
Ghost Domain Names: Revoked Yet Still Resolvable

Jian Jiang, Jinjin Liang
Network Research Center

Tsinghua University
{jiang-j08, liangjj09}@mails.tsinghua.edu.cn

Kang Li
Department of Computer Science

University of Georgia
kangli@cs.uga.edu

Jun Li
University of Oregon

Carlos III University of Madrid
Institute IMDEA Networks

lijun@cs.uoregon.edu

Haixin Duan
Network Research Center

Tsinghua University
duanhx@tsinghua.edu.cn

Jianping Wu
Network Research Center

Tsinghua University
jianping@cernet.edu.cn

Abstract

Attackers often use domain names for various malicious
purposes such as phishing, botnet command and control,
and malware propagation. An obvious strategy for prevent-
ing these activities is deleting the malicious domain from
the upper level DNS servers. In this paper, we show that
this is insufficient. We demonstrate a vulnerability affecting
the large majority of popular DNS implementations which
allows a malicious domain name to stay resolvable long af-
ter it has been removed from the upper level servers. Our
experiments with 19,045 open DNS servers show that even
one week after a domain name has been revoked and its TTL
expired, more than 70% of the servers will still resolve it.
Finally, we discuss several strategies to prevent this attack.

1. Introduction

The Domain Name System (DNS), which provides a
global mapping service between Internet domain names and
IP addresses, is one of the most important components of
the Internet. While primarily used for legitimate purposes,
domain names have also been heavily leveraged by mali-
cious activities such as phishing, malware propagation, and
botnet command and control. A major endeavour in stop-
ping these malicious activities has thus been identifying and
deleting malicious domain names. For example, recent do-
main name takedown efforts have successfully shut down
large scale botnets such as Waledac and Rustock [7].

While these successes have demonstrated that domain
name revocation is effective in fighting against malicious
activities, in this paper we show that removing malicious
domains from domain registry is not enough to revoke the

domain and IP mapping at the global scale. In fact, an at-
tacker can keep their domain names continuously resolvable
to attacker-controlled IP addresses—even after the original
delegation data has been removed from the domain reg-
istry and the original time-to-live (TTL) period has expired.
Because of the elusive nature of these domain names (i.e.
revoked but still resolvable), we call them ghost domain
names.

Ghost domain names are results of a vulnerability in the
DNS cache update policy which prevents effective domain
name revocation. The normal process of revoking a domain
name from the global DNS system includes two steps: first
the removal of the delegation data at the domain registry,
and second the removal of all the cached copies through-
out DNS resolvers. The first step is based on an explicit
action, and the second one is implicitly governed by the
TTL value associated with the delegation data. Although
the TTL-based implicit revocation mechanism is not timely,
it is still acceptable if a revoked domain name can be even-
tually cleared from every DNS resolver after the specified
time according to the TTL value. Unfortunately, DNS al-
lows a cached entry to be overwritten at a DNS resolver and
the cache update logic is not strictly defined. An attacker
can manipulate the cached delegation data and extend the
TTL value. The attacker only needs to generate a recursive
query to be resolved by the authoritative server (controlled
by the attacker) before the TTL expires, and piggyback new
delegation data in the crafted response from the authorita-
tive server to the resolver (the victim). The new delegation
data still resolves to an IP address controlled by the attacker
but with new TTL value, and the attacker can continuously
keep the delegation data alive in the resolver by repeating
the same attack.

This vulnerability is different from the notorious cache



poisoning attacks [4]. While cache poisoning attacks com-
promise the integrity of DNS data by forging DNS re-
sponses, to exploit the ghost domain vulnerability, the at-
tacker only needs to perform two legitimate actions: 1)
querying the victim DNS resolver for a ghost domain to
force the victim resolver to query the attacker’s authoritative
server before the delegation data expires, and 2) piggyback-
ing new delegation data in the response from the authorita-
tive server to the victim resolver. Because the two actions
are seemingly legitimate, the vulnerability has not been ad-
dressed by the previous patches for cache poisoning.

Our study confirms that, until the writing of this pa-
per, the majority of public DNS servers and up-to-date ver-
sions of popular DNS implementations, including the lead-
ing vendor BIND, are vulnerable. We believe that this vul-
nerability has not been suitably acknowledged by the net-
working and security community. Through experiments
with 19,045 open DNS resolvers, we demonstrate that over
93% of experimental DNS resolvers are vulnerable and a
large scale exploitation is practical. we have successfully
created and kept ghost domain names in over 70% of exper-
imental resolvers after one week of domain name revocation
and TTL expiration.

This paper also discusses various approaches to address-
ing the problem of ghost domain names. Our study finds
three DNS implementations, namely Unbound, MaraDNS
and Microsoft DNS, have non-vulnerable versions. By
comparing them, we find that although Unbound’s strategy
is simple in terms of implementation, MaraDNS’s strategy
is more fundamental — tightening the policy for delega-
tion data update. We recommend that the DNS community
adopt this defense strategy, and moreover consider a rigor-
ous definition of DNS cache update policy.

The rest of this paper is organized as follows. We re-
view necessary background of DNS in section 2. We then
describe technical details of the vulnerability in section 3.
In section 4 we present our exploitation experiments and
analyze experimental results. We then discuss defenses and
possible issues in section 5. Finally, we highlight the related
work in section 6, and conclude the paper in section 7.

2. Background

In this section, we briefly summarize how DNS works.
We focus on the concepts and details related to the vulnera-
bility that we will present in the next section. Please refer to
the DNS specifications for detailed descriptions [20] [21].

2.1. DNS Overview

DNS is organized around a hierarchical tree structure.
Each domain name is composed of labels separated by dots.
The domain name tree is divided into a series of zones based

Figure 1. An example of DNS resolution pro-
cess.

on the individual labels. Each zone represents a domain,
and the server which holds the DNS data for all names under
it is called the zone’s authoritative server. An authoritative
server may also delegate the authority of its sub-domains
to other servers, which then serve as authoritative servers
respectively for the sub-domains.

