered a satisfactory

output, though less preferable.

In some cases, p may not exist. For example, if the user types

an URL directly on the address bar or clicks on a bookmarked link,

we aim to automatically identify the resulting request q, and simply

log (null, null, q).

HTTPS traffic. One may think that because many web services are

transitioning to HTTPS, most recorded web traffic is going to be en-

crypted, and both the ReSurf-based RCI approach and ClickMiner

will become less useful in the near future. However, it is important

to notice that many modern enterprise networks already deploy web

proxies that allow for SSL man-in-the-middle [7] (SSL-MITM) to

enable the inspection of all HTTPS traffic (e.g., to enforce traffic

filtering policies). Therefore, enterprise networks can already eas-

ily record the content of most HTTPS communications (sensible

traffic capturing policies would avoid SSL-MITM for banking ap-

plications or other known sensitive activities).

Cache. Because of the effect of the browser’s cache, some re-

quests resulting from user-browser interactions may not be directly

recorded in the network traces. In this case, we use a “best effort”

approach and attempt to infer and log the request q resulting from

Fetch First
HTTP Request

Browser
Resting State?

Browser
Rendering

Network
Trace

Get Next
Candidate Request

Search for
DOM Element

Found
Element?

Emulate Click
(Confirmed Click)

Load Directly
(Unconfirmed Click)

Yes

No

Contains
Clickable

Elements?

Yes

Discard

No

Yes

No

Wait

1 2

3

4

5 6

7

8

910

Figure 3: ClickMiner’s process (simplified).

the body of its response (2). Then, the browser is instructed to load

this URL as if a user typed it on the address bar. As the browser

renders the web page (3), all related automatic object requests (e.g.,

to load images, frames, etc.) are sent to the proxy, which retrieves

the responses from the recorded HTTP flows and passes them back

to the browser (notice that the proxy is not allowed to retrieve con-

tent from other than the recorded network trace). This could be

seen as forcing all browser requests to be served from a cache.

Once the browser fetches all necessary objects and renders the

current page, it will reach a resting state (4), whereby no further

previously recorded HTTP requests would be issued by the browser

without explicit user interaction (see Section 5.3 for a more accu-

rate definition of resting state). At this point, the browser driver

queries the proxy for the next HTTP request in the network trace

that has not yet been “consumed” by the browser (5). The re-

turned request represents a candidate click. To verify if this request

was actually caused by a user click, the browser driver inspects the

DOM of the pages currently rendered by the browser (6). If a click-
able element is found (7), whose attributes (e.g., the href attribute

of an <a> tag) match the URL of the candidate click, we consider

this to be a confirmed click, which reports information including

the URL of the page currently rendered in the browser (i.e., the

URL in the address bar), the path in the current page DOM of the

found clickable element, and the URL of the next Web resource

that would be requested as a consequence of clicking on that ele-

ment. In Section 5 we will explain in details how (and why) our

URL matching process uses an approximate matching approach to

compensate for dynamically generated URLs.

If a confirmed click is found, our browser driver (virtually) clicks

on the related element (8), thus emulating a user interaction and

allowing the browser to fetch the next web page to be rendered

from the proxy. If no element is found that can be clicked, and

after applying a number of other checks (9), the plugin assumes

the user had typed the next URL directly into the address bar (10),

and therefore instructs the browser to directly load the page and log

the event as an unconfirmed user-browser interaction. ClickMiner

then continues to search for other user-browser interactions, until

all HTTP traffic in the recorded trace is consumed.

Challenges: Intuitively, if all web content was “static” and encoded

using well-formed HTML, the process outlined above would per-

fectly reconstruct all user’s clicks. However, modern dynamic web-

page construction as well as browser design pose a number of chal-

lenges to reconstructing user-browser interactions. In the following

sections we discuss how ClickMiner copes with these challenges.

5. CLICKMINER SYSTEM DETAILS

5.1 In-Browser Traffic Replay
Let l = {(qi, ri)}i=1..n be the ordered list of HTTP exchanges in the

recorded trace, where the pairs are sorted according to the times-

tamp associated with the requests {qi}. To bootstrap the in-browser

traffic replay process, we scan the list l searching for the first pair

(qj, r j) whose response contains HTML content. Essentially, we

look for the first “usable” page in the trace that can be rendered by

the browser that may contain clickable elements.

Then, our browser driver instructs the browser to replay request

qj. This request is received by ClickMiner’s proxy, which responds

by serving r j (see Section 5.2). As the browser renders r j, it may

issue a set of subsequent requests {qr}, which are sent to the proxy

and served accordingly from the trace.

5.2 The Role of ClickMiner’s Proxy
ClickMiner’s proxy (see Figure 2) is mainly responsible for re-

assembling TCP flows and extracting HTTP exchanges from pre-

viously recoded network traces, and for serving the recorded web

content upon request to the instrumented

browser. When the browser (which is setup to use our proxy ap-

plication as its HTTP proxy) sends an HTTP request q′, the proxy

extracts the corresponding absolute URL u′ from q′, and searches

the list of exchanges, l, to find the first occurrence of an exchange

whose query URL matches u′. Let (qk, rk) be such a pair. At this

point, the proxy retrieves the content of response rk from the trace,

sends it to the browser, and marks the pair (qk, rk) as consumed.

(Approximate) Matching of Requests and Responses. Due to the

highly dynamic nature of modern web pages, during replay some

HTTP requests issued by the browser may not match any of the

originally recorded traces. This may occur for example when URL

parameters encode data that is either system- or time-dependent,

or is randomly generated. To attempt to satisfy these requests, the

proxy applies an approximate matching algorithm. Let qu be the

request issued by the browser during replay. We measure the sim-

ilarity between qu and all not-yet-consumed requests in the trace

under the same domain name (or IP address) as qu. Let qa be one

of such yet to be consumed requests. To compute the similarity be-

tween qu and qa, we measure the similarity between their URL path

strings, the similarity of the set of parameter names, and the num-

ber of matching parameter values. We also consider qu and qa to be

more similar when the timestamp of qa is closer to the timestamp

of the last request that was successfully consumed from the net-

work trace. We then combine all these similarity scores, and match

qu with the most similar qa in the trace. In the eventuality that the

browser issues an HTTP request that does not match any not-yet-

consumed request in the trace, the proxy will simply respond with

a 404 Not Found.
It is possible (though we found to be rare in practice) that due

to approximate matching a request may be mistakenly consumed,

potentially causing ClickMiner to miss a “click” later on during

trace replay. The effect of this type of inappropriate match is akin

to missing clicks due to the effect of the browser cache. Section 5.6

details this scenario as well as ClickMiner’s recovery mechanisms.

