
Scalable Multi-Query Optimization for SPARQL
Wangchao Le1 Anastasios Kementsietsidis2 Songyun Duan2 Feifei Li1

1School of Computing, University of Utah, Salt Lake City, UT, USA
2IBM T.J. Watson Research Center, Hawthorne, NY, USA

1{lew,lifeifei}@cs.utah.edu, 2{akement, sduan}@us.ibm.com

Abstract—This paper revisits the classical problem of multi-
query optimization in the context of RDF/SPARQL. We show
that the techniques developed for relational and semi-structured
data/query languages are hard, if not impossible, to be extended
to account for RDF data model and graph query patterns
expressed in SPARQL. In light of the NP-hardness of the
multi-query optimization for SPARQL, we propose heuristic
algorithms that partition the input batch of queries into groups
such that each group of queries can be optimized together.
An essential component of the optimization incorporates an
efficient algorithm to discover the common sub-structures of
multiple SPARQL queries and an effective cost model to compare
candidate execution plans. Since our optimization techniques do
not make any assumption about the underlying SPARQL query
engine, they have the advantage of being portable across different
RDF stores. The extensive experimental studies, performed on
three popular RDF stores, show that the proposed techniques
are effective, efficient and scalable.

I. INTRODUCTION

With the proliferation of RDF data, over the years, a lot
of effort has been devoted in building RDF stores that aim to
efficiently answer graph pattern queries expressed in SPARQL.
There are generally two routes to building RDF stores: (i)
migrating the schema-relax RDF data to relational data, e.g.,
Virtuoso, Jena SDB, Sesame, 3store; and (ii) building generic
RDF stores from scratch, e.g., Jena TDB, RDF-3X, 4store,
Sesame Native. As RDF data are schema-relax [26] and
graph pattern queries in SPARQL typically involve many
joins [1], [19], a full spectrum of techniques have been
proposed to address the new challenges. For instance, vertical
partitioning was proposed for relational backend [1]; side-
way information passing technique was applied for scalable
join processing [19]; and various compressing and indexing
techniques were designed for small memory footprint [3], [18].
With the infrastructure being built, the community is turning
to develop more advanced applications, e.g., integrating and
harvesting knowledge on the Web [24], rewriting queries for
fine-grained access control [17] and inference [13]. In such
applications, a SPARQL query over views is often rewritten
into an equivalent batch of SPARQL queries for evaluation
over the base data. As the semantics of the rewritten queries
in the same batch are commonly overlapped [13], [17], there
is much room for sharing computation when executing these
rewritten queries. This observation motivates us to revisit the
classical problem of multi-query optimization (MQO) in the
context of RDF and SPARQL.

Not surprisingly, MQO for SPARQL queries is NP-hard, con-
sidering that MQO for relational queries is NP-hard [30] and

the established equivalence between SPARQL and relational
algebra [2], [23]. It is tempting to apply the MQO techniques
developed in relational systems to address the MQO problem
in SPARQL. For instance, the work by P. Roy et al. [27]
represented query plans in AND-OR DAGs and used heuristics
to partially materialize intermediate results that could result in
a promising query throughput. Similar themes can be seen in
a variety of contexts, including relational queries [30], [31],
XQueries [6], aggregation queries [36], or more recently as
full-reducer tree queries [15]. These off-the-shelf solutions,
however, are hard to be engineered into RDF query engines in
practice. The first source of complexity for using the relational
techniques and the like stems from the physical design of
RDF data itself. While indexing and storing relational data
commonly conform to a carefully calibrated relational schema,
many variances existed for RDF data; e.g., the giant triple table
adopted in 3store and RDF-3X, the property table in Jena, and
more recently the use of vertical partitioning to store RDF data.
These, together with the disparate indexing techniques, make
the cost estimation for an individual query operator (the corner
stone for any MQO technique) highly error-prone and store
dependent. Moreover, as observed in previous works [1], [19],
SPARQL queries feature more joins than typical SQL queries –
a fact that is also evident by comparing TPC benchmarks [34]
with the benchmarks for RDF stores [5], [9], [11], [28]. While
existing techniques commonly root on looking for the best plan
in a greedy fashion, comparing the cost for alternative plans
becomes impractical in the context of SPARQL, as the error
for selectivity estimation inevitably increases when the number
of joins increases [18], [33]. Finally, in W3C’s envision [26],
RDF is a very general data model, therefore, knowledge and
facts can be seamlessly harvested and integrated from various
SPARQL endpoints on the Web [38] (powered by different
RDF stores). While a specialized MQO solution may serve
inside the optimizer of certain RDF stores, it is more appealing
to have a generic MQO framework that could smoothly fit
into any SPARQL endpoint, which would be coherent with
the design principle of RDF data model.