To a DNS client (stub resolver), a typical DNS name
resolution process involves the client’s local recursive re-
solver going through a series of queries to the authorita-
tive servers of sub-domains along the tree of DNS. For
example, Figure 1 shows a DNS resolution process of
www.example.com through the three corresponding au-
thoritative servers for the root zone, its child .com, and
the next level sub-domain example.com respectively.
Briefly, a stub resolver first requests a recursive resolver to
resolve the domain www.example.com. Assuming the
recursive resolver has no previous information about the
domain, it will contact external servers in an iterative way.
This iterative process includes a query to a root server (step
2) which redirects the recursive resolver to the .com au-
thoritative server (step 3). Then the recursive resolver con-
tacts the .com server (step 4), and from the reply it gets the
information of authoritative server of example.com (step
5). The recursive resolver queries the authoritative server of
example.com (step 6) which responds the IP addresses
(step 7). The recursive resolver at the end forwards the re-
sponse back to the stub resolver (step 8). During the pro-
cess, the recursive resolver also caches received DNS data
for further resolutions.

2.2. DNS Data Structure

Since the vulnerability we will present involves carefully
crafted DNS responses, we also provide a brief summary
about the DNS resource record and the DNS response for-
mat as background.

DNS data is stored using a basic data structure called



Resource Record (RR). Every RR record is a five-tuple
< name, class, type, TTL, data >, where <
name, class, type > serves as the key of data, TTL is
a time-to-live value in seconds that limits the lifespan of
cached copies. There are many types of RR records. Specif-
ically, an A record gives the IP address of the name, and an
NS record is another name that indicates the name of the
server which has been delegated to serve as the domain’s au-
thoritative server. An NS record together with a correspond-
ing A record are also known as delegation data. Delegation
data points to the authoritative server of a sub-domain and
provides its IP address as well.

When a DNS server receives a query that requests one or
more types of RR records of a given name, it replies with
a response that consists of three sections1: answer section,
authority section and additional section. When the current
DNS server cannot directly resolve the name in question,
the authority section and the additional section, also known
as referral sections, are used to carry an NS record and a cor-
responding A record. These records provide delegation data
of a sub-domain that is closer to the name in question. The
message below is a sample response of Step 5 in Figure 1.

;; ANSWER SECTION

;; AUTHORITY SECTION
example.com. 86400 IN NS ns.example.com.

;; ADDITIONAL SECTION
ns.example.com. 86400 IN A 10.0.0.1

After a DNS resolver receives a DNS response, it then can
cache the resource records contained in the response. Be-
fore the resource records expire based on the associated
TTL value, the resolver does not need to go through the
steps illustrated in Figure 1 to obtain the same records. For
the sample response above, for example, the resolver can
cache the delegation data of example.com for 86,400
seconds.

2.3. DNS Cache Update Policy

DNS cache is critical to its scalability and performance,
and it can significantly reduce the overhead of authoritative
servers and the response latency. However, it also poses
many security threats. In the infamous DNS cache poison-
ing attack [4], an attacker can inject bogus RR records into
DNS resolvers to redirect users to malicious addresses. For
a number of reasons, DNS is inherently vulnerable to this
type of attacks. For example, the connectionless nature of
DNS protocol makes it vulnerable to spoofing attacks. An
attacker can also use a compromised or malicious authori-
tative server to piggyback bogus records in referral sections
of a DNS response.

1A DNS response also contains a question section copied from the orig-
inal request, which we ignored for simplicity.

The research and DNS communities have adopted sev-
eral techniques to harden DNS against cache poisoning at-
tacks. These techniques can be categorized into two classes:
techniques for increasing forgery resistance and techniques
for tightening cache update policy. Here we focus on the
second class of techniques, specifically, the bailiwick rule
[31] and the credibility rule [13]. The bailiwick rule checks
referral sections in a DNS response to see if its contained
RR records are in the authority range of the asked authori-
tative server. For example, if a DNS response comes from
authoritative server of .com and contains a NS record of
.net, then this record is considered as “out-of-bailiwick”
and should be discarded. The credibility rule gives each
RR record a different trust level according to where the re-
sponse comes from and in which section the record is con-
tained. Only when a new RR record has a higher or equal
trust level should a cached RR record be overwritten.

Unfortunately, both the bailiwick rule and the credibil-
ity rule have limitations. The bailiwick rule does not have
a standard specification and depends on implementation.
While the credibility rule specifies when cached entries can
be overwritten, it still could be exploited for malicious pur-
poses. For example, Dan Kaminsky reported a novel cache
poisoning attack [18] that leverages non-existent names to
increase spoofing efficiency, and in particular, exploits the
credibility rule to overwrite cached entries by piggybacked
referral sections. Some DNS vendors have responded to
this attack by enhancing the validation of any RR records
included in the additional section. However, in the next
section, we demonstrate that even with such validation, the
DNS cache update policy is still insecure.

3. The DNS Name Revocation Vulnerability

We illustrate the DNS name revocation vulnerability in
this section, focusing on how an attacker can generate and
maintain a ghost domain name.

To completely revoke a domain name (e.g.,
phishing.com), the delegation data for the name
must be deleted from the authoritative servers of the
parent zone of the name (e.g., .com), and sufficient time
must be allowed for every recursive resolver to remove
the cached delegation data for the name when the data
expires. However, the current bailiwick and credibility
rules that govern the overwriting of cached DNS resource
records do not prevent an attacker from illegally renewing
cached delegation data, even after the data has been deleted
from the parent zone. An attacker can extend the TTL
(time-to-live) value of the cached delegation data, therefore
keeping a malicious domain (such as phishing.com)
continuously resolvable.

Figure 2 shows a typical ghost domain name sce-
nario, where an attacker manages to keep the delega-



(a) Before phishing.com is deleted, the attacker pulls the delegation
data for phishing.com into the victim DNS resolver.

(b) After phishing.com is deleted, the attacker manipulates the victim
resolver to keep the delegation data in its cache.