5.3 Browser Resting State
Since our main goal is to detect user-browser interactions, we

need to distinguish between HTTP requests automatically issued by

the browser due to the rendering process, and requests that would

otherwise not realize themselves, if not through an explicit (broadly

defined) user click event. To this end, we aim to detect at what

point in time, after loading a page, user intervention is needed for

the browser to request a new web page or object that was previously

stored in the packet capture. That is, we aim to detect at what point

in time the browser reaches a resting state.

Typically, after the browser has rendered a page, including load-

ing all page components such as images, ads, and embedded ob-

jects, the browser will stop issuing HTTP requests. In this case, we

can easily detect that the browser reached a resting state. But the

simple scenario outlined above does not take into account the fact

that in the case of dynamic pages, the browser may periodically is-

sue a “page refresh” request (e.g., due to a “meta refresh” tag) or

other asynchronous requests (e.g., via AJAX), which make it more

difficult to decide whether the browser has reached a resting state

or not.

As a concrete example, the browser may be rendering a page that

uses asynchronous requests to periodically update a component of

the page with some real-time news feed. However, these asynch-

ronous requests are of little interest for the purpose of mining sub-

sequent user-browser interactions, and therefore we would like to

find a way to determine whether the user had in fact moved on to

request another page, rather than waiting indefinitely on a page that

periodically updates its content.

To detect whether the browser has reached a resting state, even

in the presence of dynamic content, we proceed as follows. We

set a polling interval tpoll (10s, in our experiments), after which the

browser driver checks whether the instrumented browser has issued

any successful HTTP requests since the last poll. That is, we verify

whether during the last polling interval, the browser has loaded any

components successfully served from the recorded trace. In fact,

going back to our news feed example, if during recording the user

had moved on to another page, during replay we will reach a point

in which the page rendered in the instrumented browser has con-

sumed all automatic requests (and related responses) recorded in

the trace, and now issues asynchronous requests that do not exist in

the recorded trace. This signals that the browser may have reached

a resting state. In addition, at every poll point the driver checks

whether there was any change in the page DOM, with respect to

the previous interval. In practice, the driver computes a hash of the

current DOM, and compares it with the previous version.

Accordingly, we apply these three rules.

(R1) If no DOM change and no successful requests are observed

for a time equal to 2 · tpoll, we decide that the browser has

reached a resting state.

(R2) It is possible, though, that the DOM of a page may change

continuously (e.g., via JavaScript) to realize

some highly dynamic visual effect, while the browser still

fits our definition of resting state, i.e., the need of (emulated)

user intervention to load other content recorded in the trace.

Therefore, even if the DOM keeps changing, we decide that

we reached a resting state if the instrumented browser has not

issued any new successful (i.e., served from the trace) HTTP

request in the last 4 · tpoll intervals.

(R3) It is possible for a page to take a rather large amount of time

to reach a resting state based upon (R1) and (R2) alone, given

a significantly long trace. Therefore, we put an upper limit

on the number of polling attempts we make before a browser

window is considered to be in a resting state. We conserva-

tively set the upper limit to 25 · tpoll in our experiments.

The time threshold values are empirically chosen to strike a good

trade-off between reconstruction accuracy and efficiency. The rules

are applied (per window) to all windows (i.e., pages) concurrently

open on the instrumented browser.

5.4 Reconstructing Interactions
Assume the browser has reached a resting state. At this point, our

browser driver sends a control message to the proxy to request the

next unconsumed request, q, in the network trace. Let u be the URL

of the request q returned by the proxy. We refer to u as a candidate
interaction URL. To verify whether q was due to a user-browser

interaction or not, we proceed as follows. We inspect the DOM of

all currently open windows, and match any element that includes u
as one of its attribute values. For example, u may match the href
value of an <a> tag, the src value of an tag, etc. Then,

we filter out all non-clickable matches. For example, we discard a

match if u matches a src attribute value, as this means that u was

automatically requested by the browser (e.g., to render an image),

rather than being caused by a user-browser interaction. In addition,

we discard matches to non-clickable tags, such as , <p>,
<pre>, etc.

Confirmed vs. unconfirmed interactions. If a valid (clickable)

DOM element e that matches u is found, we label it as a confirmed
user-browser interaction, and log the page and DOM element re-

lated to the interaction. Notice that if e exists within a page frame,

we still consider it as an element of the outmost page frame p, and

therefore we log the tuple (p,e,q). In case no element is found,

we load u in a new browser window. We then check whether the

related loaded page itself contains any clickable HTML elements,

and if so mark it as a possible, unconfirmed user-browser interac-
tion; otherwise we disregard u (no interaction).

Emulating user-browser interactions. Once a determination is

made that an HTTP request was (highly likely) generated via user

interaction, ClickMiner emulates that interaction via our browser

plugin. Because it is difficult to infer from the traffic alone if the

user had forced a page open in a new window/tab, we open each

new page resulting from an emulated interaction on a separate win-

dow, and track the browser state and DOM concurrently for all open

pages.

Challenges. There are a number of practical complications that

make it difficult to locate the URL u within the DOM. For exam-

ple, u may have been dynamically generated via JavaScript as a

product of the user clicking on a DOM element with an onclick
or onmousedown attribute. In addition, u may have been requested

as a result of the user’s interaction with an embedded object, such

as a Flash object. Lastly, u may have been requested from a page

satisfied from the browser cache, making the page containing u un-

searchable as it may not have been recorded in the trace. These

scenarios are addressed in Sections 5.5 and 5.6.

Another challenge comes from the plethora of plugins and script-

ing languages, which often issue asynchronous content requests.

For example, consider a browsing session in which the user visits

www.google.com and types a search keyword. As the user types,

asynchronous requests will be sent to the server to update the page

content with the (partial) search results. While the packet traces

capture all requests, without knowledge of the semantics behind the

asynchronous requests it is difficult to simulate the actions required

in order to force the browser to make those same requests during

replay. In turn, this means that we cannot easily replay those re-

quests within the browser. As such, the effects of those requests

(i.e, displaying of dynamically updated search results) will not oc-

cur during replay. We may therefore miss finding the element in

the DOM (i.e., the search result link) on which the user eventu-

ally clicked. In the following sections we discuss how ClickMiner

copes with some of these challenges.

5.5 Dynamic and Embedded Content
The algorithm described in Section 5.4 for finding user-browser

interactions is not able, by itself, to reconstruct events for which the

actual click is handled outside of the context of the page’s DOM.