With the above challenges in mind, in this paper, we study
MQO of SPARQL queries over RDF data, with the objective to
minimize total query evaluation time. Specifically, we employ
query rewriting techniques to achieve desirable and consistent
performance for MQO across different RDF stores, with the
guarantee of soundness and completeness. While the previous
works consider alignments for the common substructures
in acyclic query plans [15], [27], we set forth to identify

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.37

666

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.37

666



common subqueries (cyclic query graphs included) and rewrite
them with SPARQL in a meaningful way. Unlike [27], which
requires explicitly materializing and indexing the common
intermediate results, our approach works on top of any RDF
engine and ensures that the underlying RDF stores can au-
tomatically cache and reuse such results. In addition, a full
range of optimization techniques in different RDF stores and
SPARQL query optimizers can seamlessly support our MQO
technique. Our contributions can be summarized as follows.
• We present a generic technique for MQO in SPARQL.

Unlike the previous works that focus on synthesizing
query plans, our technique summarizes similarity in the
structure of SPARQL queries and takes into account the
unique properties (e.g., cyclic query patterns) of SPARQL.

• Our MQO approach relies on query rewriting, which is
built on the algorithms for finding common substruc-
tures. In addition, we tailored efficient and effective
optimizations for finding common subqueries in a batch
of SPARQL queries.

• We proposed a practical cost model. Our choice of the
cost model is determined both by the idiosyncrasies of
the SPARQL language and by our empirical digest of
how SPARQL queries are executed in existing RDF data
management systems.

• Extensive experiments with large RDF data (close to 10
million triples) performed on three different RDF stores
consistently demonstrate the efficiency and effectiveness
of our approach over the baseline methods.

II. PRELIMINARIES

A. SPARQL

SPARQL, a W3C recommendation, is a pattern-matching
query language. There are two types of SPARQL queries in
which we are going to focus our interest:

Type 1: Q := SELECT RD WHERE GP
Type 2: QOPT := SELECT RD WHERE GP (OPTIONAL GPOPT)+

where, GP is a set of triple patterns, i.e., triples involving both
variables and constants, and RD is the result description. Given
an RDF data graph D, the triple pattern GP searches on D for a
set of subgraphs of D, each of which matches the graph pattern
in GP (by binding pattern variables to values in the subgraph).
The result description RD for both query types contains a
subset of variables in the graph patterns, similar to a projection
in SQL. The difference between the two types is clearly in
the OPTIONAL clause. Unlike query Q, in the QOPT query a
subgraph of D might match not only the pattern in GP but
also the pattern (combination) of GP and GPOPT. While more
than one OPTIONAL clauses are allowed, subgraph matching
with D independently considers the combination of pattern
GP with each of the OPTIONAL clauses. Therefore, with n
OPTIONAL clauses in query QOPT, the query returns as results
the subgraphs that match any of the n (GP + GPOPT) pattern
combinations, plus the results that match just the GP pattern.

Consider the data and SPARQL query in Figure 1(a) and (b).
The query looks for triples whose subjects (each corresponding

subj pred obj
p1 name ”Alice”
p1 zip 10001
p1 mbox alice@home
p1 mbox alice@work
p1 www http://home/alice
p2 name ”Bob”
p2 zip ”10001”
p3 name ”Ella”
p3 zip ”10001”
p3 www http://work/ella
p4 name ”Tim”
p4 zip ”11234”

(a) Input data D

SELECT ?name, ?mail, ?hpage
WHERE { ?x name ?name, ?x zip 10001,

OPTIONAL {?x mbox ?mail }
OPTIONAL {?x www ?hpage }}

(b) Example query QOPT

name mail hpage
”Alice” alice@home
”Alice” alice@work
”Alice” http://home/alice
”Bob”
”Ella” http://work/ella

(c) Output QOPT(D)

Fig. 1. An example

to a person) have the predicates name and zip, with the latter
having the value 10001 as object. For these triples, it returns
the object of the name predicate. Due to the first OPTIONAL
clause, the query also returns the object of predicate mbox, if
the predicate exists. Due to the second OPTIONAL clause, the
query also independently returns the object of predicate www,
if the predicate exists. Evaluating the query over the input
data D (can be viewed as a graph) results in output QOPT(D),
as shown in Figure 1(c).