Figure 2. An example ghost domain name (phishing.com) attack.

tion data of phishing.com in a victim recursive re-
solver. We assume that the attacker has registered a do-
main name phishing.com at the authoritative server of
.com. Although this server is out of the attacker’s con-
trol, the attacker runs and controls the authoritative server
of phishing.com.

Two phases of establishing a ghost domain name are in-
volved:

• Phase 1: Caching the delegation data of a domain
name. The attacker targets a DNS resolver and re-
quests it to resolve a name under phishing.com,
say www.phishing.com. During the resolu-
tion process, the authoritative server of .com pro-
vides the victim resolver with the delegation data of
phishing.com, such as:

;; ANSWER SECTION

;; AUTHORITY SECTION
phishing.com. 86400 IN NS ns.phishing.com.

;; ADDITIONAL SECTION
ns.phishing.com. 86400 IN A 10.0.0.1

The victim resolver accepts and caches the delega-
tion data above. After 43, 200 seconds, as shown in
Figure 2b, phishing.com is identified as a mali-
cious domain and deleted from .com. At this mo-
ment, however, the victim resolver can still resolve
phishing.com since it still caches the delegation
data of phishing.com, which will not expire until
another 43, 200 seconds later.

• Phase 2: Refreshing the cached delegation
data of the ghost name. At some point after
phishing.com has been removed from .com but
before the delegation data of phishing.com ex-
pires, the attacker manipulates the victim resolver to
conduct a series of DNS operations in order to have it
continue to cache the delegation data after the original
expiration time. These operations follow the standard
DNS protocol without violating any rules, and are as
follows.

The attacker first changes the NS record
of phishing.com to a new name, say
ns1.phishing.com, then queries the victim
resolver for the A record of ns1.phishing.com.
Based on the cached, non-expired delegation data
of phishing.com, the victim resolver learns and
contacts the authoritative server of phishing.com,
and receives a response, such as:

;; ANSWER SECTION
ns1.phishing.com. 86400 IN A 10.0.0.1

;; AUTHORITY SECTION
phishing.com. 86400 IN NS ns1.phishing.com.

;; ADDITIONAL SECTION
ns1.phishing.com. 86400 IN A 10.0.0.1

Both the answer section and the authority section con-
form to the bailiwick rule. Also, according to the cred-
ibility rule, the new NS record in the authority sec-
tion has the same trust level as the old NS record of
phishing.com in the cache. The victim resolver



will therefore overwrite the old NS record with the new
one, and the A record in the answer section and the new
NS record will form the complete delegation data of
phishing.com, i.e.:

phishing.com. 86400 IN NS ns1.phishing.com.
ns1.phishing.com. 86400 IN A 10.0.0.1

Most importantly, the new delegation data has a
fresh TTL value of 86, 400, meaning the lifetime of
phishing.com in the victim resolver starts over
now for a new round of 86, 400 seconds. In fact,
the attacker can refresh the delegation data later
again and again before the data expires, thus making
phishing.com accessible from the victim resolver
for a very long time. In another words, the resolver will
be continuously haunted by this ghost domain name,
so we also call this resolver a haunted resolver.

The attacker can target many other DNS resolvers and re-
peat the same cache-and-refresh manipulation operations as
described above with these victims. As a result, the attacker
can use phishing.com to host their malicious sites for
a long time, and users throughout the Internet would con-
tinue to be able to resolve phishing.com to attacker-
controlled IP addresses.

The success of the ghost domain name attack assumes
the attacker is able to send regular DNS queries to DNS
resolvers. This assumption is practical when the attacks tar-
get open resolvers; previous research [11] has shown that
there are still a large number of open resolvers around the
world. The assumption is also practical if the attacker is in
the service range of a DNS resolver, or he can control a bot
machine in that range thus can initiate DNS queries from
the bot machine.

4. Experiments, Results, and Analysis

While theoretically feasible according to our discussion
in Section 3, it is unclear if an attacker can indeed launch a
large-scale exploitation in the real world based on the ghost
domain vulnerability of DNS, and if so, to what extent and
at what cost. We investigate this matter in this section, fo-
cusing on the following questions:

• How many deployed DNS resolvers and DNS imple-
mentations are vulnerable?

• What would be the cost for an attacker to maintain
ghost domain names?

• For those vulnerable DNS resolvers, how long can an
attacker keep their ghost domain names in these re-
solvers?

4.1. Experimental Setup

We collected 19,045 open DNS resolvers from the query
log of a busy authoritative server, also with the help of the
authors of [28]. Table 1 shows how these resolvers are dis-
tributed around different geographic regions and different
autonomous systems (AS).

Region Count Percentage
Japan 2479 13.01
USA 2471 12.97

Russian 1987 10.43
China 1742 9.15

Taiwan 1093 5.74
Germany 1020 5.36
Poland 547 2.87
Britain 546 2.87
Italy 512 2.69
HK 348 1.93

Total 161 regions

(a) Regions

AS number Count Percentage
3462 628 3.29
538 455 2.52

4713 384 2.38
4134 351 2.01
1659 261 1.84
4837 257 1.37
4732 200 1.34

17506 164 1.05
9600 115 0.86
2907 106 0.60

Total 5474 ASes

(b) Autonomous Systems (ASes)

Table 1. Statistics of DNS resolvers used in
our experiments.

We conducted several experiments using
these resolvers. We registered a domain name
ghostdomain.info, and created ten sub-domains
([1-10].ghostdomain.info). We then con-
ducted the Phase-1 operations (as described in Sec-
tion 3) with every resolver we collected, so that
they all have a cached entry for every sub-domain of
ghostdomain.info. After four hours, we simulta-
neously remove all sub-domains from the authoritative
server of ghostdomain.info, except for one of the
ten sub-domains, 1.ghostdomain.info. We then
periodically conduct the Phase-2 operations (as described
in Section 3) for one week on every resolver for the rest
nine sub-domains, i.e., [2-10].ghostdomain.info.
Each of these nine sub-domains has a different parameter
setting for their domain names with regard to the original
TTL value (1800, 3600, and 14400 seconds)2 and the

2An attacker can set a very large TTL value for the delegation data of



Service Provider IP Address Vulnerable?