For example, a click event may be handled via a JavaScript (JS) that

dynamically compiles the URL of the next page to be loaded and

triggers a document.location change. Correctly replaying all

possible such cases is extremely challenging. What we describe in

this section is a best effort approach to close some of the semantic

gaps present in the network traces, thus further aiding the work of

a forensic analyst.

JavaScript Mediated Clicks: One possible way to reconstruct

clicks handled by JS would be to apply program analysis techniques

to all scripts contained in the currently open pages. However, JS

code embedded in highly dynamic pages can be very complex [13],

and is often obfuscated to protect it from straightforward reverse

engineering. Therefore, instead of leveraging program analysis

techniques, we take a lightweight “network-oriented” approach to

approximately reconstruct the clicks. The idea is to identify all

clickable elements in a page that subscribe to events such as

onclick, ondoubleclick, onmousedown, etc., and “test” them

to check whether any of these elements leads to a particular URL.

In practice, we proceed with emulating clicks to each one of these

elements in the current page DOM under analysis. If, as the result

of a particular click, the browser requests the next expected URL

(i.e., the URL of the candidate interaction currently being consid-

ered), our proxy will simply serve the response. However, if the

click causes the browser to request an URL that does not match the

expected URL, the proxy will serve a 204 No Content response,

thus preventing the browser from inadvertently loading an “unde-

sired” page. Still, there exists a challenge due to the fact that click-

ing on certain elements may occlude parts of the page, thus in a

way changing the “state” of the page itself. However, our emulated

clicks are based on programmatically “activating” DOM elements,

and in practice the visual state of the page is often irrelevant.

Embedded Object Mediated Clicks: Common third-party

browser plugins such as Flash, Silverlight, or Java, allow com-

plex content to be rendered and controlled outside of the scope of a

page’s DOM. As Flash is arguably the most common plugin, Click-

Miner attempts to detect clicks on Flash objects (it is worth recall-

ing that we are only concerned with clicks that cause the browser to

load a new page). We do so by analyzing the FLASHVARS parameter

typically passed to embedded Flash objects. For example, Flash-

based ads often extract the destination URL to be loaded upon an

ad click from FLASHVARS, to enable efficient ad reuse on multiple

pages. Hence, we attempt to detect clicks on Flash objects by pars-

ing the variables passed via FLASHVARS and searching for a URL

that (approximately) matches a candidate interaction’s URL.

5.6 The Effect of the Browser Cache
ClickMiner’s reconstruction capabilities are limited to the infor-

mation contained within the recorded HTTP flows. This presents

a problem if a click was satisfied from the browser’s cache. Click-

Miner implements a best effort approach to reconstruct interactions

dependent upon missing traffic.

Assume that a user visited a page A, where she clicked on an

element which took her to page B, then clicked on an element of B

that brought her to a new page C, and finally clicked on an element

of C to go to page D. Suppose that the request for B was satisfied

directly from the cache. In this simplified example, ClickMiner

would first process page A, retrieving it from the trace and loading

it into the browser. After the browser reaches a resting state, the

proxy would suggest the next candidate interaction URL. Since no

record of the request to page B exists within the trace, the first in-

teraction will be missed. Instead, ClickMiner’s proxy will suggest

the URL of page C, Curl. Consequently, ClickMiner inspects A’s

DOM searching for Curl, without finding it. At this point, Click-

Miner loads Curl anyway in a new browser window, and marks Curl

as an unconfirmed click. Finally, ClickMiner would retrieve D’s

URL, Durl, as the next candidate interaction, inspect C’s DOM to

(likely) match the element of C pointing to Durl, emulate a click on

that element, and mark Durl as a confirmed click.

In general, though user-browser interactions that are not reflected

in the network trace cannot be reconstructed with certainty, Click-

Miner may still be able to infer them, as we discuss in Section 6.2.

More importantly, missing one interaction does not jeopardize the

reconstruction of other interactions that can be recovered from far-

ther along the trace.

Other sources of missing traffic: Packet loss, corrupted pack-

ets, and encrypted traffic represent other possible sources of traffic

missing from the traces. The effect of such missing information on

ClickMiner’s results is similar to the effect of the browser cache.

6. CLICK GRAPH ANALYSIS
In this section, we describe how we can analyze the results of

ClickMiner by building a click graph (Section 6.1). Furthermore,

we explain how we can combine ClickMiner’s click graph with

the referrer graph (see Section 3.1) to infer additional user-browser

interaction that may have been missed during the in-browser replay

process (Section 6.2).

6.1 Building the Click Graph
We represent a user-browser interaction reconstructed by Click-

Miner as a tuple (p, e, q), where q is an HTTP request, p is a web

page URL, and e is a DOM element in the (rendered) page p that

when clicked caused the browser to issue a request for q. Let

m = {(pi, ei, qi)}i=1...n be the list of all user-browser interactions

mined by ClickMiner via in-browser traffic replay, as explained

in Section 4 and Section 5. We build a directed acyclic graph

C = (V, E), where each node in V represents a “click tuple” from

the list m. A directed edge ((pw, ew, qw)→ (py, ey, qy)) ∈ E exists if

page py was reached as a consequence of request qw, which in turn

was issued by emulating a user click on an element ew of page pw,

for example.

Notice that the list m of interactions reconstructed by ClickMiner

includes both confirmed and unconfirmed clicks (defined in Sec-

tion 5.4). Remember that an unconfirmed click U is a reconstructed

interaction for which ClickMiner was not able to find (i.e., confirm)

the existence of a related clickable DOM element. Formally, an

unconfirmed click can be represented by a node U = (pu, eu, qu),

where pu and eu are unknown values (in practice, pu and eu are

null). However, in some cases the page of an unconfirmed click

can be inferred from the referrer header field of qu, as discussed

below in Section 6.2.

The click graph C may contain a node Rj = (null, null, qr j) (or

more than one) related to a request qr j that may have been issued di-

rectly, without clicking on a page element. For example, we would

have such a “root node” if the user types the URL of a page directly

in the browser address bar, or clicks on a bookmarked link. In gen-

eral we call Rj a root node if during traffic replay ClickMiner was

not able to find any page and DOM element that would lead to the

node’s HTTP request qr j , and if qr j did not carry a Referer field.

Thus, a node can be considered as a “root” if it was mined as an

unconfirmed interaction, and if no referrer is carried in the related

HTTP request.