na
m
e

zip

mbox
www

?x

?n

10001

?m

?p

v1

v2

v3

v4

v5

e1
e2
e3
e4

Fig. 2. A query graph

We represent queries graphically, and
associate with each query Q (QOPT) a
query graph pattern corresponding to
its pattern GP (resp., GP (OPTIONAL
GPOPT)+). Formally, a query graph pat-
tern is a 4-tuple (V,E, ν, μ) where V
and E stand for vertices and edges, ν
and μ are two functions which assign
labels (i.e., constants and variables) to vertices and edges of
GP respectively. Vertices represent the subjects and objects of
a triple; gray vertices represent constants, and white vertices
represent variables. Edges represent predicates; dashed edges
represent predicates in the optional patterns GPOPT, and solid
edges represent predicates in the required patterns GP. Fig-
ure 2 shows a pictorial example for the query in Figure 1(b).
Its query graph patterns GP and GPOPTs are defined sepa-
rately. GP is defined as (V,E, ν, μ), where V = {v1, v2, v3},
E = {e1, e2} and the two naming functions ν = {ν1 : v1→
?x, ν2 : v2→?n, ν3 : v3→10001}, μ = {μ1 : e1→name, μ2 :
e2 → zip}. For the two OPTIONALs, they are defined as
GPOPT1 = (V ′, E′, ν′, μ′), where V ′ = {v1, v4}, E′ = {e3},
ν′ = {ν′1 : v1→?x, ν′2 : v4→?m}, μ′ = {μ′1 : e3→mbox};
Likewise, GPOPT2 = (V ′′, E′′, ν′′, μ′′), where V ′′ = {v1, v5},
E′′ = {e4}, ν′′ = {ν′′1 : v1 → ?x, ν′′2 : v5 → ?p},
μ′′ = {μ′′1 : e4→www}.

B. Problem statement

Formally, the problem of MQO in SPARQL, from query
rewriting perspective, is defined as follows: Given a data graph
G, and a set Q of Type 1 queries, compute a new set QOPT of
Type 1 and Type 2 queries, evaluate QOPT over G and distribute
the results to the queries in Q. There are two requirements
for the rewriting approach to MQO: (i) The query results of
QOPT can be used to produce the same results as executing the
original queries in Q, which ensures the soundness and com-
pleteness of the rewriting; and (ii) the evaluation time of QOPT,

667667



?z4?x4

?y4

P1

P2

v1

?z3?x3

?y3

P1

P2
P3

P5

v1

?z2?x2

?y2

P1

P2

P3

P5

?w1
v1

?z1?x1

?y1

P1

P2

P4

P3

(a) Query Q1 (b) Query Q2 (c) Query Q3 (d) Query Q4

P4 P4

?w2

?t2

?w3

?u4

P4

?w4

P3

P6

v1

SELECT *
WHERE { ?x P1 ?z, ?y P2 ?z,

OPTIONAL {?y P3 ?w, ?w P4 v1 }
OPTIONAL {?t P3 ?x, ?t P5 v1 , ?w P4 v1 }
OPTIONAL {?x P3 ?y, v1 P5 ?y, ?w P4 v1 }
OPTIONAL {?y P3 ?u, ?w P6 ?u, ?w P4 v1 }

}

?z?x

?y

P1

P2
P3

v1

P5
P3

P4

?t

P3

P5

P3

P6

?w

?u

(e) Example query QOPT

SELECT *
WHERE { ?w P4 v1 ,

OPTIONAL {?x1 P1 ?z1 , ?y1 P2 ?z1 , ?y1 P3 ?w }
OPTIONAL {?x2 P1 ?z2 , ?y2 P2 ?z2 , ?t2 P3 ?x2 , ?t2 P5 v1 }
OPTIONAL {?x3 P1 ?z3 , ?y3 P2 ?z3 , ?x3 P3 ?y3 , v1 P5 ?y3 }
OPTIONAL {?x4 P1 ?z4 , ?y4 P2 ?z4 , ?y4 P3 ?u4 , ?w P6 ?u4 }

}

pattern p α(p)
?x P1 ?z 15%
?y P2 ?z 9%
?y P3 ?w 18%
?w P4 v1 4%
?t P5 v1 2%
v1 P5 ?t 7%
?w P6 ?u 13%

(f) Structure and cost-based optimization

Fig. 3. Multi-query optimization example

including query rewriting, execution, and result distribution,
should be less than the baseline of executing the queries in
Q sequentially. To ease presentation, we assume that the input
queries in Q are of Type 1, while the output (optimized) queries
are either of Type 1 or Type 2. Our optimization techniques can
easily handle more general scenarios where both query types
are given as input (section IV).

We use a simple example to illustrate the MQO envisioned
and some challenges for the rewriting approach. Figure 3(a)-
(d) show the graph representation of four queries of Type 1.
Figure 3(e) shows a Type 2 query QOPT that rewrites all four
input queries into one. To generate query QOPT, we identify the
(largest) common subquery in all four queries: the subquery
involving triples ?x P1 ?z, ?y P2 ?z (the second largest com-
mon subquery involves only one predicate, P3 or P4). This
common subquery constitutes the graph pattern GP of QOPT.
The remaining subquery of each individual query generates an
OPTIONAL clause in QOPT. Note that by generating a query like
QOPT, the triple patterns in GP of QOPT are evaluated only once,
instead of being evaluated for multiple times when the input
queries are executed independently. Intuitively, this is where
the savings MQO could bring from. As mentioned earlier, MQO
must consider generic directed graphs, possibly with cyclic
patterns, which makes it hard to adapt existing techniques for
this optimization. Also, the proposed optimization has a unique
characteristic that it leverages SPARQL-specific features such
as the OPTIONAL clause for query rewriting.
Note that the above rewriting only considers query struc-

