
WebCapsule: Towards a Lightweight Forensic Engine
for Web Browsers

Christopher Neasbitt†, Bo Li†, Roberto Perdisci†o, Long Lu‡, Kapil Singh◦, and Kang Li†
†Department of Computer Science, University of Georgia

oCollege of Computing, Georgia Tech
‡Department of Computer Science, Stony Brook University

◦IBM Research
{cjneasbi,lubao515}@uga.edu, perdisci@cs.uga.edu, long@cs.stonybrook.edu

kapil@us.ibm.com, kangli@cs.uga.edu

ABSTRACT
Performing detailed forensic analysis of real-world web security
incidents targeting users, such as social engineering and phishing
attacks, is a notoriously challenging and time-consuming task. To
reconstruct web-based attacks, forensic analysts typically rely on
browser cache files and system logs. However, cache files and logs
provide only sparse information often lacking adequate detail to
reconstruct a precise view of the incident.

To address this problem, we need an always-on and lightweight
(i.e., low overhead) forensic data collection system that can be eas-
ily integrated with a variety of popular browsers, and that allows
for recording enough detailed information to enable a full recon-
struction of web security incidents, including phishing attacks.

To this end, we propose WebCapsule, a novel record and replay
forensic engine for web browsers. WebCapsule functions as an
always-on system that aims to record all non-deterministic inputs
to the core web rendering engine embedded in popular browsers,
including all user interactions with the rendered web content, web
traffic, and non-deterministic signals and events received from the
runtime environment. At the same time, WebCapsule aims to be
lightweight and introduce low overhead. In addition, given a previ-
ously recorded trace, WebCapsule allows a forensic analyst to fully
replay and analyze past web browsing sessions in a controlled iso-
lated environment.

We design WebCapsule to also be portable, so that it can be
integrated with minimal or no changes into a variety of popular
web-rendering applications and platforms. To achieve this goal,
we build WebCapsule as a self-contained instrumented version of
Google’s Blink rendering engine and its tightly coupled V8 Java-
Script engine.

We evaluate WebCapsule on numerous real-world phishing at-
tack instances, and demonstrate that such attacks can be recorded
and fully replayed. In addition, we show that WebCapsule can
record complex browsing sessions on popular websites and differ-
ent platforms (e.g., Linux and Android) while imposing reasonable
overhead, thus making always-on recording practical.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813656.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

General Terms
Security; Forensics

Keywords
Forensic Engine; Web Security; Browsing Replay

1. INTRODUCTION
The ability to perform accurate forensic analysis of web-based

security incidents is critical, as it allows security researchers to bet-
ter understand past incidents and develop stronger defenses against
future attacks. Unfortunately, analyzing real-world web attacks that
directly target users, such as social engineering and phishing at-
tacks, remains an extremely challenging and time-consuming task.

The state-of-the-art methods for reconstructing web-based inci-
dents generally follow two approaches. The first approach relies
on analyzing the web browser’s history, cache files, and system
logs [16, 20]. However, cache files and logs provide only sparse
information often lacking adequate detail to reconstruct a precise
view of what happened during social engineering and phishing at-
tacks that may have occurred days in the past. The second approach
leverages access to full network packet traces, which may provide
some indications of how an incident unfolded. However, the com-
plexity of modern web pages results in a large semantic gap be-
tween the web traffic and the detailed events (e.g., page render-
ing, mouse movements, key presses, etc.) that occurred within the
browser [18]. Such semantic gaps make it very difficult to precisely
reconstruct what a victim actually saw and how she was tricked,
and to identify what information was consequently leaked.

To address this problem, we need a forensic data collection sys-
tem that satisfies the following requirements:

- be always-on, so that all (unexpected) incidents can be trans-
parently recorded, including new attacks that follow previ-
ously unknown patterns;

- be lightweight, to minimize performance overhead, thus mak-
ing always-on recording practical;

- be portable, to operate in a variety of web-rendering applica-
tions and platforms;

- provide critical information to greatly enhance and facilitate
a forensic analyst’s investigation of web security incidents,

with particular focus on attacks that directly target users,
such as social engineering and phishing attacks.

In this paper we propose WebCapsule, a novel record and replay
forensic engine for web browsers. WebCapsule lays the founda-
tions for web-based attack reconstruction and analysis while meet-
ing all of the above stated requirements. Our main goal is to enable
an always-on, transparent, and fine-grained recording (and subse-
quent replay) of potentially harmful web browsing sessions. As de-
picted in Figure 1, WebCapsule aims to record all non-deterministic
inputs to the core web rendering engine embedded in the browser,
including all user interactions with the rendered web content, web
traffic, and non-deterministic signals and events received from the
runtime environment.

WebCapsule allows an analyst to later replay previously recorded
browsing sessions in a separate controlled environment, where no
new external user inputs or network transactions are needed. This
enables detailed analysis of security incidents that are (obviously)
unexpected, and allows for reconstructing detailed information
about incidents that may follow new, never-before-seen attack pat-
terns. In addition, by replaying all non-deterministic inputs, in-
cluding all content provided by the server, WebCapsule enables
a full forensic investigation of incidents involving ephemeral web
content, such as short-lived phishing or social engineering attack
pages.

While some previous work has studied record and replay to as-
sist the debugging of web applications [2,5,23], these studies do not
focus on forensic analysis and, more importantly, do not satisfy the
associated requirements listed above. For example, TimeLapse [5]
is a debugging tool based on Apple’s WebKit [30] that allows for
recording and replaying web content. However, TimeLapse does
not work as an “always on” system. Also, TimeLapse does not al-
low for transparent recording because it deeply modifies the inter-
nals of WebKit, for example to force a synchronous scheduling of
threads such as the HTML parser thread [25], thus also impacting
performance. In addition, TimeLapse currently only works on Ma-
cOS+Safari+WebKit [26], and is not easily portable to other oper-
ating systems and browsers. Conversely, WebCapsule can function
as an always-on system (e.g., it can be configured to start record-
ing at browser startup with no user intervention) to continuously
and transparently record browsing sessions while introducing low
overhead. Furthermore, WebCapsule is highly portable, can be em-
bedded in a variety of web-rendering applications, and can run on
a variety of platforms. Furthermore, unlike [2, 23], WebCapsule
is not limited to only recording user interactions with web pages,
but instead aims to record all non-deterministic events needed to
fully replay browsing traces, including all previously rendered web
content, without incurring high performance overhead (we further
discuss differences with previous work in Section 8). This is very
important for forensic analysis. In fact, most malicious web pages
(e.g., phishing websites) are short lived. Therefore, because [2, 23]
only record user interactions with pages without recording all other
non-deterministic inputs (e.g., network traces, timing information,
etc.), they do not enable an after-the-fact replay and investigation
of security incidents. WebCapsule solves this problem.

To make WebCapsule portable, so that it can be easily embed-
ded in a wide variety of web-rendering software (e.g., different
browsers), we design and implement it as a self-contained instru-
mentation layer around Google’s Blink web rendering engine [3],
which is already embedded in a variety of browsers (e.g., Chrome,
WebView, Opera, Amazon Silk, etc.) and can run on different plat-
forms (e.g., Linux, Android, Windows, and Mac OS). To imple-
ment our WebCapsule forensic engine, we inject lightweight (i.e.,
low overhead) instrumentation shims into Blink and its tightly cou-

Browser

User Input

WebTraffic

System Calls

Pl
at

fo
rm

Runtime Environment (User's Device)

Record Replay

Isolated Analysis Environment

sh
im

Replay Browser

Remote
Web Server

Storage

Web Rendering
Engine sh

im Web Rendering
Engine

Figure 1: High-level overview of WebCapsule’s record and replay
capabilities. Non-deterministic inputs to the embedded web ren-
dering engine are recorded, and can be fully replayed in an isolated
forensic analysis environment where no new external user inputs or
network transactions are received.

Blink
Rendering Engine

OS / Platform API

Instrumentation Shim

Web-rendering API

Platform

W
ebC

apsule

Web-rendering App

V8 JavaScript
Engine

Instrumentation Shim

Figure 2: Overview of WebCapsule’s instrumentation shims.

pled V8 JavaScript engine [28] (see Figure 2) in a way that allows
us to inherit Blink’s portability.

WebCapsule’s portability has several advantages. Not only can
it be readily deployed into existing Blink-based browsers and mul-
tiple platforms, but it also allows us to fully replay the browsing
traces on a device (or virtual machine) whose platform may differ
from the platform where the traces were recorded.

At the same time, our design choice of “living” strictly inside
Blink imposes a number of constraints that make the instrumenta-
tion process challenging, especially for enabling the replay of com-
plex browsing traces. For instance, one of the main challenges we
address is how to inject lightweight instrumentation shims without
altering the rendering engine’s application and platform program-
ming interfaces (APIs), so that we can fully inherit Blink’s portabil-
ity (the challenges we encountered are discussed in more details in
Sections 3 and 5). Moreover, Blink is highly multi-threaded, mak-
ing the replay of complex browsing traces challenging (e.g., Blink’s
main thread, HTML parser, and JavaScript WebWorkers could be
scheduled differently during replay). Nonetheless, we are able to
address these challenges (see Section 5) and, in turn, we can record
and replay complex browsing sessions, including on popular and
highly dynamic websites (e.g., Facebook).