Google 8.8.8.8 No
8.8.4.4 No

DNS Advantage 156.154.70.1 Yes
156.154.71.1 Yes

OpenDNS 208.67.222.222 Yes
208.67.220.220 Yes

Norton 198.153.192.1 Yes
198.153.194.1 Yes

GTEI DNS 4.2.2.1 Yes
4.2.2.2 Yes

Table 2. Vulnerability testing of public DNS
servers.

refreshing interval for Phase-2 operations (TTL/2, TTL/4,
and TTL/8).

During the entire week, every ten minutes we probe ev-
ery resolver to see if the cached entry of a sub-domain
is still alive at every resolver, in order to learn the nor-
mal behavior after a domain name is revoked by testing
1.ghostdomain.info, and how long a ghost domain
name ([2-10].ghostdomain.info) can survive in
every resolver. Every ten minutes we also check if every
resolver can resolve www.google.com to make sure ev-
ery resolver is still reachable and functioning.

4.2. Vulnerable Public DNS Servers and Popular
DNS Implementations

Using ghostdomain.info under our control, we
tested how public DNS servers and popular DNS imple-
mentations may be susceptible to the ghost domain name
vulnerability. We discover that the distribution of the vul-
nerability is wide.

First, as shown in Table 2, we tested ten well-known
public DNS servers from five service providers. Among
tested servers, only the two from Google were not vulner-
able. Since Google’s DNS implementation was not open
source, we could not know exactly how it avoided this vul-
nerability.

As shown in Table 3, we also chose six popular DNS
vendors based on a recent DNS survey [30] and tested
if they were vulnerable: BIND, DJB dnscache, Unbound,
PowerDNS, MaraDNS and Microsoft DNS. For each ven-
dor, we first tested its latest version. For those which were

a malicious domain so that they can stay in cache for a very long time,
even without launching the ghost domain name attack. But most DNS
implementations have a maximum TTL limitation; they might force a DNS
resolver to reset the TTL value of a cached entry, or even simply discard
the entry if the original TTL exceeds the maximum TTL value allowed. We
have made sure the TTL values we used here are less than the maximum
TTL value allowed in DNS resolvers that we experiment with.

DNS Vendor Version Vulnerable?
BIND 9.8.0-P4 Yes

DJB dnscache 1.05 Yes

Unbound 1.4.11 No
1.4.7 Yes

PowerDNS Recursor 3.3 Yes

MaraDNS Deadwood-3.0.03 No
Deadwood-2.3.05 No

Microsoft DNS Windows Server 2008 R2 No
Windows Server 2008 Yes

Table 3. Vulnerability testing of popular DNS
implementations.

not vulnerable, we then tested their previous versions to see
at which version the vulnerability got addressed. Five out
of nine implementations, including the latest version from
the leading vendor BIND, were vulnerable. We also found
that three vendors had non-vulnerable versions, and we will
discuss their defense strategies in Section 5.

4.3. Efficacy of Maintaining Ghost Domain Names

We measured how the 19,045 open DNS re-
solvers may continue to resolve a ghost domain name
(2.ghostdomain.info). For comparison, we also
measured (1) how every resolver may continue to resolve a
continuously existent, legitimate domain name, for which
we use www.google.com; and (2) how every resolver
may continue to resolve a legitimate domain name that
gets revoked without the ghost domain operations; we use
1.ghostdomain.info for this purpose. We therefore
have three types of domain names: ghost domain name, live
legitimate domain name, and revoked legitimate domain
name.

Figure 3a shows how the DNS resolvers in our experi-
ments may continue to resolve the three different types of
domain names. By probing a resolver for a particular type
of domain name, we can identify whether it is resolvable or
not. From Figure 3a, it is clear that the three different types
of domain names present different behaviors. As expected,
a live legitimate domain name (www.google.com) can
be resolved by almost all resolvers continuously. The num-
ber of resolvers that can resolve a revoked legitimate do-
main name (1.ghostdomain.info), however, rapidly
falls down after its TTL expires. In contrast, a ghost domain
name (2.ghostdomain.info) can be resolved by most
of DNS resolvers as time goes by, even after its TTL expira-
tion time. More than 93% of DNS resolvers still reply with a
positive response for resolving the ghost domain name after
its TTL has expired, meaning all these resolvers are vulner-
able to the ghost domain name attack. Even one week after



 0

 2000

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u

m
b

e
r 

o
f 

D
N

S
 r

e
s
o

lv
e

rs
 t

h
a

t 
c
a

c
h

e
 a

 s
p

e
c
if
ic

 t
y
p

e
 o

f 
d

o
m

a
in

 n
a

m
e

Days in August 2011

live legitimate domain name
revoked legitimate domain name

ghost domain name

(a) Resolving of domain names at open DNS resolvers over time.
The dashed vertical line indicates the original TTL expiration time for
[1-2].ghostdomain.info after they are removed from domain
registry.

(b) Geographic view of open DNS resolvers that are still haunted by ghost
domain names one week later.

Figure 3. Measurement of ghost domain names at open DNS resolvers.

TTL expiration, the ghost domain names are still resolvable
by more than 70% of all DNS resolvers we collected. Fig-
ure 3b provides a geographic view of all the haunted DNS
resolvers at this time point. (We discuss later why the num-
ber of DNS resolvers that resolve a ghost domain name, i.e.
the number of haunted DNS resolvers, gradually declines as
time goes by.)

We note that after TTL expiration, a revoked legitimate
domain name can still be resolved by approximately 10%
of DNS resolvers, rather than 0% as we might expect.
This phenomenon is due to extremely loose enforcement
of cache update policy at certain resolvers that still employ
very old versions of DNS implementations. They accept
all referral sections and overwrite cached entries without
any validation. These resolvers can be haunted by a ghost
domain name even without the sophisticated attack as de-
scribed in Section 3, but simply with periodical queries of a
ghost domain name.