(a)

(b)

(c)

root
node

mined by
ClickMiner

recovered from
referrer info

U'

U'Y'

U'Y'W'

Y

Figure 4: Examples of augmented click graph.

6.2 Augmented Click Inference
Ideally, the click graph C will include the entire sequence of

clicks a user made during a browsing session. However, there

are some situations in which ClickMiner may fail to detect a user-

browser interaction (see Sections 5.5 and 5.6), thereby causing the

generation of an incomplete click graph. To recover from some of

the missing clicks, we augment the click graph produced by Click-

Miner with information extracted from the HTTP referrers in the

network trace, as follows.

Assume U = (pu, eu, qu), with pu = null and eu = null, is an

unconfirmed interaction mined by ClickMiner, and let refu be the

referrer carried by qu. In this case, we can infer that pu should be

equal to refu. Therefore, we can replace U with U′ = (refu, null, qu).

At this point, if the click graph C contains a node Y = (py, ey, qy)

where qy’s URL equals refu, we can draw an edge Y → U′. In other

words, we inferred that the page pu was missing in the click graph

C, and we were able to derive it by leveraging referrer information,

as shown in the example Figure 4(a).

Assume now that ClickMiner failed to mine the node Y . That is,

Y = (py, ey, qy) is missing from the click graph C. Also, suppose

that the network trace contains an exchange (qy, ry), for which qy’s

URL equals refu. In this case, we can further infer that the click

graph C should have contained a node Y ′ = (py, ey, qy), where py

and ey are unknown. We can repeat the process described above un-

til the last inferred node can be connected to an existing node in C,

as shown in Figure 4(b), or a “root node” W ′ = (null, null, qw) is re-

covered from referrer information, whereby qw carries no referrer,

as shown in Figure 4(c).

We can also apply some of the pruning techniques used for RCI

(Section 3.1) to the augmented click graph, thus further refining

it. For instance, we can apply ad and social widgets pruning to

the augmented click graph in a manner similar to that described

in Section 3.1. In addition, the referrer delay pruning can also be

applied to the augmented click graph, allowing for a direct compar-

ison between ClickMiner and RCI, which we discuss in Section 7

(see Figure 5).

Differences w.r.t. RCI. It is worth noting that, unlike the RCI

method (Section 3), ClickMiner selectively leverages referrer in-

formation only to fill in some gaps between interactions in the click

graph that were mined via in-browser traffic replay. On the other

hand, RCI “naively” uses the entire set of referrers found in the

traffic traces.

7. EVALUATION
To evaluate and compare ClickMiner and RCI, we conducted

a user study1 involving 21 different participants. All user brows-

ing traces we collected during this study are available at http:
//clickminer.nis.cs.uga.edu, along with our prototype im-

plementations of RCI and ClickMiner.

1The user study was approved by our university’s IRB.

All our experiments were conducted with Firefox. However, it is

important to notice that our implementation of ClickMiner is based

on Selenium-WebDriver [4], which in turn is compatible with most

major browsers, including some mobile versions. Therefore, with

only minor adjustments ClickMiner could be used to replay web

traffic within other browsers, for example selected according to the

user-agent string that appears in the recorded network traces.

7.1 Recording User-Browser Interactions
For our user study we recruited 21 subjects among the under-

graduate and graduate students, and staff members at the Univer-

sity of Georgia. Each subject was asked to freely browse web-

sites of their choosing, within only few “privacy-preserving” re-

strictions (e.g., we prohibited the subjects from logging into any

site containing personally identifiable information, such as GMail,

Facebook, online banking sites, etc.). Participants were assigned a

browsing time slot of about 20 minutes, during which they visited

a large variety of sites, including many highly dynamic ones such

as amazon.com, youtube.com, etc.

Each user interacted with an instrumented Firefox browser that

allowed us to record most UI-level user-browser interactions. For

example, every time the user performed a mouse click within a

page, we recorded a tuple (te, pagee, eleme, dste) containing the

timestamp of the click event e, the URL of the main page where

the click happened, the DOM element that was clicked, and the

destination page URL. We also recorded key-press events. At the

same time, we recorded the related full packet traces, and a video

of all UI events (essentially, a video of the entire Desktop). A few

users offered to record more than one 20-minutes browsing session,

and overall we collected 24 different browsing traces that we used

in our experiments.

We split the users into two roughly equal groups: Group1 and

Group2. The users in Group1 were assigned a browser whose page

caching functionalities were completely disabled, whereas users in

Group2 used a browser with default caching settings. In practice,

each user in Group1 was assigned a “fresh” virtual machine (VM)

image with a fresh instrumented no-cache browser instance. On

the other hand, users in Group2 shared the same browser instance.

Namely the second user in Group2 was assigned the browser in-

stance previously used by the first user in Group2. Similarly, the

third user was assigned the browser instance previously used by

the first and second users in Group2, etc. We did this to enable the

evaluation of ClickMiner and RCI with and without a “warmed up”

browser cache.

Table 1 and 2 report the number of HTTP requests and recorded

user-browser interaction for each trace (a complete description of

the table content is given in Section 7.2.2).

7.2 Reconstructed User-Browser Interactions

7.2.1 RCI Results
To evaluate the RCI method and compare it to ClickMiner, we

first built a referrer graph (see Section 3.1) from each of the network

traces recorded during our user study, and then pruned the graphs

as explained in Section 3.1. Assume that vi = (qi, ri) is a node in

the pruned RCI graph generated from a network trace. We com-

pare the URL of request qi with the set of user-browser interactions

recorded during the related user browsing session. For example, if

qi matches the destination dste of a click event e, we consider qi as

a true positive, and mark event e as “consumed” to avoid matching

the same recorded interaction more than once. On the other hand,

if qi does not match any of the recorded user-browser interactions,

we label it as a false positive.

Average false positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

+

+

+

+

+

+

0.14s.

3.2s.

9.1s.

12.8s.

36.2s.

51.2s.

+
+

+

+

+

+

0.14s.
3.2s.

9.1s.

12.8s.

36.2s.

51.2s.

RCI
ClickMiner

Figure 5: Trade-off between true and false positives.

The blue solid curve in Figure 5 shows the trade-off between the

average true and false positive rates obtained by varying the refer-

rer delay threshold, θδ. Per each trace, the true positive rate is com-

puted as the fraction of user-browser interactions recorded during

a user’s browsing session that are represented in the pruned refer-

rer graph, whereas the false positive rate is the fraction of graph

nodes that do not match any recorded interaction. The average is

computed across all 24 available user browsing traces.