In summary, we make the following contributions:
• We propose WebCapsule, a novel record and replay foren-

sic engine for web browsers that enables an always-on and
transparent fine-grained recording (and subsequent replay)
of web browsing sessions. To the best of our knowledge,
ours is the first work towards creating such an always-on and
yet lightweight (i.e., low overhead) forensic engine.

• We implement WebCapsule as a self-contained instrumen-
tation layer around Google’s Blink and V8 engines with-
out changes to their application and platform APIs, and de-
scribe the technical challenges addressed by our solution.
Thanks to this design, WebCapsule enables record and re-
play of web events for any web-browsing application built
on top of Blink, making our forensic engine portable.
• We evaluate WebCapsule over numerous real-world phishing

attack instances, and demonstrate that such attacks can be ac-
curately recorded and fully replayed. Furthermore, we evalu-
ate WebCapsule on different physical devices and platforms,
including Linux and Android, and show that we can record
complex browsing sessions on popular highly-dynamic web-
sites while imposing reasonable overhead, thus making always-
on recording practical.
• We plan to release our WebCapsule prototype system and a

variety of browsing traces that we recorded for evaluation at
http://webcapsule.org.

2. PROBLEM DEFINITION AND GOALS
In this section we discuss WebCapsule’s goals using a represen-

tative example use case scenario. We also clarify the scope and
non-goals for our work.

Representative Use Case. Assume that an employee, Alice, in a
sensitive enterprise or government network, falls victim of a phish-
ing attack. Alice unintentionally leaks credentials (e.g., user name,
password, employer id, etc.) that allow the attackers to access con-
fidential organizational information. After a number of days from
the phishing attack, as anomalous data access patterns are discov-
ered, a forensic analyst may be called in to reconstruct a detailed
picture of how the incident occurred, starting from the attack incep-
tion. Based on an analysis of the credentials used by the attackers
to access sensitive information, the analyst suspects a small set of
users, including Alice, may have leaked the credentials. At this
point, the analyst would need to explore the detailed browsing his-
tory of these users, in an attempt to reconstruct how the credentials
were actually leaked and learn how the phishing attack unfolded.
In particular, in addition to regular browser and network logs, the
analyst would like to reconstruct the users’ interactions with web-
pages (e.g., mouse and keyboard inputs) and the browsers’ view
of rending events (e.g., layout and content changes), to gather de-
tailed and essential information for attack analysis. Ultimately, this
fine-grained analysis would allow the organization to understand
how Alice was tricked into leaking the credentials, and how orga-
nizational security policies and user education can be improved to
prevent future attacks.

WebCapsule’s Goals. In the above example, WebCapsule’s role is
to collect the critical information that would enable the analyst to
precisely reconstruct how the phishing attack unfolded and how the
user was tricked. Specifically, WebCapsule aims to transparently
record enough information to enable the forensic analyst to recon-
struct a user’s historic browsing activities that occurred within a
certain time window of interest.

To meet the above goals, while the user is browsing the web
WebCapsule transparently collects the following information:

• Every time a mouse click or keypress occurs, WebCapsule
records the HTML corresponding to the underlaying DOM
element that is the target of the input event. In addition, for
all mouse clicks and “Enter” keypress events (which may
initiate a page navigation or form submission), a snapshot
of the current DOM tree is taken and stored. This happens
right before the user input event is dispatched to any other

browser components (e.g., the JavaScript engine, extensions,
etc.) that could alter the DOM. This allows the forensic ana-
lyst to analyze exactly how the page was structured at every
significant user interaction with the page’s components.

• WebCapsule also aims to record all non-deterministic inputs
to the rendering engine, including all input events (e.g., mouse
location coordinates, keypress codes, etc.), responses to net-
work requests, and return values from calls to the underlying
platform API. All this information is transparently recorded
and immediately offloaded to a data collection agent, which
can then store it into an archive of historic browsing traces.
Furthermore, WebCapsule allows the forensic analyst to later
retrieve a browsing trace from this archive, reload it inside
the rendering engine, and replay what the user did and saw
on the browser.

Non-Goals and Future Work. In this paper, we only focus on
laying the foundational work to enable “always on” transparent
recording and replay of browsing traces with limited overhead.

Clearly, the data collected by our WebCapsule forensic engine
may include very sensitive information, such as passwords, credit
card numbers, other personal banking information, etc., whose con-
fidentiality needs to be protected. In this paper we do not fo-
cus on protecting the confidentiality of the recorded information.
Nonetheless, we believe this problem may be solved via a combi-
nation of approaches, as discussed below.

For instance, the forensic engine could maintain a whitelist of
websites (e.g., online banking sites, healthcare-related sites, etc.)
on which to avoid recording any information, thus following an ap-
proach similar to SSL man-in-the-middle web proxies commonly
deployed for security and compliance reasons in sensitive enter-
prise networks. In addition, the user (or a system administrator,
in corporate environments) may be allowed to customize such a
whitelist, thus further improving the protection of potentially sen-
sitive information.

An additional approach is to appropriately choose encryption
primitives, which could be implemented by the software agent that
concretely collects the recorded data from WebCapsule and stores
them on disk. For example, a different key may be generated to en-
crypt different parts of the browsing traces (e.g., one key per each
new tab opened by the browser). The related decryption keys may
be stored in a secure key escrow, and a specific key may be released
only if a forensic investigation is properly authorized [9].

In this paper, we also do not focus on how to efficiently store
the recorded traces to minimize storage use. However, we note that
storage costs have been decreasing sharply, and that many enter-
prise networks already use commercial solutions to store full net-
work packet traces for considerable periods of time [19], for secu-
rity and compliance reasons. WebCapsule has the ability to offload
the recorded data in real-time from the browser to a storage appli-
cation. Thus, it may be possible to adapt current enterprise-level
storage solutions to accommodate the recording of WebCapsule’s
browsing traces. In addition, in our future work we plan to study
how the recorded data could be “aged” to reduce the granularity of
historic traces, and measure the trade-off between the granularity
of the recorded data and replay accuracy.

3. APPROACH AND CHALLENGES
Approach Overview. To make WebCapsule portable, we imple-
ment it by injecting lightweight instrumentation shims around
Google’s Blink web rendering engine [3] and the V8 JavaScript
engine [28] without altering their application and platform APIs

(see Figure 2). This allows us to inherit the portability of Blink and
V8, effectively making WebCapsule platform agnostic. In addition,
because Blink and V8 are at the core of several modern browsers
(e.g., Chrome, Opera, Amazon Silk, etc.) and of Android Web-
View [31], WebCapsule can be readily integrated with minor or no
code changes in a wide variety of web-rendering software.

Our design and implementation of WebCapsule aims to mini-
mize the amount of instrumentation code added into Blink. To this
end, our record and replay capabilities are implemented in large
part by extending Chrome’s DevTools [7], which provide access
to the internals of Blink (see Section 4 for more details). This al-
lows us to inject only thin instrumentation shims at critical points in
Blink’s code without modifying any API, code interfaces (i.e., the
members of Blink’s classes) or data structures already implemented
in Blink, thus obtaining a cleaner and more lightweight (e.g., low
overhead) implementation of WebCapsule’s functionalities.

It is worth noting that WebCapsule could be used to indepen-
dently record and replay web content rendered in different browser
tabs. More specifically, a browser that embeds Blink can spawn
a new instance of the rendering engine for each separate tab, as it
is done for example by Chromium’s default process model1 [22].
Consequently, each tab will also use its own independent instance
of WebCapsule, and could therefore be recorded and replayed inde-
pendently from other tabs. This is important for forensic analysis
purposes, because the analyst may want to replay only a subset of
the web content (i.e., only some tabs) visited by the user within a
given time window.

Challenges. The design and implementation choices outlined above
impose a number of hard constraints that we had to address. For
instance, events such as a user’s click on the “back button” on the
browser toolbar cannot directly be recorded, because the “raw” in-
put event is handled outside of Blink (by the browser’s chrome).
Instead, we had to reconstruct the series of side effects (in this ex-
ample, navigation history manipulation) that are communicated to
Blink, and record each of these effects at the location in Blink’s
code where the rendering engine “meets” the embedder browser
application.

In addition, Blink is highly multi-threaded, making the correct
replay of complex browsing traces challenging (e.g., the main Blink
thread, HTML parser, and JavaScript WebWorker threads could be
scheduled differently during replay). To compensate for these prob-
lems, we implement a number of mechanisms to “re-synchronize”
Blink’s clock (e.g., by adjusting the result of calls to current-
Time()) and to precisely pair network requests with the correct
response drawn from the recorded traces (we discuss these mecha-
nisms in more detail in Section 5).