4.4. Cost of Maintaining Ghost Domain Names

As we have shown the vulnerability of ghost domain
in popular DNS implementations and widely deployed In-
ternet DNS resolvers, a natural question is about the cost
of launching and maintaining ghost domain names. Since
the actions required by ghost domain attacks are sending
queries to targeted resolvers, the main cost of maintaining
a ghost domain name is network bandwidth consumption.
An attacker needs to send plenty of DNS queries to refresh
the cached entries of a ghost domain name, and the amount
of such effort is proportional to the number of the targeted
resolvers. For each individual targeted resolver, the band-

width consumption of the ghost domain attack is mainly de-
termined by the refreshing interval, which is related to two
factors: the TTL value of the delegation data for the ghost
domain and the refreshing interval per TTL. The refreshing
interval relates to the TTL value because to keep the cached
data alive, at least one refreshing operation is needed before
a cached entry expires.

A naı̈ve attacker might choose a very large TTL value of
the delegation data with the hope of maintaining the ghost
domain in a resolver’s cache before refreshing it. This strat-
egy saves bandwidth, but it is not practical since most of
DNS resolvers enforce a maximum TTL limitation. We
found empirically that most of our experimental resolvers
have a maximum TTL limitation around one day (16.35%)
or one week (79.81%), which means the TTL value of the
ghost domain is limited.

For any given TTL value selected by the attacker, the
bandwidth consumption is directly related to how often at-
tackers refreshes in one TTL. Figure 4 shows the effects of
ghost domain exploitation with different TTL values and re-
freshing intervals. From the results, we observe that if the
attacker ensures that one refreshment is sent for each quarter
of TTL, additional refreshing effort can increase the effec-
tiveness, but not significantly. This is reasonable because
the attacker only needs to ensure one successful renewal
before the ghost domain expires. refreshing more often is
useful only to reduce the chance of packet losses. We also
see that the curves of TTL/2 refreshing interval declines
faster, since only one refresh within the TTL period might
occasionally fail, so a timely renewal of the ghost domain
cannot be ensured.



 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 900
interval = 450
interval = 225

(a) TTL = 1800

 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 1800
interval = 900
interval = 450

(b) TTL = 3600

 0

 10000

 15000

 18000

 20000

03/08 05/08 07/08 09/08

N
u
m

b
e
r 

o
f 
re

s
o
lv

e
rs

Days in August 2011

interval = 7200
interval = 3600
interval = 1800

(c) TTL = 14400

Figure 4. Establishment of ghost domain names with different TTL values and refreshing intervals.

4.5. Other Factors that Affect The Lifetime of Ghost
Domains

Through all our experiment results such as those shown
in Figure 4 and Figure 3a, we observe that the numbers of
exploited resolvers continuously decrease over time. Al-
though this declining trend is affected by the attackers’ ac-
tions (such as the refreshing frequency discussed above),
the types of the recursive resolvers turn out to affect the
lifetime of ghost domain as well.

To illustrate the impact of recursive resolver
types, we analyze the experimental data of probing
www.google.com to study when and how frequently
a cached entry (in this case, the CNAME record of
www.google.com as it has a large original TTL) gets
evicted. Knowing how a cache record could be evicted in a
resolver helps us to infer why a ghost domain could be lost.
By tracking the TTL variations of the objective entry, we
find that the experimental resolvers can be sorted into four
types based on the different TTL variations of the objective
entry.

• Stable resolvers (Figure 5a). As expected, the TTL
value monotonically decreases to zero, then go back to
the original value.

• Resolvers that occasionally become unreachable (Fig-
ure 5b). Unreachable periods derive the gap in the mid-
dle of the line. Ghost domains could fail to be renewed
during such periods.

• Proxies (Figure 5c). The TTL values form multiple
lines, which means there are multiple cache servers in
the backend. Ghost domains are easy to be lost after
churn of backend servers.

• Resolvers that occasionally lose cached entries (Fig-
ure 5d). This may be caused by several factors: cache
replacement, cache flushing, or even reset of resolvers.
These factors also could cause the loss of ghost do-
mains.

In our experiments, we find that over 85% of resolvers
that fail to keep ghost domains belong to the last two types,
which are inherently easy to lose cached entries. Less than
10% of failed resolvers come from the set of stable re-
solvers, which means stable resolvers are less likely lose
cached entries, including ghost domains. Since over 65% of
our experimental resolvers are stable from current observa-
tion of the TTL variations, we infer that a ghost domain can
stay alive for a long time. In fact, after one week, over 70%
of experimental resolvers still keep the ghost domains we
created and the decline trend is slow. We are currently ex-
ploring methods to identify the types of resolvers and study
their individual reaction to different ghost domain exploita-
tions.

5. Discussion

In this section, we discuss a few possible solutions to
fix the problem of ghost domain names. We also discuss
the current practices in some of the implementations that
are not vulnerable to this problem. Finally, we conclude
the section with a discussion of DNSSEC [2], which avoids
this problem implicitly through its strict delegation require-
ments.

5.1. Defense Approaches

The ghost domain exploitation needs to launch a query
to the target resolver. Thus a basic defense strategy is to
have DNS administrators restrict the service range of the
DNS resolver. Also, administrators can routinely flush DNS
cache to purge possible ghost domains.

These strategies however are not fundamental solutions.
The root cause of the ghost domain problem is that the cur-
rent DNS cache update policy allows authoritative servers
to continuously renew their own delegation data in re-
solvers by themselves. Then once a domain delegates a
sub-domain, there is no guarantee that the delegation can
be revoked.



 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(a) Stable resolver

 0

 200000

 400000

 600000

 800000

04/08 06/08

TTL(s)

Days in August 2011

(b) Resolver with timeout

 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(c) Proxy

 0

 200000

 400000

 600000

 800000

04/08 06/08 08/08 10/08

TTL(s)

Days in August 2011

(d) Unstable resolver

Figure 5. TTL variations in different types of resolvers

Intuitively, there are several approaches for correcting
this problem, and we consider the following three:

1. Strengthening the bailiwick rule – DNS resolver im-
plementation should tighten the bailiwick rule so that
a recursive resolver only accepts a zone’s delegation
data from authoritative server of its parent zone.