tures, without considering query selectivity. Suppose we know
the selectivity α(p) of each pattern p in the queries, as shown
in Figure 3(f). Let us assume a simple cost model that the cost
of each query Q or QOPT is equal to the minimum selectivity of
the patterns in GP; we ignore for now the cost of OPTIONAL
patterns, which is motivated by how real SPARQL engines
evaluate queries (The actual cost model used in this paper is
discussed in Section III-D.). So, the cost for all four queries
Q1 to Q4 is respectively 4, 2, 4 and 4 (with queries executed
on a dataset of size 100). Therefore, executing all queries

//J :Jaccard

Input: Set Q = {Q1, . . ., Qn}
Output: Set QOPT of optimized queries
// Step 1: Bootstrapping the query optimizer
Run k-means on Q to generate a setM = {M1, . . ., Mk} of k query1
groups based on query similarity in terms of their predicate sets;

// Step 2: Refining query clusters
for each query group M ∈ M do2

Initialize a set C = {C1, . . ., C|M|} of |M| clusters;3
for each query Qi ∈ M, 1 ≤ i ≤ |M| do Ci = Qi;4
while ∃ untested pair (Ci, Ci′ ) with Jmax(Ci, Ci′ ) do5

Let Qii′ = {Qii′

1 , . . . , Qii′

m } be the queries of Ci ∪ Ci′ ;6
Let S be the top-s most selective triple patterns in Qii′ ;7

// Step 2.1: Building compact linegraphs
Let μ∩ ← μ1 ∩ μ2 . . . ∩ μm and τ = {∅};8

for each query Qii′

j ∈ Qii′ do9

Build linegraph L(Qii′

j ) with only the edges in μ∩;10
Keep indegree matrix m−

j
, outdegree matrix m+

j
for L(Qii′

j );11
for each vertex e defined in μ∩ and μ∩(e) 
= ∅ do12
Let I=m−

1 [e] ∩. . .∩m−
m[e] and O=m+

1 [e] ∩. . .∩m+
m[e];13

if I=O=∅ then μ∩(e)
def
= ∅ and τ=τ ∪ {triple pattern on e};14

for L(GPj), 1 ≤ j ≤ m do15
Prune the L(GPj) vertices not in μ∩ and their incident edges;16

// Step 2.2: Building product graphs
Build L(GPp) = L(GP1)⊗ L(GP2)⊗ . . .⊗ L(GPm);17

// Step 2.3: Finding cliques in product graphs
{K1, . . . , Kr} = AllMaximalClique(L(GPp));18
if r = 0 then goto 22;19
for each Ki, i = 1, 2, . . . , r do20

find all K′
i ⊆ Ki having the maximal strong covering tree in Ki;21

sort SubQ={K′
1, . . . , K

′
t} ∪ τ in descending order by size;22

Initialize K = ∅;23
for each qi ∈ SubQ, i = 1, 2, . . . , t + |τ | do24

if S ∩ qi 
= ∅ then Set K = qi and break25
if K 
= ∅ then26

Let Ctmp = Ci ∪ Ci′ and cost(Ctmp)=cost(sub-query for K);27
if cost(Ctmp) ≤ cost(Ci) + cost(Ci′ ) then28
Put K with Ctmp;29
remove Ci, Ci′ from C and add Ctmp;30

// Step 3: Generating optimized queries
for each cluster Ci in C do31

if a clique K is associated with Ci then32
Rewrite queries in Ci using triple patterns in K;33

Output the query into set QOPT;34
return QOPT.35

Fig. 4. Multi-query optimization algorithm

individually (without optimization) costs 4 + 2 + 4 + 4 = 14.
In comparison, the cost of the structure-based only optimized
query in Figure 3(e) is 9, resulting in a saving of approximately
30%. Now, consider another rewriting in Figure 3(f) that
results in from optimization along the second largest common
subquery that just contains P4. The cost for this query is only
4, which leads to even more savings, although the rewriting
utilizes a smaller common subquery. As this simple example
illustrates, it is critical for MQO to construct a cost model that
integrates query structure overlap with selectivity estimation.