It is important to notice that any state information kept outside of
Blink, such as the browsers’ cache, cookie store, etc., do not rep-
resent a significant challenge, as they do not need to be explicitly
recorded. In fact, such state information is accessed by Blink via
well-defined web-rendering and platform APIs. Because WebCap-
sule can already record these API calls, it can reconstruct “external”
state without a special record and replay component.

4. RECORDING: DESIGN AND IMPLEMEN-
TATION

In order to implement WebCapsule’s replay functionality, we
must first provide the ability to record non-deterministic inputs into
Blink/V8. For the sake of brevity, in the following we will refer to
a function (or class method) as being non-deterministic if it ac-
1In some corner cases, Chromium may still use the the same Blink
instance to render content within inter-dependent tabs.

[WebCapsule]
void handleInputEvent (Page*, const WebInputEvent&);

[WebCapsule]
void handlePageScroll (Page*, const WebSize& size, double delta);

[WebCapsule]
void handleResize (Page*, const WebSize& size);

Figure 3: Extending DevTools: instrumentation example (from
InspectorInstrumentation.idl).

cepts a non-deterministic argument (e.g., a user input event), or if
it returns a non-deterministic value (e.g., a network response, the
current system time, etc.). Otherwise, we say the function is deter-
ministic. Notice, however, that these definitions are not intended to
be rigorous, and simply provide a way to conveniently refer to func-
tions that are used to pass non-deterministic events to the rendering
engine, or that return non-deterministic values after an explicit call
from the engine is made.

The non-deterministic inputs we record can be divided into three
categories, as follows:

- Inputs that are injected by the embedder software (e.g., a
browser) directly into Blink via the web-rendering API (see
Figure 2). This category of non-deterministic inputs includes
page control messages, such as scroll or resize the web page,
as well as any user interaction and gestures via mouse, key-
board, or touchscreen interface.

- Information requested by Blink/V8 via synchronous calls to
the underlying system. This information is requested via the
platform API (see Figure 2) which abstracts the details of
the underlying system upon which the embedder software is
executing. Information in this category includes the current
system time, the user-agent string describing the embedding
software, total available memory, etc.

- Lastly, Blink can also request information from the platform
API to be returned asynchronously via callback interfaces.
Requests for remote resources, including network requests,
are primarily handled using this functionality.

Recording Components. WebCapsule’s recording functionality
is implemented using two primary components, namely a special
DevTools InspectorAgent (which we named Inspector-
ForensicsAgent in our code), and wrappers for the platform
API of both Blink and V8. In the following, we discuss in detail
how these components can be used to record a user’s browsing ac-
tivities.

4.1 Extending DevTools
As mentioned in Section 3, one of our design goals is to cre-

ate our instrumentation shims with as small a footprint as possible
on the original codebase of Blink and V8. To this end, we im-
plement a significant portion of WebCapsule’s functionalities by
extending Blink’s built-in instrumentation facility known as Dev-
Tools [7]. This allows us to leverage existing quality code and at
the same time minimize performance overhead.

DevTools is designed to provide developers with detailed insight
into the execution of Blink/V8. The information DevTools provides
is divided into categories based on functionality, including infor-
mation about DOM elements, network traffic, and Javascript exe-
cution. The collection and presentation of information from each
category is implemented via an InspectorAgent. Users can re-
trieve the desired information collected by DevTools using either a
graphical interface (called ‘Developer Tools’ in Chromium), or via
a JSON-based protocol over a WebSocket connection.

It is possible to extend the existing DevTools functionalities by
“hooking” events one would like to listen to. As shown in the ex-
ample in Figure 3, this can be done by modifying InspectorIn-
strumentation.idl, which is written using a mix of IDL and
C++ code. This allows us to define a special InspectorAgent,
which we use to add WebCapsule’s instrumentation shims around
the web-rendering API, as explained below.

During the recording process, WebCapsule continuously offloads
the recorded events to an external data collection agent, thus greatly
reducing memory overhead for the rendering process. To allow for
the communication between WebCapsule and the external agent,
we extend the DevTools JSON-based network protocol2.

4.2 Recording User Input
Most user inputs (e.g., mouse movements, gestures, and key

presses) are sent to Blink via its WebViewImpl::handle-
InputEvent() API. A WebInputEvent parameter is passed
to this function carrying high-level information describing the in-
put instance, such as its type and location on the page. To record
the input, we define an instrumentation shim called handleIn-
putEvent, with WebCapsule’s InspectorAgent declared as
the shim handler agent. Consequently, during execution our shim
is called for each user input event. When WebCapsule is running in
record mode the WebInputEvent passed to the shim is copied
and stored, so that it can be re-injected as is during replay (see
Section 5). On the other hand, when WebCapsule is not set to op-
erate in recording (or replay) mode, then all of its shims perform
no operation, letting Blink function as if WebCapsule was not at all
present.

Target Element and DOM Snapshots. One of WebCapsule’s
goals is to provide the forensic analyst with a detailed recording
of the state of the page at critical moments during the user’s brows-
ing experience. To this end, every time an input event occurs we
also record the URL of the page where the event occurred. In ad-
dition, for all key presses and mouse clicks, we record the HTML
representation of the element in the DOM tree that is the target of
the user input. Furthermore, for events that are the main “cause”
of a page transition, such as a mouse click or an “Enter” key-
press (which may trigger a form data submission), we also take
a full snapshot of the page DOM, including the DOM of all nested
frames embedded within the page. We do so in a “blocking” fash-
ion, so that the user input event is not propagated to any other soft-
ware module, such as V8, that may alter the DOM itself before it’s
recorded (we intercept these events by injecting thin instrumenta-
tion shims within WebCore::EventHandler). While taking
a snapshot of the DOM imposes some overhead, in Section 6 we
show that in average the overhead is acceptable and does not sig-
nificantly affect the user’s experience.

4.3 Non-Deterministic Platform Calls
During the rendering of a web page, Blink and V8 may issue a

number of different system calls to the underlying platform. For
example, the rendering and JavaScript engines may initiate calls
to currentTime() to synchronize rendering events (e.g., ani-
mations or other dynamic content). Additionally, the engines may
issue system calls to obtain random values from the runtime envi-
ronment. The values returned to Blink/V8 by such platform calls
are non-deterministic, and we therefore need to record them so
that they can be later replayed. In the following, we describe how
we place instrumentation shims around the Blink and V8 platform
APIs to achieve our goals while minimizing performance overhead.

2defined in Blink within protocol.json.

Blink
PlatformWrapper

currentPlatformPtr
currentTime()

Rendering
Engine

currentTime()

Blink
Platform

currentTime()

currentTime()
timetime

record value

BlinkWebCapsule
Blink

Figure 4: Simplified view of WebCapsule’s platform wrapper in
record mode. PlatformImpl is the actual implementation of the
current underlying system platform.

4.3.1 Instrumenting Blink’s Platform API
Blink provides a Platform interface that abstracts the provided

platform API from its actual underlying implementation. To es-
tablish what specific Platform it is currently running on, Blink
first calls a Platform::current() function, which returns a
pointer to a static singleton instance of Platform. We leverage
this “platform discovery” mechanism to our advantage. Specifi-
cally, WebCapsule includes a PlatformWrapper class, which
implements the Platform interface and internally stores a ref-
erence to the true underlying platform returned by Platform::
current(), as shown in Figure 4.

When recording is initiated, WebCapsule’s InspectorAgent
initializes the platform wrapper in the following manner. First, the
InspectorAgent retrieves the pointer to the current platform
instance. Next, the agent instantiates a new PlatformWrapper.
Lastly, it replaces the value of the Platform::current()
pointer with the address of the newly created PlatformWrap-
per. From this point on, every time Blink performs a call to any
platform API, it will actually use WebCapsule’s PlatformWrap-
per as its platform (see Figure 4). This design allows WebCap-
sule to seamlessly instrument Blink’s entire Platform API while
confining all instrumentation code exclusively within the Plat-
formWrapper class. Furthermore, the platform API instrumenta-
tion is completely transparent from the point of view of its callers.

Our PlatformWrapper implements the Platform interface
as follows. For deterministic functions, the parameters passed to
the wrapper’s function call are simply forwarded to the same func-
tion of the wrapped (true) platform instance. The return value, if
there is one, is then directly passed back to the caller. However, for
non-deterministic platform functions, their implementation within
PlatformWrapper is slightly different. When WebCapsule is in
record mode, we make copies of both the parameters passed to and
the return value generated from the call to the wrapped platform
instance. The recorded values are then stored in a data structure
that allows them to be retrieved and later replayed (we explain in
more detail how the PlatformWrapper operates during replay
in Section 5).