7.2.2 ClickMiner Results
To evaluate ClickMiner, for each user browser session, we per-

formed in-browser traffic replay as explained in Section 5. Then,

we built the click graph, as explained in Section 6. Given the click

graph, we match each node in the graph with the user-browser in-

teractions recorded during our user study, in a way similar to what

we discussed in Section 7.2.1 for the RCI method. Tables 1 and 2

report the results obtained using ClickMiner with the augmented

click graph (see Section 6.2), but without any referrer delay prun-

ing. On the other hand, the dashed red line in Figure 5 reports the

average trade-off (across all traces) between true and false positives

obtained by pruning the augmented click graph at different refer-

rer delay thresholds, so that we can directly compare the results to

those produced by RCI.

In all tables, the Trace Number is simply a trace identifier; HTTP
Requests is the number of requests in the captured network traces;

Recorded Clicks is the number of user-browser interactions recorded

via the instrumented browser used by the participants of our user

study; Mined Clicks indicates the number of user-browser interac-

tions inferred as explained in Section 6.2, averaged across five runs

per trace; Matching Clicks indicates the number of mined clicks

that match a recorded click. Finally, TPR is the true positive rate,

i.e., the percentage of recorded interactions that match an interac-

tion inferred by our system, whereas FPR is the false positive rate,

i.e., the number of mined clicks that do not match any recorded

interaction.

It is worth noting that, to produce the results in Table 1 and 2, we

replay each user browsing trace for five times, and compute the av-

erage and standard deviation for the click mining results obtained

per each run. We do this because every time a traffic trace is re-

played within the browser, the rendering of highly dynamic pages

Table 1: ClickMiner results - Group1 (no-cache)

Trace
Number

HTTP
Requests

Recorded
Clicks

Mined
Clicks

avg (stddev)

Matching
Clicks

avg (stddev) TPR FPR
1 3925 21 50.80 (0.40) 20.00 (0.00) 95.24% 0.79%

2 1114 25 39.00 (0.00) 25.00 (0.00) 100.00% 1.29%

3 2884 16 41.00 (0.00) 13.00 (0.00) 81.25% 0.98%

4 1030 10 16.00 (0.00) 10.00 (0.00) 100.00% 0.59%

5 3405 23 46.20 (0.75) 22.80 (0.40) 99.13% 0.69%

6 3800 21 51.60 (0.80) 19.00 (0.00) 90.48% 0.86%

7 4891 11 30.20 (0.40) 11.00 (0.00) 100.00% 0.39%

11 9247 37 75.00 (2.61) 32.20 (0.75) 87.03% 0.46%

14 6508 32 50.00 (1.10) 28.00 (0.00) 87.50% 0.34%

16 1167 32 28.60 (0.49) 22.00 (0.00) 68.75% 0.58%

18 4073 20 76.60 (1.50) 17.20 (0.40) 86.00% 1.47%

22 5005 23 51.40 (0.80) 21.00 (0.00) 91.30% 0.61%

23 722 14 15.00 (0.00) 11.00 (0.00) 78.57% 0.56%

Average 3674.69 21.92 43.95 19.40 89.63% 0.74%

Stddev 2350.46 7.88 18.21 6.60 9.58 0.34

Table 2: ClickMiner results - Group2 (cache)

Trace
Number

HTTP
Requests

Recorded
Clicks

Mined
Clicks

avg (stddev)

Matching
Clicks

avg (stddev) TPR FPR
8 4786 28 64.40 (0.80) 21.00 (0.00) 75.00% 0.91%

9 2212 19 42.80 (1.60) 14.00 (0.00) 73.68% 1.35%

10 1639 15 23.20 (0.40) 15.00 (0.00) 100.00% 0.50%

12 1219 10 15.60 (0.49) 7.00 (0.00) 70.00% 0.71%

13 1250 15 17.00 (0.00) 13.00 (0.00) 86.67% 0.32%

15 500 34 34.20 (0.40) 28.00 (0.00) 82.35% 1.33%

17 4682 25 63.00 (0.00) 19.00 (0.00) 76.00% 0.94%

19 2239 21 38.00 (1.26) 19.20 (0.40) 91.43% 0.85%

20 3980 21 117.00 (1.26) 19.00 (0.00) 90.48% 2.48%

21 2312 18 60.60 (0.49) 16.00 (0.00) 88.89% 1.93%

24 943 22 28.40 (0.49) 14.40 (0.49) 65.45% 1.52%

Average 2342.00 20.73 45.84 16.87 81.81% 1.16%

Stddev 1428.86 6.33 28.11 5.10 10.61 0.64

may introduce slight changes, such as the automatic generation of

some new HTTP requests via JavaScript2

By comparing the average true and false positive rates reported

in Tables 1 and 2, we can see that the browser cache certainly has

an impact on the ability of ClickMiner to reconstruct user-browser

interactions. For example, when the cache is disabled (Table 1),

ClickMiner achieves more than 90% TRP in 7 out of 13 traces,

and 100% in 3 traces. On the other hand, only 3 out of 11 traces

recorded with the cached enabled can achieve more than 90% TRP.

Nonetheless, even in the cache enabled case, ClickMiner in aver-

age can retrieve more than 81% of user-browser interactions with

less than 1.16% of false positives. For comparison, using the non-
augmented click graph (i.e., without augmenting ClickMiner’s out-

put with referrer information), we obtained 70.47% TPR at 1.72%

FPR, for the traces in Group2.

We also analyzed the percentage of confirmed and unconfirmed

user-browser interactions (see Section 5.4) that ClickMiner was

able to discover. On average, ClickMiner was able to reconstruct

2To reduce execution time, in our current evaluation we did not
turn on ClickMiner’s system components describe in Section 5.5
that deal explicitly with dynamic and embedded content.

the actual DOM element clicked by the user for around 46% of the

true positive interactions in Group1, and 48% in Group2.

ClickMiner vs. RCI Notice that the dashed red curve (ClickMiner)

in Figure 5 does not reach the top-right corner because, unlike the

RCI method, the number of user-browser interactions returned by

ClickMiner is bound by what can be discovered through the in-

browser replay process. Augmenting the click graph only fills some

“gaps”, as explained in Section 6. Nonetheless, at low false positive

rates, ClickMiner clearly outperforms RCI. For example, we would

have to tolerate more than 20% FPR, for RCI to reach a TPR higher

than what obtained with ClickMiner.

Execution Time A bottleneck in ClickMiner’s performance stems

from the use of a graphical web browser to replay HTTP traffic.