2. Refining the credibility rule – Another possible solu-
tion is to refine credibility to disallow cache overwrit-
ing when received records have the same trust level as
cached data.

3. Allowing updates with the exception of the TTL value
– Since the ghost domain attack achieves the goal of
preserving revoked domain by refreshing the delega-
tion data with a new authoritative server name and thus
a new TTL, one possible solution is to allow the cache
update with exception of the TTL value.

The first solution derives from the semantics of the baili-
wick rule. The purpose of bailiwick rule is to restrict au-
thoritative servers so that they can only give records in their
own range. From this point of view, an authoritative server

has no right to change delegation data of itself since the del-
egation should be dominated by its parent zone.

However, applying the strict bailiwick rule might cause
performance and management issues. One such issue is re-
silience to authority mismatches. Authority mismatch is a
type of DNS misconfiguration in which the delegation data
is different in the parent zone than in the child zone. Al-
though the DNS specification [20] requires that delegation
data must be consistent, previous studies [30] [27] show this
configuration error is common in practice. While the cur-
rent cache update policy is resilient to such error, the strict
bailiwick rule will ignore delegation data from the child
zone, and thus might make some of authoritative servers
unusable.

Another issue is about authoritative server migration. Al-
lowing cached NS records to be overwritten can speed up le-
gitimate migration of an authoritative server. However, with
the strict bailiwick rule and current DNS protocol, resolvers
will not be aware of the migration until cached delegation
data expires. What’s even worse, DNS administrators tend
to give large TTL values to delegation data. We measured
the TTL values of the delegation data of the top one mil-
lion Internet domains (ranked by alexa.com), and we



found that the TTL values of most popular domains are one
(12.04%) or two days (78.41%). This study indicates that
with the strict bailiwick rule, legitimate authority changes
would take days to complete.

The second approach can thwart the ghost domain prob-
lem since all self-issued delegation data has the same trust
level [13]. Also, this approach remains resilient to the au-
thority mismatch problem, as the self-issued delegation data
from the child zone has higher trust levels than those from
the parent. This approach has the additional benefit of elim-
inating some of the attack vectors that could be exploited
by cache poisoning attacks [31]. But it still suffers from the
authority migration problem.

The third approach (limiting TTL updates) does not have
penalties for the legitimate changes of authoritative servers.
This approach also remains resilient to authority mismatch,
and it is the simplest one in terms of implementation. How-
ever, we only consider this approach as a temporary solu-
tion — it does not actively address the issue of the loosely
defined update policy.

Although the second approach has more advantages in
practice, we prefer the first one as the recommended so-
lution. A strict bailiwick rule that rejects self-issued dele-
gation data is semantically correct. More importantly, the
DNS standard must clarify and formally define the cache
update policy. We hope our work will promote such efforts
in the DNS standards community.

5.2. Current Defense Implementations

As we have shown in the section 3, although the very
popular DNS implementation (BIND) and most of the pub-
lic DNS servers we tested are vulnerable, three implemen-
tations: MaraDNS (version Deadwood-3.0.03), Microsoft
DNS (version Windows Sever 2008 R2) and Unbound (ver-
sion 1.4.11), are immune to the ghost domain attack. The
immunity of the latest version of Microsoft DNS derives
from a new feature called DNS cache locking [12], but we
cannot know the details of this feature because of its pro-
prietary implementation. We reviewed the other two imple-
mentations and it turns out that each of them implemented
one of the above proposed solutions. Since there is no prior
public disclosure of the ghost domain behavior, we do not
know whether these two versions of DNS implementation
intentionally address the ghost domain name problems or
not. Nevertheless, we summarize our findings on these im-
plementations as follows: MaraDNS, has already applied
the first solution listed in the above section. It only accepts
a zone’s delegation data from its parent zone. The Unbound
DNS server adopts the 3rd solution that allows overwriting
of delegated data but keeps its old TTL value in the cache.

5.3. Delegation Semantics in DNSSEC

We also consider the implication of the ghost domain at-
tack on the DNSSEC system, and we believe a fully de-
ployed DNSSEC is immune to the ghost domain problem.
The immunity does not come from the initial intention of
DNSSEC using cryptographic signatures to protect the in-
tegrity of DNS data. Instead, the immunity is an outcome
of a strictly defined delegation behavior. In short, DNSSEC
defines a new RR type, DS (Delegation Signer), to form
a chain of trust between parent and child zone. In the
DNSSEC standard, the specification [3] explicitly states
that DS record can only be obtained from the parent zone.
Therefore a ghost domain attacker cannot renew DS record
of the ghost domain by himself. Without a valid DS record,
the trust chain will be broken, so haunted security-aware re-
solvers will only resolve the ghost domain as non-authentic
data.

However, in an environment of partial DNSSEC deploy-
ment, a security-aware resolver could still be haunted to
resolve a ghost domain as authentic results. The reason
is that partial deployment DNSSEC raises a trust anchor
management issue called “isolated DNSSEC islands” [26].
Without fully DNSSEC deployment, A security-aware re-
solver cannot validate DNS data from isolated DNSSEC-
enabled zones with one single trust anchor from the root. In-
stead, it needs to be configured with third-party trust anchor
providers, such as DNSSEC Look-aside Validation (DLV)
providers [33] [34] or public trust anchor lists [24], in or-
der to obtain DNSKEY records of isolated DNSSEC-enabled
zones to be able to authenticate their DNS data. The at-
tacker can register DNSKEY records of the ghost domain to
DLV providers and public trust anchor lists, so that DNS
data of the ghost domain could still be validated by those
trust anchors, even though the DS record is deleted from the
parent zone. To prevent this, DLV providers and public trust
anchor lists need to sync their database with DNS registries
in a timely manner. In other words, a malicious domain
not only needs to be revoked from the DNS registry, it also
should be revoked simultaneously from third-party trust an-
chor providers. We are currently investigating revocation
behaviors of several third-party trust anchor providers.