4.3.2 Instrumenting V8’s Platform API
Blink depends upon V8 for running JavaScript code. Effectively,

Blink allows V8 to control the DOM of each page, thus provid-
ing the ability for JavaScript code to manipulate pages rendered by
Blink. V8’s access to the DOM tree is enabled by a set of dynamic
bindings generated at compile time.

Platform Calls in V8 vs. Blink. To allow for accurate record-
ing and replay, WebCapsule must capture non-determinism intro-
duced by JavaScript that could affect page rendering within Blink.
It turns out that because of how V8 is coupled to Blink, some
of the Blink instrumentations described earlier allow us to also

record certain JavaScript-driven web events. For instance, Java-
Script XMLHttpRequest network transactions are actually satis-
fied by Blink and utilize the same network functionality that We-
bCapsule already instruments. Therefore, we can record XML-
HttpRequest transactions as any other network request (see Sec-
tion 4.4). Furthermore, many of Blink’s platform API functions
are passed to V8 as function pointers during initialization. There-
fore, some of V8’s platform API calls are actually calls to Blink’s
platform API, which we already record via WebCapsule’s Plat-
formWrapper, as discussed earlier. However, there are also a
number of sources of non-determinism that reside solely within V8,
and that could indirectly affect Blink’s rendering. These sources in-
clude V8’s own platform API and certain JavaScript functions, such
as Math.random().

Wrapping V8’s Platform API. V8’s platform API is implemented
quite differently from Blink’s, because it does not utilize a “clean”
object-oriented design, and there is no single instance of a Plat-
form object within V8 that we can easily “wrap”. With the above
complications in mind, we took the following approach. We create
an (independent) platform within V8, which we refer to as JS-
PlatformWrapper in the remainder of this paper. We then
modify the call sites within V8’s code related to non-deterministic
platform API calls to use our JSPlatformWrapper instead. For
example, when JavaScript Date() objects are instantiated to re-
trieve the current system time, V8 calls OS::TimeCurrent-
Millis() (via a call to RuntimeDateCurrentTime). We
slightly modify V8 to call WebCapsule’s platform wrapper first, so
that we can record the current time value, and transparently pass it
back to V8. This design does require that several call sites for non-
deterministic platform API calls within V8 be identified and instru-
mented. However, it has the advantage that we can choose not to
instrument a call site if the resulting non-determinism is known not
to affect page rendering or Javascript execution.

Leveraging JS-to-C++ Calls. Let us now consider JavaScript’s
Math.random(). The random number generator exposed by
Math.random() is one of the primary sources of
non-determinism internal to V8. Unlike, Date(), V8 internally
implements random() entirely in JavaScript. However, V8 de-
fines several C++ preprocessor macros, which are used to define
C++ functions callable from JavaScript code. We implement a new
function called HandleMathRandomVals, which takes the re-
turn value of random() as a parameter. We then altered ran-
dom() to call HandleMathRandomVals before returning,
which in turn passes the values to be recorded to our V8 platform
wrapper, (see function calls starting with ‘%’ in Figure 5).

4.4 Recording Network Events
Asynchronous Requests. Network requests are primarily served
in an asynchronous way, and responses are returned via a callback
interface. With this design, the response is constructed piecemeal
over the course of several callbacks. The asynchronous network
request interface within Blink is defined by two classes, WebURL-
Loader and WebURLLoaderClient. The WebURLLoader
abstracts the underlying network and caching functionality pro-
vided by the platform API. The WebURLLoaderClient com-
prises the callback interface used to collect the response.

As shown in Figure 6, WebCapsule records network events by
leveraging the PlatformWrapper described earlier. When
Blink, via a ResourceLoader instance, requests the platform
to create a new URL loader, WebCapsule’s PlatformWrapper
returns a pointer to a ForensicURLLoader, which itself is a
wrapper to the WebURLLoader actually provided by the underly-

function MathRandom() {
 /* Begin WebCapsule's PlatformInstrumentation Replay Code */
 var retval = %NextMathRandomVals();
 if(retval >= 0) return retval;
 /* End of WebCapsule's PlatformInstrumentation Replay Code */

 /* Original MathRandom() code */
 var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0;
 rngstate[0] = r0;
 var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0;
 rngstate[1] = r1;
 var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0;
 retval = (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10;

 /* Begin WebCapsule's PlatformInstrumentation Recording Code */
 %HandleMathRandomVals(retval);
 /* End of WebCapsule's PlatformInstrumentation Recording Code */
 return retval;
}

Figure 5: WebCapsule’s instrumentation of V8’s
Math.random() implementation (from v8/src/math.js).
Function calls starting with ‘%’ are used to call C++ functions
internal to V8 from JavaScript code.

ing platform API. In addition, our ForensicURLLoader imple-
ments the WebURLLoaderClient interface, and passes itself as
the client to the true WebURLLoader. Therefore, as network data
arrives, the ForensicURLLoader is called first, records the de-
sired information, and then calls back into the ResourceLoader,
so that Blink can parse and render the response.

Synchronous Requests. In practice, synchronous network requests
are activated only in a small number of cases (e.g., requests are
made synchronously when false is passed as the third parame-
ter to the open function of a Javascript XMLHttpRequest ob-
ject). These calls can be recorded fairly easily. Because the re-
sults of the request are completely realized by the time loadSyn-
chronously() returns, we can record the results with a single
wrapped function.

Browser Cache Considerations. WebCapsule’s design for record-
ing network transactions has the added benefit of abstracting the
actual data source which satisfies resource requests. Obviously,
the browser could satisfy Blink’s network requests from a physi-
cal network, but it could also satisfy a request from the browser-
level cache or from the associated resources of a browser exten-
sion. However, from the point of view of Blink these different data
sources are invisible, in that where the network response is coming
from does not really matter. Specifically, by recording the results of
each resource request as explained above, we can replay not only
network transactions, but also transparently recreate any browser
cache hits without having to explicitly record the cache state.

5. REPLAY: DESIGN AND IMPLEMENTA-
TION

WebCapsule’s recording capabilities aim to collect enough de-
tailed information to allow a forensic analyst to reconstruct web
security incidents such as social engineering and phishing attacks.
In addition, we aim to enable the analyst to also perform a detailed
replay of previously recorded browsing traces, as explained below.

Entering Replay Mode. To replay a previously recorded trace, we
leverage DevTools’s JSON protocol. Specifically, we define new
DevTools commands that allow for remotely controlling WebCap-
sule’s operating mode. Concretely, to enter replay mode we can
send WebCapsule two commands: LoadRecording <trace-
file>, and StartReplay. The first command loads a previ-
ously recorded browsing trace from disk, and the second one starts

Rendering
Engine

ResourceLoader
start()

ResourceLoader(request)

record value

ForensicURLLoader
loadSynchronously()
loadAsynchronously()

PlatformWrapper
createURLLoader()

createURLLoader()

loadAsynchronously(request)

ForensicURLLoader*

didReceiveResponse()
didReceiveData()
didFinishLoading()

finish()

start() create()

WebURLLoader
loadSynchronously()
loadAsynchronously()

loadAsynchronously(request)

create()

didReceiveResponse()
didReceiveData()
didFinishLoading()

WebCapsule
WebCapsule Blink

BlinkBlink

Figure 6: Simplified view of how WebCapsule records asynchronous network transactions.

replay by instructing Blink to load the first page URL in the trace
and then replay the browsing events, as described in detail below.

Notice that the replay can occur in a separate and completely
isolated environment with no network connection or input devices,
because during replay mode Blink will be forced to satisfy network
requests and receive user input exclusively from the recorded trace.

Replay Strategy Overview. WebCapsule employs two replay strat-
egies, depending on the source of the recorded data. As shown
in Figure 7, inputs which originated from Blink’s web-rendering
API are replayed by explicitly re-calling the event handler function
from which the input was recorded, effectively forcing the input
(e.g., a mouse movement or keypress) to be re-injected into (and
processed by) Blink. On the other hand, non-deterministic inputs
obtained through the platform API are primarily replayed by simply
waiting for Blink and V8 to call the platform as a consequence of
the replay of the web-rendering API inputs and the rendering pro-
cess. For each platform API call issued during replay, we identify
the corresponding call observed during recording and directly re-
turn the previously recorded return value without having to call the
true underlying system platform. Notice also that all inputs to be
re-injected are timestamped, and are replayed following a precise
event timeline.

For instance, as a mouse click on an HTML anchor element is
re-injected into Blink via the web-rendering API, the rendering en-
gine will start issuing the necessary network requests (via the plat-
form API) to navigate to and render the new page. As the network
requests are received by WebCapsule’s PlatformWrapper (see
Section 4.3), we return the previously recorded network response to
Blink. A more detailed explanation of WebCapsule’s replay mech-
anisms is provided below.

5.1 Replaying Web-Rendering API Events
Recorded input events (e.g., touch gestures, mouse clicks, key-

presses, etc.) carry a timestamp. This allows us to re-inject all
inputs into Blink in the correct chronological order, and to preserve
the relative time gap between events. Concretely, user input events
are replayed by calling the related handler function in Blink (e.g.,
WebViewImpl::handleInputEvent), with the event as an
argument, thus asking Blink to process the event and to dispatch it
to its internal modules (including possible JavaScript listeners).