GUI based web browsers generate a significant amount of I/O be-

tween the display device related to rendering their interface as well

as all web pages loaded. While ClickMiner allows for visualizing

the entire traffic replay on the browser, to perform our experiments

we run the browser in headless mode (i.e. without a graphical in-

terface), in which all I/O is simulated in memory via Xvfb [2], thus

reducing processing time.

We performed our experiments with ClickMiner on an off-the-

shelf desktop machine with an Intel Core i7-870 CPU and 8GB of

RAM. Overall, ClickMiner required an execution time between ap-

proximately two to five times the length of the browsing session.

The median execution time for the traces was about 76 minutes

for traces in Group1 and 34 minutes for Group2. After inspec-

tion, we noticed that ClickMiner’s execution time is dominated by

inspecting the DOM of each relevant web page rendered by the

browser searching for the elements that were clicked by the users.

The lower time needed to process traces in Group2 is likely due

to the effect of the cache, because it lowers the number of HTTP

requests to be considered as a possible interaction. In our future

work we will investigate further optimizations that would allow us

to reduce ClickMiner’s execution time.

7.2.3 Discussion
While faced by several challenges due to highly dynamic content

and caching, in practice ClickMiner is able to automatically recon-

struct a large fraction of user-browser interactions with low false

positives. We therefore believe our system can be a valuable aid to

the forensic analysis of web traffic traces.

In the following, we discuss some common causes of false nega-

tives and false positives that we identified through an analysis of the

browsing traces used in our evaluation, which may inspire further

improvements in future work. Furthermore, we discuss potential

advantages that RCI may have, compared to ClickMiner.

Common causes of false positives. False positives are primar-

ily represented by unconfirmed user-browser interactions recon-

structed by ClickMiner as a result of HTTP requests that were not

properly “consumed” during in-browser replay. For instance, as-

sume the HTTP exchange (q, r) represents a web advertisement

loaded through a JavaScript-driven request, and that response r
contains clickable HTML content (the ad itself). Also, assume the

user who generated the trace never actually clicked on the ad dur-

ing her browsing session. It is possible that during ClickMiner’s in-

browser reply, request q will not be made, because the JavaScript

running on the rendered page that was supposed to load the ad hap-

pens to dynamically construct a significantly different URL to be

requested (e.g., for a different ad). Therefore q remains “uncon-

sumed”. At a certain point during trace replay, q may be consid-

ered as the next “candidate click”, because it is an outstanding, un-

consumed request in the trace. As no DOM element can be found

bing.com

bing.com/search?q=far+cry+...

allhackz.net

gameadvert.com

wellmediaonline.com

effortlessdownload.com

(1)

(2)

(3)

(5)

(4)

(6)

mined inferred download

Legend

Figure 6: Reconstructed click graph (case study 1)

relating to q’s URL, ClickMiner will render r in a new window, and

classify q as an unconfirmed click.

Common causes of false negatives. An example of “missed in-

teractions” that is prevalent within our user study involves Google

searches. The search results page is built dynamically as the user

types, via asynchronous requests. ClickMiner is not able to infer

all these UI events from the network traces, and therefore it is dif-

ficult to have the browser replay the same asynchronous requests.

Consequently, the “replayed” DOM will be different from the one

on which the user originally clicked (see related discussion in Sec-

tion 5.4), and we will not be able to find the DOM element needed

to mine a confirmed interaction.

Another source of false negatives is represented by exchanges

that are simply missing from the trace, because of the caching ef-

fect. In addition, while more rare, it may also happen that an ex-

change is erroneously consumed during replay, as a consequence of

ClickMiner’s approximate URL matching process (see Section 5.2).

This may “steal” the HTTP exchange from a correct match to an

actual user interaction.

Advantages of RCI While ClickMiner outperforms RCI in terms

of reconstruction accuracy, the RCI method has the advantage that

no in-browser traffic replay is necessary, and that it can work on

incomplete traffic traces that only record the header of HTTP re-

quests, rather than requiring the full request and response con-

tent. Also, the RCI method is more efficient than ClickMiner’s

in-browser traffic replay process. As expected, this represents a

natural trade-off between efficiency and reconstruction accuracy.

8. CASE STUDIES
We now describe the application of ClickMiner to real-world ex-

amples of security incidents involving a malware download.

8.1 Case Study 1
During our user study, we were able to separately collect a net-

work trace for the following browsing session. A user visited the

popular search engine bing.com. Next, she performed a search

using the terms “far cry 3 hackz tools crack”. From the

search results, the user clicked on a link to a page hosted on the site

allhackz[dot]net. Then, she clicked on a download button, re-

sulting in the browser opening two pages, hosted at

gameadvert[dot]com and wellmediaonline[dot]com, respec-

tively. Lastly, from wellmediaonline[dot]com the user’s

browser was redirected to effortlessdownload[dot]com, from

which an executable file was ultimately downloaded3. We submit-

ted the downloaded file to VirusTotal.com, where it was detected

as a malware by 23 out of 51 AVs.

Summary of Results: By running ClickMiner on the network trace

recorded during the user-generated browsing session described

above, we were able to reconstruct the full chain of user-browser in-
teractions that led the user to the malware download. In particular,

ClickMiner reduced the amount of information to be analyzed by

3MD5: c94f917fdc39dfb7245ebdd674b2bdf8

a forensic analyst from 316 HTTP exchanges to only 6 click graph
nodes, as shown in Figure 6. Additionally, ClickMiner was able

to correctly identify what element the user clicked on to initiate

the malicious download. Conversely, RCI did not perform as well.

Even by adjusting the filtering and referrer-delay threshold to re-

duce RCI’s false positives without missing any of the interactions,

RCI produced a graph with 79 nodes, instead of only 6.

Details: Figure 6 shows that bing.com (1) was identified as the

root. Node (2) is related to the bing.com page that shows the

search results. This node is colored yellow because its presence

in the click graph was inferred through the referrer reported by the

next page request on allhackz[dot]net. The reason why node

(2) is inferred, rather than directly reconstructed through Click-

Miner’s traffic replay, is that bing.com populated the search results

page dynamically as the user typed the search terms, using asynch-

ronous HTTP requests. As mentioned in Section 5.4, it is difficult

to replay this type of traffic without knowledge of the semantics of

the response content (e.g., a json object). Nonetheless, ClickMiner

was able to infer that the user clicked on a search result link to ac-

cess allhackz[dot]net (3). In addition, through the replay of the

response for node (3), ClickMiner was able to correctly identify the

DOM object that the user clicked on to reach node (4). More pre-

cisely, using the click emulation approach described in Section 5.5,

ClickMiner identified the location in the DOM of the download but-

ton that would fire an event and call a JavaScript that opened page

(4). Finally, while the user’s browser was automatically redirected

from node (4) to the actual file download hosted on node (6), the

page on node (4) also contained two <a> tags linking to the URL

of node (6). Therefore ClickMiner connected the two nodes and

essentially reported that the user likely clicked on one of those two

links. While this is not completely accurate, because the download

happened through an automatic redirect, the click graph produced

is correct. Notice also that if the page on node (4) contained no

explicit hyperlink to (6), ClickMiner could still have inferred the

link between the two pages through the referrer information, for

example.