III. THE ALGORITHM

Our MQO algorithm, shown in Figure 4, accepts as input a
set Q = {Q1, . . ., Qn} of n queries over a graph G. Without
loss of generality, assume the sets of variables used in different
queries are distinct. The algorithm identifies whether there is
a cost-effective way to share the evaluation of structurally-
overlapping graph patterns among the queries in Q. At a high
level, the algorithm works as follows: (1) It partitions the input
queries into groups, where queries in the same group are more
likely to share common sub-queries that can be optimized
through query rewriting; (2) it rewrites a number of Type 1

668668



queries in each group to their correspondent cost-efficient
Type 2 queries; and (3) it executes the rewritten queries and
distributes the query results to the original input queries (along
with a refinement). Several challenges arise during the above
process: (i) There exists an exponential number of ways to
partition the input queries. We thus need a heuristic to prune
out the space of less optimal partitioning of queries. (ii) We
need an efficient algorithm to identify potential common sub-
queries for a given query group. And (iii) since different
common sub-queries result in different query rewritings, we
need a robust cost model to compare candidate rewriting
strategies. We describe how we tackle these challenges next.

A. Bootstrapping

Finding structural overlaps for a set of queries amounts to
finding the isomorphic subgraphs among the corresponding
query graphs. This process is computationally expensive (the
problem is NP-hard [4] in general), so ideally we would
like to find these overlaps only for groups of queries that
will eventually be optimized (rewritten). That is, we want
to minimize (or ideally eliminate) the computation spent on
identifying common subgraphs for query groups that lead to
less optimal MQO solutions. One heuristic we adopt is to
quickly prune out subsets of queries that clearly share little
in query graphs, without going to the next expensive step of
computing their common subqueries; therefore, the group of
queries that have few predicates in common will be pruned
from further consideration for optimization. We thus define
the similarity metric for two queries as the Jaccard similarity
of their predicate sets. The rational is that if the Jaccard
similarity of two queries is small, their structural overlap in
query graphs must also be small; so it is safe to not consider
grouping such queries for MQO. We implement this heuristic
as a bootstrap step in line 1 using k-means clustering (with
Jaccard as the similarity metric) for an initial partitioning of
the input queries into a set M of k query groups. Notice
that the similarity metric identifies queries with substantial
overlaps in their predicate sets, ignoring for now the common
sub-structure and the selectivity of these predicates.

B. Refining query clusters

Starting with the k-means generated groups M, we refine
the partitioning of queries further based on their structure
similarity and the estimated cost. To this end, we consider each
query group generated from the k-means clustering M ∈ M
in isolation (since queries across groups are guaranteed to be
sufficiently different) and perform the following steps: In lines
5–30, we (incrementally) merge structurally similar queries
within M through hierarchical clustering [14], and generate
query clusters such that each query cluster is optimized
together (i.e., results in one Type 2 query). Initially, we create
one singleton cluster Ci for each query Qi of M (line 4).
Given two clusters Ci and Ci′ , we have to determine whether
it is more cost-efficient to merge the two query clusters into a
single cluster (i.e., a single Type 2 query) than to keep the two
clusters separate (i.e., executing the corresponding two queries

independently). From the previous iteration, we already know
the cost of the optimized queries for each of the Ci and Ci′

clusters. To determine the cost of the merged cluster, we have
to compute the query that merges all the queries in Ci and Ci′

through rewriting; which requires us to compute the common
substructure of all these queries, and to estimate the cost of the
rewritten query generated from the merged clusters. For the
cost computation, we do some preliminary work here (line
7) by identifying the most selective triple patterns from the
two clusters (selectivity is estimated by [33]). Note that our
refinement of M might lead to more than one queries; one for
each cluster of M, in the form of either Type 1 or Type 2.

Finding common substructures: While finding the maxi-
mum common subgraph for two graphs is known to be NP-
hard [4], the challenge here is asymptotically harder as it
requires finding the largest common substructures for multiple
graphs. Existing solutions on finding common subgraphs also
assume untyped edges and nodes in undirected graphs. How-
ever, in our case the graphs represent queries, and different
triple patterns might correspond to different semantics (i.e.,
typed and directed). Thus, the predicates and the constants as-
sociated with nodes must be taken into consideration. This mix
of typed, constant and variable nodes/edges is not typical in
classical graph algorithms, and therefore existing solutions can
not be directly applied for query optimization. We therefore
propose an efficient algorithm to address these challenges.

In a nutshell, our algorithm follows the principle of finding
the maximal common edge subgraphs (MCES) [25], [37].
Concisely, three major sub-steps are involved (steps 2.1 to
2.3 in Figure 4): (a) transforming the input query graphs
into the equivalent linegraph representations; (b) generating a
product graph from the linegraphs; and (c) executing a tailored
clique detection algorithm to find the maximal cliques in the
product graph (a maximal clique corresponds to an MCES).
We describe these sub-steps in details next.