Event Injector

t

t

Recorded Event Timeline

Recorded Platform Calls Timeline

WebCapsule

Web-rendering API

Platform Wrapper

V8 JavaScript
Engine

Blink
Rendering Engine

Figure 7: Simplified view of WebCapsule’s replay strategy.

5.2 Replaying Platform Calls
As user inputs are re-injected into Blink and web content is ren-

dered, the rendering and JavaScript engines will issue calls to the
underlaying platform, such as network requests, calls to obtain the
current system time, etc. As these calls are made, WebCapsule’s
PlatformWrapper and JSPlatformWrapper (defined in
Section 4.3) can return the value that the same call had returned
during recording. To identify the correct return value within all
recorded calls of a given function, we use the combination of pa-
rameters passed to the function during recording as a key. To break
“ties” on possible key collisions, the value returned during replay is
simply the next unconsumed recorded return value from the related
function call (with the same key) chosen in chronological order.

Challenges. As mentioned in Section 3, Blink is highly multi-
threaded, making the replay of some platform API calls challeng-
ing, especially for functions that take no input parameters (and
therefore have no obvious key), such as Blink’s Platform::
currentTime or V8’s OS::TimeCurrentMillis. During
replay, depending on the (non-deterministic) scheduling of the thre-
ads, Blink and V8 may make some API calls at different “speed”,
compared to what happened during recording. One way to address
this problem would be to record the non-determinism introduced
by the thread scheduler. Unfortunately, precisely recording (and
replaying) thread scheduling information from within Blink is ex-
tremely challenging. Alternatively, one may attempt to manipulate
thread scheduling from “outside” of Blink. However, this is not an

option for us, because it would violate our main goal of not altering
any code outside of Blink (to completely inherit its portability) and
of introducing only low overhead so that WebCapsule can be used
as an “always on” forensic data collection system.

Proposed Solution. To address these challenges, we use a best
effort approach that we found to work well in practice. During
replay, whenever currentTime() is called (either by Blink or
V8), we return the previously recorded time value that is closest
to the current replay time delta. More specifically, let Srec and
Srep be the time when recording and replay started, respectively,
and vrec be the list of currentTime() return values stored dur-
ing recording. Suppose that during replay Blink calls current-
Time() at time trep. To choose the return value, we first compute
the replay time delta δrep = trep − Srep. We then find the return
value, trec ∈ vrec, such that δrec = trec − Srec is the closest to
δrep (i.e., we minimize |δrec − δrep|). Because the web-rendering
API events (e.g., mouse movements and keypresses) are re-injected
respecting the relative time deltas observed during recording (see
Section 5.1), the approach described above has the effect of loosely
“re-synchronizing” the currentTime() replay clock to the user
input events, thus improving replay accuracy.

5.3 Replaying Network Events
To replay network responses, WebCapsule leverages the Foren-

sicURLLoader class discussed in Section 4.4. During replay,
when a network resource is requested WebCapsule’s URL loader
finds the recorded response for that request (which may include
redirection chains or error messages) using the request’s URL and
some other request parameters (e.g., HTTP request headers) as a
key. Once the response is located, a series of WebCapsule’s re-
execution events are created, representing each of the WebURL-
LoaderClient callbacks to be executed (see Section 4.4). Using
this technique, we are able to return the desired network response
to Blink.

Challenges. In some cases, the URL of network requests driven
by JavaScript (e.g., XMLHttpRequest) may be created dynam-
ically. As a concrete example, consider a search box element on
Amazon.com’s front page3. Every time the user enters a charac-
ter, a piece of JavaScript code issues an XMLHttpRequest to
retrieve a set of search term suggestions. While the structure of
the URL is always the same, some of the URL query parameters
change. For example, the URL contains the partial search term en-
tered by the user and a timestamp (retrieved via a call to V8’s plat-
form API). During replay, as the keypresses are reinfected into the
search box, the related XMLHttpRequest are re-issued. How-
ever, the timestamp appended to the URL may cause a key mis-
match, which would not allow us to easily find the correct response
to be re-injected into Blink. As explained in Section 5.2, Web-
Capsule is able to “re-synchronize” the currentTime() replay
clock to the user input events, which alleviates this problem. How-
ever, in some cases our PlatformWrapper may return a time
value that is a few milliseconds off, compared to what was observed
during recording for the same XMLHttpRequest, thus still caus-
ing a mismatch.

Proposed Solution. To address the above problem, we use a best
effort approach that works very well in practice. During record-
ing, every time a network request is issued, we determine if it was
initiated (directly or indirectly) by JavaScript. If that’s the case,
we reconstruct the JavaScript call stack to identify exactly what
JavaScript function caused the network request to be issued, and

3Latest page analysis performed on February 22, 2015.

store this information in the browsing trace. Then, for those replay
events in which there is a URL mismatch and we cannot easily
identify the related network response data, we analyze the Java-
Script call stack of all the not-yet-consumed responses in the re-
corded browsing trace, and return the “closest” response. Specif-
ically, let Rrec = (qi, ri)i=1...n be such a set of unconsumed
network requests, qi, and related responses, ri. Also, let q(rep)i ,
be the network request issued during replay that we are trying to
match with a response. We then find the request qi∗ ∈ Rrec whose
JavaScript call stack matches the call stack associate to q(rep)i , and
whose timestamp is the closest to q(rep)i ’s timestamp (computed
as a delta from the replay start time and record start time, respec-
tively). Then, we return the related response ri∗ . In the rare cases
in which the network response search still fails, we return an empty
response with HTTP code 204 No Content.

5.4 Divergence Detection and Self-Healing
The replay approaches described in Section 5.2 and 5.3 work

well in practice. Nonetheless, there may be (rare) cases in which
we still fail to correctly replay an event (e.g., due to complex thread
scheduling issues), causing the replay to differ slightly from the re-
corded browsing trace. As a concrete example, assume that during
recording the user clicked on an element on a given web page, P1,
and the browser navigates to page P2. Suppose that during replay
a problem occurs, and the same re-injected click does not cause the
expected transition from P1 to P2. To recover from these prob-
lems, WebCapsule implements a replay self-healing approach. As
mentioned in Section 4, during recording each recorded user in-
put event includes the URL of the page where the input occurred.
Therefore, if during replay the browser does not navigate to page
P2, this will cause a mismatch between the URL associated to the
next input event to be replayed (i.e., P2’s URL), and the URL of
the current page rendered on the browser (which erroneously re-
mained on P1). WebCapsule is able to detect such a mismatch, and
responds to these cases by forcing the browser to load P2, before
continuing with normal replay of the remaining events on the trace.

If self-healing occurs, WebCapsule outputs detailed information
about the self-healing process to the replay logs, to notify the foren-
sic analyst that a replay problem has been encountered and to ex-
plain how WebCapsule recovered from it. In general, WebCapsule
implements a number of mechanisms to detect and explain any
differences between the recorded traces and the replay events, so
that the forensic analyst can accurately reconstruct what happened
while the user was browsing.

6. EVALUATION

6.1 Experimental Setup
We performed experiments on two different devices: a desktop

Dell Optiplex 980 with a Core i7 870 CPU and 8GB of RAM run-
ning Ubuntu Linux; and a Asus Nexus 7 tablet with 2GB of RAM,
32GB of storage, and running Android 5.0.1. We also used an x86-
based Android Virtual Device (AVD), to demonstrate that WebCap-
sule can be used to record traces on a physical device (the ARM-
based Nexus 7) and to later replay the traces in a different platform.

For all experiments, we used the Chromium4 codebase. We de-
ployed Chromium with our WebCapsule instrumentations on the
desktop computer, and a ChromeShell APK [8] with WebCapsule
enabled on the Nexus 7 (we were also able to perform some pre-
liminary experiments with WebView + WebCapsule on Android,

4Git commit: 45eed524365a1cbc612aba31ab36aafd7788d825.

Table 1: Functionality Tests

Acid3 Errors Dromaeo Errors
Record Replay Record Replay

Linux 0/100 1/100 no errors no errors
Android 0/100 1/100 no errors no errors

which are not reported here; we plan to expand and report the We-
bView experiments in our future work). All experiments were per-
formed using the default browser process model [22], whereby each
browser tab is handled in a different process (except in some cor-
ner cases). In addition, each process uses its own separate instance
of Blink and V8. In this process model, WebCapsule could record
multiple tabs independently. Therefore, all our results refer to ex-
periments performed on one single tab.

Overall, our main code modifications to Blink and V8 (includ-
ing the DevTools modifications and platform API wrappers dis-
cussed in Sections 4 and 5) consist of approximately 14,000 lines
of code (primarily C++ code, plus a number of Python scripts for
log analysis). We plan to release our WebCapsule prototype sys-
tem and a variety of browsing traces collected for evaluation at
http://webcapsule.org.