In summary, we can see that ClickMiner can reconstruct the

“click path” to the malware download with only some minor de-

viation from what the user precisely did to download the file.

8.2 Case Study 2
To further evaluate how ClickMiner can aid a forensic analyst,

we obtained a set of real-world network traffic traces containing

malware downloads passively collected from a live large academic

network. These traces were provided by a network security com-

pany specializing in network-based malware detection. Each trace

in the set contained a sequence of HTTP exchanges recorded dur-

ing a small time window preceding (and including) the download

of a malicious executable file. Not all HTTP responses in the traces

were fully recorded, and in some cases only the response headers

were available. This was especially the case for exchanges recorded

farther back in time with respect to the download event. While the

missing response content represents an obstacle for ClickMiner, it

allowed us to evaluate how our systems can cope with this type of

missing traffic.

We now briefly describe the content of three of the traces we

were able to obtain, which we manually analyzed to enable the

comparison with the results automatically produced by ClickMiner.

We then summarize the output ClickMiner produced by analyzing

these traces. Notice that the following traces are related to three dif-

ferent (anonymized) real-world network users. For brevity, we only

describe events related (or “on path”) to the malware downloads.

Trace 1: A user visited www.google.com to perform a search. The

exchanges related to the search are not recorded in the traces, most

likely because they were performed via HTTPS. However, as the

user clicked on a search result, she landed on the help page of the

thepiratebay[dot]sxwebsite (google.comwas reported in the

referrer of that request). From there, the user proceeded to visited

a page at bitlordapp[dot]com where a malicious executable file

was downloaded4.

Trace 2: A user visited the search engine www.bing.com and

performed a search for the terms “free bejeweled 3 online”.

Next, the user visited a page at iwin[dot]com (listed in the search

results). Then, the user downloaded a malicious executable file

from dl.iwin[dot]com5.

Trace 3: A user visited www.yahoo.com (likely performing a

search). The user then visited a page at securefiledl[dot]com.
Lastly, the user clicked on a link to download an executable file

from the host oi-installer9[dot]com6.

Summary of Results: We applied ClickMiner to process the traces

described above to automatically reconstruct the click paths that

preceded each malware download. Via extensive manual investiga-

tion, we determined that that click paths should contain a total of 4

user-browser interactions for Trace 1, 3 for Trace 2, and 3 for Trace

3. Overall, Trace 1 contained 1351 HTTP exchanges, from which

ClickMiner derived a click path containing only 7 nodes, includ-

ing all the 4 expected interactions. Trace 2 contained 634 HTTP

exchanges. From this trace, ClickMiner generated a click path pre-

ceding the download containing 4 interactions, of which 3 matched

the expected (manually confirmed) ones. Trace 3 contained 882

HTTP exchanges. ClickMiner produced a click path that exactly

matched the path we had derived manually.

In summary, ClickMiner was able to correctly or very closely

derive the chain of interactions by which the user downloaded each

malicious executable. In the cases above, the traffic corresponding

to each search was not fully recorded; yet, ClickMiner was able to

infer the user-browser interactions related to the search pages by

constructing an augmented click graph (see Section 6). In addition,

ClickMiner was able to reduce the input traffic from several hun-

dreds HTTP exchanges, to only few that are highly related to the

security incident being analyzed.

9. LIMITATIONS AND FUTURE WORK
One of ClickMiner’s primary applications, as demonstrated in

Section 8, is the after-the-fact replay of user-browser interactions

before and up to the occurrence of a security incident. However,

potential attackers could seek to thwart our analysis by reducing

the ability to replay the recorded incidents. The following are some

examples of possible techniques an attacker could use to this end.

An attacker could leverage ClickMiner’s limited ability to infer

interactions with plugins as a means of inhibiting replay of user be-

havior. By forcing the majority of user interactions to be handled

via a plugin, an attacker could prevent those interactions from being

correctly replayed while still performing a successful attack. It is

also possible that an attacker could embed a script within an attack

page designed to detect the presence of ClickMiner during replay,

for example by checking for the presence of our Selenium-based

browser instrumentation (either directly or via artifacts). Upon de-

tection, the JavaScript could selectively alter the content of the page

(e.g. removing DOM elements, changing the href values of all a

4MD5: e64bef0c045430dfdbc02a824cd19003
5MD5: 25b1d21a555bbd05856555a01b5be2b4
6MD5: 2d484f0614b1d720dfbccdd788a3ad9c

tags, etc.) to prevent certain user-browser interactions from being

correctly reconstructed during replay.

Notice, however, that ClickMiner could still be successfully used

to reconstruct the user-browser interactions that occurred before the

inception of the attack, thus enabling an analysis of the web path
followed by users who eventually fall victims to attack pages on

the web. In our future work, we plan to study how ClickMiner’s

limitations can be mitigated, thus making it harder for the attacker

to prevent a detailed analysis of the steps followed by the users after

they reach the attack’s “entry point”.

10. RELATED WORK
Traffic Replay: While a number of traffic replay systems have been

proposed in the past [1, 9], most tools have focused on replaying

traffic at an IP-level or TCP/UDP-level granularity. For example,

Hong et al. perform interactive replay of internet traffic [9] by em-

ulating a TCP protocol stack. ClickMiner is different in that it im-

plements in-browser replay of application-level (HTTP) traffic.

In [6] the authors describe WebPatrol, a system for automated

collection and replay of malware infection scenarios. Importantly,

ClickMiner’s purpose is very different and much more general,

compared to WebPatrol. In fact, while WebPatrol is limited to re-

plying malware infection scenarios that can be automatically col-

lected by its own “honey clients”, ClickMiner aims to reconstruct-

ing user-browser interaction from real-world traffic traces. Further-

more, ClickMiner is not limited to reconstructing events related

to malware infections, and can instead aid the forensic analysis of

other security incidents involving user-browser interactions, such

as social engineering attacks, phishing, etc.