Step 2.1: Building compact linegraphs: The linegraph L(G)
of a graph G is a directed graph built as follows. Each node
in L(G) corresponds to an edge in G, and there is an edge be-
tween two nodes in L(G) if the corresponding edges in G share
a common node. Although it is straightforward to transform
a graph into its linegraph representation, the context of MQO
raises new requirements for the linegraph construction. We
represent the linegraph of a query graph pattern in a 4-tuple,
defined as L(G) = (V, E , π, ω). During linegraph construction,
besides the inversion of nodes and edges for the query graph,
our transformation also assigns to each edge in the linegraph
one of 4 labels (�0 ∼ �3). Specifically, for two triple patterns,
there are 4 possible joins between their subjects and objects (�0
= subject-subject, �1 = subject-object, �2 = object-subject, �3
= object-object). The assignment of labels on linegraph edges
captures these four join types (useful for pruning and will
become clear shortly). Figure 5 (a)-(d) shows the linegraphs
for the queries in Figure 3(a)-(d).

The classical solution for finding common substructures
of input graphs requires building Cartesian products on their

669669



P2

P1

P3

P4

�3

�3

�0

�0

�1

�2

P5

P1 P3

�3

�3
�3

�0

P2

�3

�1
�2

�1

�2

(a) L(Q1) (b) L(Q2) (c) L(Q3) (d) L(Q4)

�0

P2P1

P3 P5

P4

�3

�3

�2 �1
�0

�0

�3�3

P4

�2 �1

P1P2

P3 P6

P4

�3

�3

�0 �0
�3

�3

�0�0

(e) Subqueries

�3

�3

P2
P1

L(GPp):

τ : P3 P4

Fig. 5. (a)–(d) linegraphs, (e) their common substructures

linegraphs. This raises challenges in scalability when finding
the maximum common substructure for multiple queries in
one shot. To avoid the foreseeable explosion, we propose
fine-grained optimizations (lines 8–16) to keep linegraphs as
small as possible so that only the most promising substructures
would be transformed into linegraphs, with the rest being
temporarily masked from further processing.

To achieve the above, queries in Qii′ pass through a
two-stage optimization. In the first stage (lines 8–11), we
identify (line 8) the common predicates in Qii′ by building
the intersection μ∩ for all the labels defined in the μ’s (recall
that function μ assigns predicate names to graph edges).
Predicates that are not common to all queries can be safely
pruned, since by definition they are not part of any common
substructure, e.g.,P5 and P6 in Figure 3. While computing
the intersection of predicates, the algorithm also checks for
compatibility between the corresponding subjects and objects,
so that same-label predicates with different subjects/objects
are not added into μ∩. In addition, we maintain two adjacency
matrices for a linegraph L(GP), namely, the indegree matrix
m− storing all incoming, and the outdegree matrix m+ storing
all outgoing edges from L(GP) vertices. For a vertex v, we use
m−[v] and m+[v], respectively, to denote the portion of the
adjacency matrices storing the incoming and outgoing edges
of v. For example, the adjacency matrices for vertex P3 in
linegraph L(Q1) of Figure 5 are m+

1 [P3] = [∅, �0, ∅, �2, ∅, ∅],
m−1 [P3] = [∅, �0, ∅, �1, ∅, ∅], while for linegraph L(Q2) they
are m+

2 [P3] = [�2, ∅, ∅, ∅, �0, ∅], m
−
2 [P3] = [�1, ∅, ∅, ∅, �0, ∅].

In the second stage (lines 12–16), to further reduce the size
of linegraphs, for each linegraph vertex e, we compute the
Boolean intersection for the m−[e]’s and m+[e]’s from all
linegraphs respectively (line 13). We also prune e from μ∩
if both intersections equal ∅ and set aside the triple pattern
associated with e in a set τ (line 14). Intuitively, this optimiza-
tion acts as a look-ahead step in our algorithm, as it quickly
detects the cases where the common sub-queries involve only
one triple pattern (those in τ ). Moreover, it also improves
the efficiency of the clique detection (step 2.2 and 2.3) due
to the smaller sizes of input linegraphs. Going back to our
example, just by looking at the m−1 , m

+
1 , m

−
2 , m

+
2 , it is easy

to see that the intersection ∩m+
i [P3] = ∩m−i [P3] = ∅ for all

the linegraphs of Figure 5(a)-(d). Therefore, our optimization
temporarily masks P3 (so as P4) from the expensive clique
detection in the following two steps.

Step 2.2: Building product graphs: The product graph
L(GPp) := (Vp, Ep, πp, ωp) of two linegraphs, L(GP1) :=
(V1, E1, π1, ω1) and L(GP2) := (V2, E2, π2, ω2), is denoted as

L(GPp) := L(GP1) ⊗ L(GP2). The vertices Vp in L(GPp)
are defined on the Cartesian product of V1 and V2. In order
to use product graphs in MQO, we optimize the standard
definition with the additional requirement that vertices paired
together must have the same label (i.e., predicate). That is,
Vp := {(v1, v2) | v1 ∈ V1 ∧ v2 ∈ V2 ∧ π1(v1) = π2(v2)},
with the labeling function defined as πp := {πp(v) | πp(v) =
π1(v1), with v = (v1, v2) ∈ Vp}. For the product edges, we
use the standard definition which creates edges in the product
graph between two vertices (v1i, v2i) and (v1j , v2j) in Vp if
either (i) the same edges (v1i, v1j) in E1, and (v2i, v2j) in E2
exist; or (ii) no edges connect v1i with v1j in E1, and v2i
with v2j in E2. The edges due to (i) are termed as strong
connections, while those for (ii) as weak connections [37].