6.2 Functionality Tests
First, we performed a set of functionality tests, which aim to

verify that WebCapsule’s record and replay capabilities do not neg-
atively impact Blink’s functionalities (e.g., support for JavaScript
and DOM manipulation functionalities). To this end, we leverage
two popular web browser benchmarks that aim to test functional
correctness. These benchmarks include Web Standards Project’s
Acid3 [1, 32] and the Dromaeo Test Suite developed by Mozilla
[10].

Using both Chromium and the ChromeShell APK with WebCap-
sule on (first in record mode, and then in replay mode), we sepa-
rately ran the Acid3 and Dromaeo tests (for Dromaeo, we ran the
“DOM Core Tests” and the “V8 JavaScript Tests”). WebCapsule
was able to record and replay the Dromaeo tests with no errors.
Similarly, the Acid3 tests completed correctly during recording,
though one test raised an exception during replay. Specifically,
Acid3 ran 100 different JavaScript and DOM manipulation tests,
and during replay WebCapsule missed to pass only one test on both
Linux and Android, namely Test 805, due to a network request
that we did not match correctly.

The above results show that in record mode WebCapsule is com-
pletely transparent, because it does not alter the core functionalities
of Blink/V8. In addition, these tests show that WebCapsule can re-
play complex web page events with high accuracy (perfectly for
Dromaeo, and 99% accuracy for Acid3), as shown in Table 1.

After investigating the browsing events related to Test 80, we
found that the URL requested for that test had a timestamp em-
bedded in the query string; during replay, the timestamp embed-
ded in the requested URL was always a few milliseconds off, com-
pared to the recording phase6, thus causing a mismatch. We later7

solved this URL mismatch problem with a minor adjustment to the
implementation of the algorithm discussed in Section 5.3 for “re-
synchronizing” currentTime()’s return value. This allowed us
to correctly replay Acid3 tests with 100% accuracy, and further im-
prove the overall replay accuracy of WebCapsule.

5Error message: “Test 80 failed: timeout – could be a networking
issue”
6e.g., recorded URL: empty.html?1431430350104; replay URL:
empty.html?1431430350157
7After initial submission

6.3 Evaluation on Phishing Attacks
WebCapsule’s main goal is to enable an always-on and transpar-

ent collection of browsing data that can help a forensic analyst to
precisely reconstruct web-based attacks, especially for attacks that
directly target users, such as phishing attacks.

To test if WebCapsule can successfully record and subsequently
replay real-world phishing attacks, we proceeded as follows, us-
ing Chromium on our desktop machine. We selected a large and
diverse set of recently reported phishing web pages from Phish-
Tank8. The pages we tested represented “fresh” (recently reported)
attack URLs. Overall, the attack traces were recorded by six dif-
ferent users who visited and interacted with a total of 112 different
active phishing URLs. Each user visited around 15 to 20 URLs
and simulated the leakage of (fake) information. Essentially, all
phishing pages aim to trick the user into providing some type of
personal user information, such as the user name and password re-
quired to access popular services (e.g., Google Drive, Yahoo Mail,
etc.). In addition, we tested several phishing attacks mimicking on-
line banking sites (e.g., Bank of America, Barclays, Paypal, etc.).
These attacks are particularly aggressive, in that they attempt to
trick the user into providing a large number of highly sensitive
data, including social security numbers, date of birth, driver’s li-
cense numbers, mother maiden name, answer to multiple security
questions, etc.

To determine how well WebCapsule can record and replay phish-
ing attacks, we measured the following quantities. For each at-
tack trace, we wanted to quantify how well each trace could be
replayed. To this end, every time a mouse click or keypress event
occurred during replay, we compared the target DOM element of
the replay event to the target DOM element of the same event ob-
served during recording. For example, assume that during replay
a mouse click m was injected on an anchor element, say e′ =go. As discussed in Section 4, during
recording not only do we store the internal details of m, but also
its original target element e. Therefore, during replay we can per-
form a comparison between e′ and e, and increment the number of
target errors if the elements differ. Similarly, we recorded the URL
of each page (specifically, the main frame URL) through which the
user navigated while under phishing attack. Then, we compared
the URLs observed during replay with the ones observed during
recording, and counted differences in the page URL sequences.

The results are summarized in Table 2. As can be seen, the vast
majority of traces (almost 90%) replayed perfectly. Specifically,
WebCapsule was able to replay 106 out of 112 phishing traces
with no page transition errors. The 6 page errors were primarily
caused by corner case scenarios that are not currently handled by
our proof-of-concept code and that could be fixed with additional
engineering effort. For example, in some cases our network replay
approach (see Section 5.3) failed to match a dynamically generated
URL, and at the same time the JavaScript call stack matching al-
gorithm described in Section 5.3 was not able to correctly recover
the appropriate network response. We plan to add support for these
corner cases in our next releases of WebCapsule.

Also, 100 traces had no target element errors for mouse click
events, and 103 traces had no keypress target element errors. For
the remaining traces with click and keypress target element errors,
most of them were related to the 6 page transition errors. For exam-
ple, if a page transition error occurs, a click event may be replayed
on the wrong page, and therefore also on the wrong target element.
In other cases, an error may occur even if the event is injected in the
correct page. One of the main causes for this is as follows. Some at-

8http://www.phishtank.com/phish_archive.php

Table 2: Replay correctness for phishing attack pages. Measure-
ments performed over 112 phishing traces collected by 6 users.

Avg. # Events
per Trace

100% Correct
Traces

Traces with
Some Errors

Page Transitions 4 106/112 6/112
Clicks 14 100/112 12/112
Keypresses 270 103/112 9/112

Table 3: Performance test results. Overhead computed during
recording of browsing activities on popular websites.

Platform Website
WebAPI

overhead %
Platform

overhead %
Network

overhead %

Linux
(Optiplex)

Google 16.08 0.12 3.76
Facebook 5.30 1.58 0.54
Youtube 5.04 0.67 2.57
Amazon 16.78 0.72 0.32
Yahoo 8.99 0.20 0.89
Wikipedia 15.51 0.22 0.33
Ebay 7.63 0.34 0.31
Reddit 13.16 0.14 1.39

Android
(Nexus 7)

Google 6.89 0.78 1.49
Craigslist 7.68 0.58 0.19
Youtube 7.77 0.66 1.39
Flickr 8.23 0.75 0.75
IMDB 7.48 0.76 0.15
Yelp 6.33 0.59 1.59
Ebay 7.23 0.82 0.77
Reddit 4.40 0.57 1.85

tack pages made heavy use of JavaScript, to the point that the entire
page content was generated in a completely dynamic way. While
our prototype implementation of WebCapsule can replay the vast
majority of these cases, we encountered some scenarios in which
the replay of JavaScript code used for building the page was not
completely accurate. Therefore, the page content did not render the
same exact way as during recording, and the click and keypresses
missed the related targets on those pages. In our future work, we
plan to also add support for the above cases as well.

6.4 Record & Replay of Popular Websites
To further evaluate WebCapsule’s record and replay functional-

ities and measure the overhead introduced by our instrumentation
of Blink, we performed tests on several representative popular web-
sites, on both Linux and Android devices (see Section 6.1 for de-
tails on device configurations).

Performance Analysis. For each website shown in Table 3, we
performed a few minutes of “fast pace” browsing, during which we
issued numerous input events, such as mouse clicks, touchscreen
gestures, and keypresses, and navigated through several pages. Dur-
ing this test, we recorded the browsing activities and measured the
overhead introduced by our WebCapsule instrumentation code over
Blink. To accomplish this goal, we leveraged the profiling frame-
work already implemented in Blink. Specifically, we added calls
to TRACE_EVENT macros [27] within each single Blink function
we instrumented, including around all web-rendering API (or Web
API, for short), platform, and network-related “hooks” that we use
to record non-deterministic inputs. This allowed us to precisely
compute the CPU overhead introduced by our recording infrastruc-
ture. The results are reported in Table 3. We break down the over-
head introduced by the code used to record Web API, platform, and
network events, respectively.

Our results show that WebCapsule introduces reasonable over-
head both on Linux and Android, making its use as an always-on
system practical. For the Web API events overhead, which is al-
ways lower than 17% on Linux and 9% on Android, we need to
consider that this corresponds to only a few milliseconds of over-
head added to the processing of a user input event. During the

recording of our browsing traces this delay was visually unnotice-
able to the user. The platform overhead, which measures the added
time spent to record the input and return values of calls to Blink’s
platform API calls, is always low on both platforms, never exceed-
ing 2%. Finally, the time spent by WebCapsule to record network
requests and responses has only a small impact on network latency,
with an overhead always below 4%. The lower WebAPI perfor-
mance overhead for the Android traces is likely due to the lower
complexity of the mobile version of the websites (e.g., taking a
snapshot of the DOM at every click is less expensive).