Traffic Analysis Tools: Over the last several years numerous net-

work forensic analysis tools have been constructed [12]. These

tools allow administrators to monitor, capture, analyze, and in some

cases replay network traffic in order to aid in network crime inves-

tigations (i.e. malware infections, denial of service, etc.) and help

generate appropriate incident responses. To the best of our knowl-

edge, ClickMiner is the first tool that can automatically reconstruct

detailed user-browser interactions from web traffic traces, and it

could therefore be used as a component of a more comprehensive

network forensic analysis framework.

Web Usage Mining: Web usage mining has been studied for ex-

ample in [16, 10, 8]. Wu et al. [16] proposed a system named

SpeedTracer which applies data mining techniques to web server

logs in order to extract and group user interaction paths. Etminani

et al. [8] propose the application of Kohonen’s Self Organizing

Maps to preprocessed web logs for extracting common interaction

patterns. Also, ReSurf [17] aims to reconstruct web surfing ac-

tivities from traffic traces via an analysis of referrer headers. Our

work takes a different approach, because it aims to reconstruct user

browsing activities from recorded network traffic via in-browser re-

play. Our approach has the advantage of mining complex cross-site

activities invisible to techniques that rely on web server logs, and

outperforms the RCI approach based on ReSurf [17], as we showed

in Section 7.

11. CONCLUSION
In this paper, we discussed the importance of aiding the forensic

analysis of web traffic traces, for example to help in the investi-

gation of the user-browser interactions that take place right before

a security incident. To this end, we proposed a novel system for

reconstructing user-browser interactions from network traces that

we named ClickMiner. Through a user study, we show that Click-

Miner can correctly reconstruct between a � 82% and � 90% of

user-browser interactions with low false positives, and that it out-

performs a previously proposed referrer-based approach.

12. ACKNOWLEDGMENTS
We thank Ling Huang and Xiaoning Li from Intel for their sup-

port and collaboration, and the anonymous reviewers for their help-

ful comments. This material is based in part upon work supported

by the National Science Foundation under Grants No. CNS-1149051

and ACI-1127195. This material is also partially supported by a

gift from the Intel Corporation. Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the National

Science Foundation nor Intel.

13. REFERENCES
[1] Tcpreplay. http://tcpreplay.synfin.net/.

[2] Xvfb - virtual framebuffer X server for X version 11.

http://www.x.org/archive/X11R7.7/doc/man/man1/
Xvfb.1.xhtml.

[3] The official easylist website, 2013.

https://easylist.adblockplus.org/en/.

[4] Selenium webdriver, 2013.

http://docs.seleniumhq.org/projects/webdriver/.

[5] A. G. Büchner and M. D. Mulvenna. Discovering internet

marketing intelligence through online analytical web usage

mining. SIGMOD Rec., 27(4):54–61, 1998.

[6] K. Z. Chen, G. Gu, J. Zhuge, J. Nazario, and X. Han.

Webpatrol: automated collection and replay of web-based

malware scenarios. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications
Security, ASIACCS ’11, pages 186–195, New York, NY,

USA, 2011. ACM.

[7] A. Cortesi. mitmproxy: a man-in-the-middle proxy, 2013.

http://mitmproxy.org/.

[8] K. Etminani, A. Delui, N. Yanehsari, and M. Rouhani. Web

usage mining: Discovery of the users’ navigational patterns

using som. In Networked Digital Technologies, 2009. NDT
’09. First International Conference on, pages 224–249, 2009.

[9] S.-S. Hong and S. Wu. On interactive internet traffic replay.

In A. Valdes and D. Zamboni, editors, Recent Advances in
Intrusion Detection, volume 3858 of Lecture Notes in
Computer Science, pages 247–264. Springer Berlin

Heidelberg, 2006.

[10] N. Labroche, M.-J. Lesot, and L. Yaffi. A new web usage

mining and visualization tool. In Tools with Artificial
Intelligence, 2007. ICTAI 2007. 19th IEEE International
Conference on, volume 1, pages 321–328, 2007.

[11] D. Pierrakos, G. Paliouras, C. Papatheodorou, and C. D.

Spyropoulos. Web usage mining as a tool for

personalization: A survey. User Modeling and User-Adapted
Interaction, 13(4):311–372, 2003.

[12] E. S. Pilli, R. C. Joshi, and R. Niyogi. Network forensic

frameworks: Survey and research challenges. Digital
Investigation, 7(1):14–27, 2010.

[13] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.

Correlation tracking for points-to analysis of javascript. In

Proceedings of the 26th European conference on
Object-Oriented Programming, ECOOP’12, pages 435–458,

Berlin, Heidelberg, 2012. Springer-Verlag.

[14] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web

usage mining: discovery and applications of usage patterns

from web data. SIGKDD Explor. Newsl., 1(2):12–23, 2000.

[15] K. Townsend. R&d: The art of social engineering.

Infosecurity, 7(4):32–35, 2010.

[16] K.-L. Wu, P. Yu, and A. Ballman. Speedtracer: A web usage

mining and analysis tool. IBM Systems Journal,
37(1):89–105, 1998.

[17] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos, and

Y. Jin. Resurf: Reconstructing web-surfing activity from

network traffic. In IFIP Networking Conference, 2013, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Agfa : Swop Standard)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Amienne
 /Amienne-Bold
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Arnprior
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Baveuse
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /Berylium
 /Berylium-BoldItalic
 /Biondi
 /Biondi-Light
 /BlackadderITC-Regular
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Boopee
 /Boopee-Bold
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BurnstownDam
 /Byington
 /Byington-Bold
 /Byington-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Catriel
 /Catriel-Bold
 /Catriel-BoldItalic
 /Catriel-Italic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /EarwigFactory
 /Ebrima
 /Ebrima-Bold
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /EuphorigenicS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Gabriola
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeavyHeap
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HurryUp
 /Huxtable
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /Kredit
 /KristenITC-Regular
 /KunstlerScript
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /Ligurino
 /Ligurino-Bold
 /LigurinoCondensed
 /Ligurino-Italic
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /Mufferaw
 /MVBoli
 /Narkisim
 /Neuropol
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /Nyala-Regular
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlanetBenson2
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /Pristina-Regular
 /Pupcat
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-SemiBold
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /ShowcardGothic-Reg
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tandelle
 /Tandelle-Bold
 /Tandelle-BoldItalic
 /Tandelle-Italic
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Vrinda-Bold
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200036002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