6. Related Work

Study of Malicious Domain Names. Our work is led by
an initial motivation of understanding the lifetime of mali-
cious domains and the effects of domain takedown. In pre-
vious studies [22] [23], Moore et. al. showed that most of
phishing domains stay alive for several tens of hours before
being taken down. The ghost domain problem could make
the effect of takedown unpredictable.



Malicious domains must be identified first before be-
ing taken down. Recent research has proposed many ap-
proaches to distinguish malicious domain names from be-
nign DNS usage. These approaches include extracting var-
ious features of malicious domain names from the usage of
RR records [15], leveraging registration information [14],
passive access logging [29] [1] [6] and lexical construction
[19] [35]. From an intrusion detection perspective, the ghost
domain exploitation is detectable as it has unusual usage of
DNS records.

Cache Poisoning Attacks and Countermeasures. The
ghost domain vulnerability comes from the loosely defined
sanity check of DNS cache. This weakness is also being
exploited by DNS cache poisoning attacks. As early as
1990, Steve Bellovin had indicated that a malicious DNS
server can pollute cache resolvers by piggybacking arbitrary
records in referral sections [5]. In response, the credibility
rule and the bailiwick rule were proposed [32], and then
adopted by most of DNS implementations. However, these
rules are still insecure and recently have been exploited
by the Kaminsky-class cache poisoning attack[18]. After
disclosure of the Kaminsky-class attack, a number of ap-
proaches were proposed to increase DNS forgery resistance
[10] [9] [16] [28], but only a few studies were concerned
about the weakness of the DNS cache update policy. Son
et. al. [31] gave a formal study of the bailiwick rule and the
credibility rule; this work helped us to clarify some details
of these rules.

DNS Cache Inconsistency. To some extent, the ghost
domain problem is a form of DNS cache inconsistency.
As DNS only supports a weak cache consistency by us-
ing TTL to limit the lifetime of cached copies, authorita-
tive servers cannot propagate data changes to resolvers in
a timely way, failing completely in the ghost domain case.
Previous DNS studies have proposed a few approaches to
address this problem. DNScup [8] proactively pushes data
changes from authoritative server to cache resolvers. Os-
terwail et. al. proposed Zone State Revocation [25], which
embedded DNSKEY revocation in DNS response to notify
resolvers. Such cache consistency mechanisms could po-
tentially avoid the ghost domain problem. However, con-
sidering the critical role of DNS, such a change needs to be
carefully evaluated.

DNS Misconfiguration. In [17], Kalafut et. al. presented
an interesting phenomenon named orphan DNS server. An
orphan DNS server is a DNS server which has an address
record in the DNS, even though its parent domain does not
exist. Orphan DNS servers and ghost domains are super-
ficially similar as both of them resolve domain names that
should not exist. But they are substantially different. While

orphan DNS servers come from typographical errors and
misconfiguration in top level domain zone files, ghost do-
mains are more fundamentally derived from the ambigu-
ously defined DNS cache update policy.

7. Conclusion

In this paper, we present a vulnerability in DNS cache
update policy, which prevents effective domain name revo-
cation. Attackers could cause a malicious domain name to
be continuously resolvable even after the delegated data has
been deleted from the domain registry and after the TTL
associated with entry supposed expires. These deleted but
resolvable domains are called ghost domain names.

Although we have not found evidence that the vulnera-
bility has been used by previous malicious attacks or bot-
nets, our test results show that the majority of public DNS
servers and implementations are vulnerable. Our experi-
ments have also demonstrated that a large scale exploitation
of this vulnerability is practical. This vulnerability can po-
tentially allow a botnet to continuously use malicious do-
mains which have been identified and removed from the
domain registry. The same vulnerability also potentially al-
lows attackers to make a malicious domain appeared to be
deleted at most of the DNS servers but still resolvable at
specifically targeted DNS resolvers. This makes the detec-
tion of ghost domains even more difficult.

We recommend that the DNS community apply a strict
bailiwick rule to fix this vulnerability. Several DNS imple-
mentations have adopted various defense mechanisms, but
many popular implementations are still vulnerable. Our on-
going work includes implementing patches for open source
DNS implementations and addressing possible performance
and management issues related to the implementation of a
strict DNS cache update policy.

Acknowledgments

We would like to especially thank Jason Gustafson for
valuable discussions and thoughtfully proofreading this ma-
terial, as well as Roberto Perdisci and Zhankao Wen for
assistance with experimental resource. We also grate-
fully thank the anonymous reviewers for their valuable
comments, and Jianwei Zhuge, Meng Hu, Zongxu Zhao,
Pengfei Xu, Xun Lu and Kevin Warrick for their sugges-
tions and feedback. This work was supported in part by the
National Basic Research Program of China (973 Project)
grant 2009CB320505. Kang Li’s research on this work was
partially supported by the USA National Science Founda-
tion (NSF) CISE grant 1127195 and a gift from Cisco sys-
tems. Jun Li was partially supported by the 2010 Chair of
Excellence award from the University Carlos III of Madrid



(UC3M), Spain, and the NSF CAREER award under award
no. CNS-0644434. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
funding agencies.

References

[1] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster. Building a Dynamic Reputation System for
DNS. In 19th Usenix Security Symposium, 2010.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS Security Introduction and Requirement. RFC4033,
2005.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. Resource Records for the DNS Security Exten-
sions. RFC4034, 2005.

[4] D. Atkins and R. Austein. Threat Analysis of the Domain
Name System (DNS). RFC3833, 2004.

[5] S. M. Bellovin. Using the Domain Name System for System
Break-ins. In Proceedings of the 5th conference on USENIX
UNIX Security Symposium - Volume 5, pages 18–18, Berke-
ley, CA, USA, 1995. USENIX Association.

[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EX-
POSURE: Finding Malicious Domains Using Passive DNS
Analysis. Proceedings of Network and Distributed Security
Symposium (NDSS’11), 2008.