We also computed the amount of data that would need to be
stored to archive WebCapsule’s browsing traces. On average, using
Chromium our browsing on popular websites produced 37.3kB/s of
offloaded browsing events data, with network-related data being re-
sponsible for the vast majority (almost entirety) of the offloaded in-
formation. As we mentioned in Section 2 (see non-goals and future
work), in this paper we do not focus on how to minimize storage
use. However, it is worth noting that many enterprise networks al-
ready use commercial solutions to store full network packet traces
for considerable periods of time (e.g., for compliance or security
reasons). Therefore, it would be possible to adapt such solutions to
store WebCapsule’s traces.

Replaying Browsing Traces. Besides measuring the performance
overhead introduced by WebCapsule in recording mode, we also
tested how well the recorded traces could be replayed. As shown
in Table 4 the vast majority of traces replayed correctly, with no
visually noticeable difference in the rendering of the pages be-
tween recording and replay. On Linux, only Youtube caused a
replay problem. Specifically, while replaying the Youtube brows-
ing trace we encountered an assertion failure9 on a part of Blink’s
code dedicated to “painting” the rendered page, causing the page,
and our instrumentation agent, to freeze. We plan to further in-
vestigate and correct this issue in future versions of WebCapsule.
We were also able to successfully replay searching/browsing on
Google.com. However, replay was fully successful (on both Linux
and Android) only with Google Instant predictions turned off [14].
Google Instant’s JavaScript code seems to use a non-deterministic
input that is not fully supported by our prototype. This causes
one of the parameters of the URLs for network requests issued by
Google Instant during replay to be slightly different from recording.
While our JavaScript call stack matching algorithm (Section 5.3)
helps us identify the correct (previously recorded) network response
to re-inject into Blink, it appears that Instant’s code performs some
sort of “response content verification,” which prevents the Instant
search results to be correctly rendered. Because the relevant Java-
Script code is heavily minimized, reverse-engineering Google In-
stant is fairly complex. Therefore, we plan to add support for
Google Instant in future releases of WebCapsule.

For our Android experiments performed on the Nexus 7, we per-
formed multiple tests on each of the sites listed in Table 4. For
each site, we were able to record and fully replay the browsing ac-
tivities. Only two sites caused some issues, and only for specific
browsing scenarios. Specifically, on Youtube and Yelp our record-
ing engine did not support the site’s search functionality. Namely,
after typing a search term and hitting Enter or the search button, the
search results would load but in some cases the browser page would
freeze. Performing other browsing activities on Youtube (with no
search) did not cause any noticeable issues, and both record and re-
play worked with no problems. Recording and replaying Yelp also
worked better when the site’s search function was not used, though

9!m_needsToUpdateAncestorDependentProperties
– in RenderLayer.h

Table 4: Record and replay tests on popular websites. Test are
marked as follows: 4 = successful test; H successful test with some
divergence; 6 test with problems; U test with problems that we
later fixed. Multiple symbols indicate different results depending
on the type of browsing activity on the site.

Platform Site Record Replay Comment

Linux

Google 4 4H Google Instant predictions off
Facebook 4 4 No noticeable difference
Youtube 4 6 Replay page rendering problem
Amazon 4 4 No noticeable difference
Yahoo 4 4 No noticeable difference
Wikipedia 4 4 No noticeable difference
Ebay 4 4 No noticeable difference
Reddit 4 4 No noticeable difference

Android

Google 4 4H Google Instant predictions off
Craigslist 4 4 No noticeable difference
Youtube 4U 4U Search function issues
Flickr 4 4 No noticeable difference
IMDB 4 4 No noticeable difference
Yelp 4U HU Search function issues
Ebay 4 4 No noticeable difference
Reddit 4 4 No noticeable difference

we experienced some other less critical issues (e.g., a missed page
transition) during replay, due to a fixable engineering issue in our
prototype code.

To better understand the origin of the replay issues related to
the search functionality on Yelp and Youtube, we performed an in-
depth investigation of WebCapsule’s execution traces. We found
that the above mentioned problems were caused by a combina-
tion of a small bug within our WebCapsule code (now fixed) plus
two known bugs within the version of Chromium we developed
against. Our own bug was related to the implementation of the
JavaScript call-stack reconstruction code (see Section 5.3), which
would sometimes return an unhandled null value, causing We-
bCapsule to crash. Fixing this bug solved the problem with the
search functionality on Yelp. However, Youtube’s search func-
tionality was still not working properly. After further debugging,
we were able to confirm that this was entirely due to two sepa-
rate bugs in Chromium itself (Issue-365858 and Issue-460328) that
caused ChromeShell to crash whenever a key-stroke was entered
into Youtube’s search field. After implementing a workaround for
both Chromium’s bugs, WebCapsule was able to correctly replay
Youtube’s search functionalities as well.

All other Android record and replay tests worked notably well.
In addition, we were able to successfully replay the traces we re-
corded on the ARM-based Nexus 7 into a separate x86-based An-
droid virtual device, thus showing that WebCapsule’s traces can be
replayed in a different platform and in a separate isolated environ-
ment.

Demos. To further demonstrate the record and replay abilities of
WebCapsule, we have recorded five example “demo videos” that
show a representative demonstration of how WebCapsule can be
used to record and replay browsing activities. We produced two
videos related to phishing attack traces, and three for highly popular
websites (Flickr, Amazon, and Wikipedia). These videos have been
posted before the submission deadline, as demonstrated by the post
dates on Youtube. We also took care to remove any identifiable
information from the videos themselves, so not to break anonymity
during the paper submission and review process.

- Flickr (mobile): http://youtu.be/K1CwIwcTgbE
- Amazon: http://youtu.be/inhkt88RqN8
- Wikipedia: http://youtu.be/AelqP91QfLg
- Phishing 1: http://youtu.be/hOcH3OQj9HU
- Phishing 2: http://youtu.be/mMiZ17Qlh0M

7. DISCUSSION AND FUTURE WORK
Besides forensic analysis of browsing activities, WebCapsule co-

uld benefit other applications, including the debugging of web ap-
plications and web usage mining [12], or be used as a compli-
ance tool in some sensitive network environments (e.g., healthcare,
banking, or government networks). In addition, besides social engi-
neering and phishing attacks, WebCapsule may help to reconstruct
other complex web-based attacks, including potentially helping to
detect and differentiate between phishing and insider threat attacks.

While WebCapsule is currently Blink-specific, this was a pon-
dered design decision. Our main objective was to enable accu-
rate recording and full replay of browsing traces while maximiz-
ing portability. One alternative we have thought about was to im-
plement WebCapsule as a browser extension. However, extension
APIs are browser-specific, and in most cases do not allow for the
fine-grained recording of internal rendering engine events that are
critical for enabling full replay. In addition, most popular mobile
browsers do not currently allow for installing “powerful” exten-
sions, and this would have prevented the use of WebCapsule on
some mobile devices. On the other hand, because Blink is already
embedded in several popular browsers (e.g., Chrome, Opera, Silk,
etc.), and also in Android’s WebView library, implementing Web-
Capsule by instrumenting Blink enables its deployment in a variety
of web browsers, web-rendering applications, and platforms, in-
cluding on mobile devices.

Our current version of WebCapsule has some limitations. For
example, as discussed in Section 3, the fact that Blink is highly
multi-threaded imposes a number of implementation challenges for
replay. During evaluation we did encounter some practical cases
of complex web pages that cause replay divergence. However, as
shown by the results reported in Section 6, WebCapsule performed
remarkably well on a large variety of sites, considering that our
implementation is an academic-level prototype system.

In our future work we plan to study how to further enhance We-
bCapsule, for example by using an approach inspired by the logi-
cal thread schedule proposed in DejaVu [6]. In addition, once the
Blink scheduler [4] reaches a stable release, we plan to leverage it
to be able to record the scheduling of Blink’s internal tasks, and to
replicate the same scheduling during replay.

Another limitation of our system is due to differences in CPU
speed between the recording and replay environments, which may
affect rendering. While during replay we use the event timelines
discussed in Section 5 to synchronize the re-injection of user in-
puts to the underlying platform API calls (e.g., network requests,
calls to current time, etc.), theoretically a web application may gen-
erate DOM changes (e.g., rotate an image or rewrite a hyperlink)
repeatedly and in an unconstrained way, at a speed bounded only
by the available CPU cycles. In turn, this may cause a re-injected
user input to interact with the wrong DOM element. We refer to
this problem as intrinsic non-determinism, because it is mainly due
to the difference in hardware characteristics between the recording
and replying devices (though CPU load due to multiple applications
running on the same device during recording may also contribute
to this problem).