Since the product graph for two linegraphs conforms to the
definition of linegraph, we can recursively build the product
for multiple linegraphs (line 17). Theoretically, there is an
exponential blowup in size when we construct the product for
multiple linegraphs. In practice, thanks to our optimizations in
Steps 2.1 and 2.2, our algorithm is able to accommodate tens to
hundred of queries, and generates the product graph efficiently
(which will be verified through Section V). Figure 5(e) shows
the product linegraph L(GPp) for the running example.

Step 2.3: Finding Cliques in product graphs: A (maximal)
clique with a strong covering tree (a tree only involving strong
connections) in the product graph equals to an MCES – a
(maximal) common sub-query in essence. In addition, we
are interested in finding cost-effective common sub-queries.
To verify if the found common sub-query is selective, it is
checked with the set S (from line 7) of selective query patterns.

In the algorithm, we proceed by finding all maximal cliques
in the product graph (line 18), a process for which many
efficient algorithms exist [16], [21], [35]. For each discovered
clique, we identify its sub-cliques with the maximal strong
covering trees (line 21). For the L(GPp) in Figure 5(e), it
results in one clique (itself): i.e., K ′1 = {P1,P2}. As the cost
of sub-queries is another dimension for query optimization, we
look for the substructures that are both large in size (i.e., the
number of query graph patterns in overlap) and correspond to
selective common sub-queries. Therefore, we first sort SubQ
(contributed byK ′s and τ , line 22) by their sizes in descending
order, and then loop through the sorted list from the beginning
and stop at the first substructure that intersects S (lines 22–
25), i.e., P4 in our example. We then merge (if it is cost-
effective, line 28) the queries whose common sub-query is
reflected in K and also merge their corresponding clusters
into a new cluster (while remembering the found common
sub-query) (lines 26–30). The algorithm repeats lines 5–30
until every possible pair of clusters have been tested and no
new cluster can be generated.

C. Generating optimized queries and distributing results

After the clusters are finalized, the algorithm rewrites each
cluster of queries into one query and thus generates a set of
rewritings QOPT (lines 31–34). The result from evaluating QOPT

over the data is a superset of evaluating the input queries Q

670670



(more expositions in section III-E). Therefore, we must filter
and distribute the results from the execution of QOPT. This
necessitates one more step of parsing the result of QOPT (refer
to Figure 1(c)), which checks each row of the result against
the RD of each query in Q. Note that the result description
RDOPT is always the union of RDis from the queries being
optimized, and we record the mappings between the variables
in the rewritings and the variables in the original input queries.
As in Figure 1(c), the result of a Type 2 query might have
empty (null) columns corresponding to the variables from the
OPTIONAL clause. Therefore, a row in the result of RDOPT

might not conform to the description of every RDi. The
goal of parsing is to identify the valid overlap between each
row of the result and the individual RDi, and return to each
query the result it is supposed to get. To achieve this, the
parsing algorithm performs a Boolean intersection between
each row of result and each RDi: if the columns of this
row corresponding to those columns of RDi are not null, the
algorithm distributes the corresponding part of this row to Qi

as one of its query answers. This step iterates over each row
and each Qi that composed the Type 2 query. The parsing on
the results of QOPT only requires a linear scan on the results
to the rewritten query. Therefore, it can be done on-the-fly as
the results of QOPT is streamed out from the evaluation.

D. Cost model for SPARQL MQO

The design of our cost module is motivated by the way in
which a SPARQL query is evaluated on popular RDF stores.
This includes a well-justified principle that the most selective
triple pattern is evaluated first [33] and that the GPOPT clause
is evaluated on the result of GP (for the fact that GPOPT is a
left-join). This suggests that a good optimization should keep
the result cardinality from the common sub-query as small as
possible for two reasons: 1) The result cardinality of a Type 2

SPARQL query is upper bounded by result cardinality of its
GP clause since GPOPTs are simply left-joins; 2) Intermediate
result from evaluating the GP clause is not well indexed, which
implies that a non-selective GP will result in significantly more
efforts in processing the corresponding rewriting GPOPTs.