[7] R. Boscovich. Taking Down Botnets: Microsoft and the
Rustock Botnet. http://blogs.technet.com/b/
microsoft_on_the_issues/archive/2011/
03/18/taking-down-botnets-microsoft-
and-the-rustock-botnet.aspx, 2011.

[8] X. Chen, H. Wang, S. Ren, and X. Zhang. Maintaining
Strong Cache Consistency for the Domain Name System.
IEEE Transactions on Knowledge and Data Engineering,
19:1057–1071, 2007.

[9] D. Dagon, M. Antonakakis, K. Day, X. Luo, C. Lee, and
W. Lee. Recursive DNS Architectures and Vulnerability Im-
plications. In Proceedings of Network and Distributed Sys-
tem Security Symposium (NDSS’09), 2009.

[10] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee.
Increased DNS Forgery Resistance Through 0x20-bit En-
coding: security via leet queries. In Proceedings of the 15th
ACM conference on Computer and communications secu-
rity, pages 211–222. ACM, 2008.

[11] D. Dagon, N. Provos, C. Lee, and W. Lee. Corrupted DNS
Resolution Paths: The Rise of a Malicious Resolution Au-
thority. In Proceedings of Network and Distributed Security
Symposium (NDSS’08), 2008.

[12] M. DNS. DNS Cache Locking. http:
//technet.microsoft.com/en-us/library/
ee683892(WS.10).aspx.

[13] R. Elz and R. Bush. Clarifications to the DNS specification.
RFC2181, 1997.

[14] M. Felegyhazi, C. Kreibich, and V. Paxson. On the Poten-
tial of Proactive Domain Blacklisting. In Proceedings of the
3rd USENIX conference on Large-scale exploits and emer-
gent threats: botnets, spyware, worms, and more, LEET’10,
pages 6–6, Berkeley, CA, USA, 2010. USENIX Association.

[15] T. Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring
and Detecting Fast-Flux Service Networks. In Proceedings
of Network and Distributed Security Symposium (NDSS’08),
2008.

[16] J. G. Hy. Anti DNS Spoofing-Extended Query ID (XQID).
http://www.jhsoft.com/dns-xqid.htm, 2008.

[17] A. J. Kalafut, M. Gupta, C. A. Cole, L. Chen, and N. E.
Myers. An Empirical Study of Orphan DNS Servers in the
Internet. In Proceedings of the 10th annual conference on
Internet measurement, IMC ’10, pages 308–314, New York,
NY, USA, 2010. ACM.

[18] D. Kaminsky. Its the end of the cache as we know it. Black-
Hat USA, 2008.

[19] J. Ma, L. Saul, S. Savage, and G. Voelker. Beyond Black-
lists: Learning to Detect Malicious Web Sites from Sus-
picious URLs. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1245–1254. ACM, 2009.

[20] P. Mockapetris. Domain Names - Concepts and Facilities.
RFC1034, 1987.

[21] P. Mockapetris. Domain Names - Implementation and Spec-
ification. RFC1035, 1987.

[22] T. Moore and R. Clayton. Examining the Impact of Web-
site Take-Down on Phishing. In Proceedings of the anti-
phishing working groups 2nd annual eCrime researchers
summit, eCrime ’07, pages 1–13, New York, NY, USA,
2007. ACM.

[23] T. Moore and R. Clayton. The Consequence of Non-
Cooperation in the Fight against Phishing. In eCrime Re-
searchers Summit, 2008, pages 1–14. IEEE, 2008.

[24] E. Osterweil, D. Massey, and L. Zhang. Deploying and mon-
itoring dns security (dnssec). Computer Security Applica-
tions Conference, Annual, 0:429–438, 2009.

[25] E. Osterweil, V. Pappas, D. Massey, and L. Zhang. Zone
State Revocation for DNSSEC. In Proceedings of the 2007
workshop on Large scale attack defense, LSAD ’07, pages
153–160, New York, NY, USA, 2007. ACM.

[26] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quanti-
fying the Operational Status of the DNSSEC Deployment.
In Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement, IMC ’08, pages 231–242, New York,
NY, USA, 2008. ACM.

[27] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and L. Zhang.
Impact of Configuration Errors on DNS Robustness. In ACM
SIGCOMM Computer Communication Review, volume 34,
pages 319–330. ACM, 2004.

[28] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee. WSEC
DNS: Protecting Recursive DNS Resolvers from Poisoning
Attacks. In IEEE/IFIP International Conference on De-
pendable Systems & Networks, DSN’09., pages 3–12. IEEE,
2009.

[29] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting Ma-
licious Flux Service Networks through Passive Analysis of
Recursive DNS Traces. In Annual Computer Security Appli-
cations Conference, volume 0, pages 311–320, Los Alami-
tos, CA, USA, 2009. IEEE Computer Society.

[30] G. Sisson. DNS SURVEY. http://dns.
measurement-factory.com/surveys/201010/,
2010.



[31] S. Son and V. Shmatikov. The Hitchhikers Guide to DNS
Cache Poisoning. In Security and Privacy in Communica-
tion Networks, volume 50 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, pages 466–483. Springer Berlin Hei-
delberg, 2010.

[32] P. Vixie. DNS and BIND Security Issues. In Proceedings of
the 5th conference on USENIX UNIX Security Symposium -
Volume 5, pages 19–19, Berkeley, CA, USA, 1995. USENIX
Association.

[33] P. Vixie. Preventing Child Neglect in DNSSECbis Using
Lookaside Validation(DLV). IEICE Transactions on Com-
munications, pages 1326–1330, 2005.

[34] S. Weiler. DNSSEC Lookaside Validation (DLV).
RFC5074, 2007.

[35] S. Yadav, A. Reddy, A. Reddy, and S. Ranjan. Detecting
Algorithmically Generated Malicious Domain Names. In
Proceedings of the 10th annual conference on Internet mea-
surement, pages 48–61. ACM, 2010.