We believe this intrinsic non-determinism is difficult to solve
completely unless we perform heavyweight record and replay at
the instruction level [11], rather than at the API call level. Unfor-
tunately, this would likely introduce a much higher performance
overhead and degrade portability. At the same time, we need to
consider the fact that in practice intrinsic non-determinism rarely
affects replay, as demonstrated in part by the positive results of our
replay evaluation reported in Section 6. We expect this to hold true
especially when the same device type used for recording is also

used during replay. In our future work, we will attempt to further
mitigate the effects of intrinsic non-determinism by implementing
more sophisticated replay clock synchronization techniques (e.g.,
by synchronizing to DOM changes or rendering events).

8. RELATED WORK
Forensic analysis of web-based incidents generally relies on an-

alyzing the web browser’s history, cache files, and system logs [16,
20], or on web traffic traces [15, 18, 24, 33]. However, such ap-
proaches do not provide the ability to fully reconstruct and replay
web security incidents, especially for incidents that directly involve
the user (e.g., phishing and social engineering attacks), as also dis-
cussed in Section 1.

Record and replay is a commonly desired feature for debugging
and troubleshooting complex software and systems, and a num-
ber of previous efforts have been explored to support record and
replay at different levels. For example, approaches based on vir-
tual machines [6, 11, 21, 29] have been proposed to record system
level events (interrupts, thread scheduling, etc.) and replay applica-
tion and system execution at the level of single instructions. While
they are designed for generic application record and replay, VM-
based approaches cannot be easily deployed with low performance
overhead to resource constrained devices, such as smartphones and
other mobile devices. In contrast, our WebCapsule system focuses
on always on record and replay of web browsing traces, and pro-
vides a lightweight and practical solution that can be deployed with
no changes in a variety of different web-rendering applications and
platforms, including mobile devices (e.g., Android devices).

WebCapsule also differs significantly from prior work that fo-
cuses exclusively on replaying specific web components, such as
JavaScript code [17], user gestures and other sensor inputs on mo-
bile devices [13], or user interactions with web applications [2].
Unlike these previous studies, WebCapsule aims to record and re-
play the execution of a web browsing trace in its entirety, including
network transactions, and non-deterministic calls to the underlying
system platform. This allows us to replay in a completely isolated
environment, without requiring new user or network inputs. This is
especially important when there is a need to replay potential web-
security incidents for which the server-side content is ephemeral
and many not be otherwise available at the time of replay.

Another work related to ours is TimeLapse [5], a developer tool
that focuses on the record and replay of human visible web events,
and on the interoperability with existing web application debug-
ging tools. As discussed in more details in Section 1, TimeLapse
does not work as an always on recording system and is not easily
portable to different browser and operating systems (it is currently
limited to Safari+MacOS). In addition, Timelapse is not transpar-
ent, because ig deeply modifies WebKit (e.g., to force a synch-
ronous scheduling of threads). In contrast, WebCapsule can per-
form low-overhead always on recording, and is also transparent and
portable.

9. CONCLUSION
In this paper, we presented WebCapsule, a novel record and re-

play forensic engine for web browsers. WebCapsule’s main goal is
to work as an always-on and lightweight (i.e., low overhead) foren-
sic data collection system that enables a full reconstruction of web
security incidents, including phishing and social engineering at-
tacks. We designed WebCapsule to be a portable system by instru-
menting Google’s Blink rendering engine without altering its appli-
cation and platform APIs. Our experimental results on both Linux
and Android systems show that WebCapsule can accurately record
and replay complex web applications, including popular websites

and real-world phishing attacks, with reasonable performance over-
head, thus making always-on recording practical.

Acknowledgments
We thank Minesh Javiya (Stony Brook University) and Jienan Liu
(University of Georgia) for their help with collecting the browsing
traces used to evaluate WebCapsule. We would also like to thank
the Chromium development team for their documentation of Blink
and of the entire Chromium project, and the anonymous reviewers
for their constructive and very helpful comments.

This material is based in part upon work supported by the Na-
tional Science Foundation, under grants No. CNS-1149051 and
CNS-1514142. Any opinions,findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foun-
dation.

10. REFERENCES
[1] Acid3. http://acid3.acidtests.org.
[2] ANDRICA, S., AND CANDEA, G. Warr: A tool for

high-fidelity web application record and replay. In
Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks (Washington,
DC, USA, 2011), DSN ’11, IEEE Computer Society,
pp. 403–410.

[3] Blink web rendering engine.
http://www.chromium.org/blink.

[4] Blink scheduler. https://goo.gl/wzqXgC -
https://goo.gl/I8YGu3 -
https://goo.gl/RBkhCo.

[5] BURG, B., BAILEY, R., KO, A. J., AND ERNST, M. D.
Interactive record/replay for web application debugging. In
Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology (New York, NY, USA,
2013), UIST ’13, ACM, pp. 473–484.

[6] CHOI, J.-D., AND SRINIVASAN, H. Deterministic replay of
java multithreaded applications. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools
(New York, NY, USA, 1998), SPDT ’98, ACM, pp. 48–59.

[7] Chrome devtools. https://developer.chrome.
com/devtools/docs/integrating.

[8] Chromeshell. https://code.google.com/p/
chromium/wiki/AndroidBuildInstructions.

[9] DENNING, D. E., AND BRANSTAD, D. K. A taxonomy for
key escrow encryption systems. Commun. ACM 39, 3 (Mar.
1996), 34–40.

[10] Dromaeo javascript test suite. http://dromaeo.com.
[11] DUNLAP, G. W., KING, S. T., CINAR, S., BASRAI, M. A.,

AND CHEN, P. M. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proceedings
of the 5th Symposium on Operating Systems Design and
implementation (New York, NY, USA, 2002), OSDI ’02,
ACM, pp. 211–224.

[12] ETMINANI, K., DELUI, A., YANEHSARI, N., AND
ROUHANI, M. Web usage mining: Discovery of the users’
navigational patterns using som. In Networked Digital
Technologies, 2009. NDT ’09. First International Conference
on (2009), pp. 224–249.

[13] GOMEZ, L., NEAMTIU, I., T.AZIM, AND T.MILLSTEIN.
Reran: Timeing- and touch-sensitive record and replay for
android. In Proceedings of the 2013 ICSE (2013).

[14] Google instant predictions. https://support.
google.com/websearch/answer/186645?hl=en.

[15] HONG, S.-S., AND WU, S. On interactive internet traffic
replay. In Recent Advances in Intrusion Detection, A. Valdes
and D. Zamboni, Eds., vol. 3858 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006,
pp. 247–264.

[16] JONES, K. J. Forensic analysis of internet explorer activity
files. http://www.mcafee.com/us/resources/
white-papers/foundstone/wp-pasco.pdf.

[17] MICKENS, J., ELSON, J., AND HOWELL, J. Mugshot:
Deterministic capture and replay for javascript applications.
In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA,
2010), NSDI’10, USENIX Association, pp. 11–11.

[18] NEASBITT, C., R.PERDISCI, LI, K., AND NELMS, T.
Clickminer: Towards forensic reconstruction of uesr-browser
interactions from network traces. In Proceedings of the 2014
ACM Computer and Communication Security Conference
(CCS) (2014).

[19] Rsa netwitness.
https://www.emc.com/collateral/
data-sheet/rsa-netwitness-nextgen.pdf.

[20] OH, J., LEE, S., AND LEE, S. Advanced evidence collection
and analysis of web browser activity. Digit. Investig. 8 (Aug.
2011), S62–S70.

[21] Panda. https://github.com/moyix/panda/
blob/master/docs/record_replay.md.

[22] REIS, C., AND GRIBBLE, S. D. Isolating web programs in
modern browser architectures. In Proceedings of the 4th
ACM European Conference on Computer Systems (New
York, NY, USA, 2009), EuroSys ’09, ACM, pp. 219–232.

[23] Selenium webdriver. http://docs.seleniumhq.
org/projects/webdriver/.

[24] Tcpreplay. http://tcpreplay.synfin.net/.
[25] Timelapse htmlparser. https://github.com/burg/

timelapse/blob/timelapse/Source/WebCore/
html/parser/HTMLDocumentParser.cpp; see “//
The timing of yields is nondeterministic, so just don’t yield
during capture/replay”.

[26] Timelapse wiki.
https://github.com/burg/timelapse/wiki/
Frequently-asked-questions.

[27] Adding traces to chromium.
http://www.chromium.org/developers/
how-tos/trace-event-profiling-tool/
tracing-event-instrumentation.

[28] V8 javascript engine.
https://developers.google.com/v8/.

[29] VMWARE INC. Replay debugging on linux, October 2009.
http://www.vmware.com/pdf/ws7_replay_
linux_technote.pdf.

[30] The webkit open source project.
https://www.webkit.org.

[31] Webview. http://developer.android.com/
guide/webapps/webview.html.

[32] Wikipedia - acid3.
http://en.wikipedia.org/wiki/Acid3.

[33] XIE, G., ILIOFOTOU, M., KARAGIANNIS, T., FALOUTSOS,
M., AND JIN, Y. Resurf: Reconstructing web-surfing
activity from network traffic. In IFIP Networking
Conference, 2013 (2013).