In [33], the authors discussed the selectivity estimation
for the conjunctive Basic Graph Patterns (BGP). In a nut-
shell, given a triple pattern t = (s p o), where each entry
could be bound or unbound, its selectivity is estimated by
sel(t) = sel(s) × sel(p) × sel(o). sel is the selectivity
estimation function, whose value falls in the interval of [0, 1].
Specifically, for unbound variable, its selectivity equals 1.
For bound variables/constants, depending on whether it is
a subject, predicate or object, different methods (e.g., [33])
are used to implement sel. Notice that the formula implicitly
assumes statistical independence for the subject, predicate and
object; thus is an approximation. Pre-computed statistics of
the dataset are also required. For a join between two triple
patterns, independence assumption is adopted [33]. However,
in practice, such estimation is not accurate enough for op-
timizing complex queries. The culprit comes from the fact
that as the number of joins increases, the accuracy of the

estimated selectivity drops quickly, resulting in a very loose
estimation [19].

With the above limitations in mind, we propose a cost
function for conjunctive SPARQL query. It has a simple design
and roots on the well justified principle in query optimization
that the selective triple patterns have higher priorities in
evaluation. Our cost model is an incarnation of this intuition,
as in Formula 1:

Cost(Q) =

{
Min(sel(t)) Q is a Type 1 query, t ∈ GP

Min(sel(t)) + Δ Q is a Type 2 query, t ∈ GP
(1)

For a Type 1 conjunctive query, Formula 1 simply returns
the selectivity for the most selective triple pattern in the
query graph GP as the cost of evaluating Q. For a Type 2

query, the cost is the summation of the cost on evaluating
the common graph pattern GP and the cost on the evaluating
the OPTIONALs, i.e., the cost denoted by Δ. We extrapo-
late (backed by a comprehensive empirical study on three
different RDF query engines) that Δ is a hidden function
of (i) the cost of GP; (ii) the number of OPTIONALs; and
(iii) the cost of the query pattern of each GPOPT. However,
we observed empirically that when the cost of GP is small
(being selective), Δ would be a trivial value and Cost(Q)
is mostly credited to the evaluation of GP. Hence, we can
approximate Cost(Q) with the cost of GP in such cases. We
show (experimentally) that using our cost model to choose
a good common substructure can consistently improve the
performance of query evaluation over the pure structure-based
optimization (i.e., without considering the evaluation cost of
common sub-queries) on different RDF stores.
Finally, notice that the proposed cost function requires using

the pre-computed statistics of the RDF dataset to estimate the
selectivity of triple patterns. Therefore, it requires to collect
some statistics from the dataset. This mainly includes (i)
building the histogram for distinct predicates in the dataset
and (ii) that for each disparate predicate, we build histograms
for the subjects and objects attached to this predicate in the
dataset. In practice, for some RDF stores, like Jena, part of
such statistics (e.g., the histogram of predicates) is provided
by the SPARQL query optimizer and is accessible for free;
for the others, e.g., Virtuoso and Sesame, the statistics of the
dataset need to be collected in a preprocessing step.

E. Completeness and soundness of our MQO algorithm

Completeness: Suppose a Type 2 rewritten query QOPT opti-
mizes a set of n Type 1 queries, i.e., Q = {Q1,Q2, . . . ,Qn}.
Without loss of generality, denote the common relation (i.e.,
the common sub-query) used in QOPT as GP and its outer
join relations (i.e., the OPTIONALs) as GPi (i = 1, 2, . . . , n).
As we only consider conjunctive queries as input, hence by
construction Q = ∪n

i=1GP �� GPi and QOPT = ∪n
i=1GP GPi.

By the definition of left outer join , GP �� GPi ⊆ GP GPi

for any i. It follows Q ⊆ QOPT in terms of query results.
Soundness: Soundness requires Q ⊇ QOPT. This is achieved by
evaluating the results from QOPT and distributing the matched

671671



results to correspondent queries in Q (section III-C). As such,
false positives are discarded and the remainings are valid
bindings for one or more graph patterns in Q. Therefore,
Q ⊇ QOPT in terms of results after the refining step.
Completeness and soundness together guarantee that the

final answers resulted by our MQO techniques are equivalent
to the results from evaluating queries in Q independently.

IV. EXTENSIONS

For the ease of presentation, the input queries discussed so
far are Type 1 queries using constants as their predicates. It is
interesting to note that with some minimal modifications to the
algorithm and little preprocessing of the input, the algorithm
in Figure 4 can optimize more general SPARQL queries.
Here, we introduce two simple yet useful extensions: (i)
optimizing input queries with variables as the predicates; and
(ii) optimizing input queries of Type 2 (i.e., with OPTIONALs).

A. Queries with variable predicates

We treat variable predicates slightly differently from the
constant predicates when identifying the structural overlap of
input queries. Basically, a variable predicate from one query
can be matched with any variable predicate in another query.
In addition, each variable predicate of a query will correspond
to one variable vertex in the linegraph representation, but the
main flow of the MQO algorithm remains the same.

B. TYPE 2 queries

Our MQO algorithm takes a batch of Type 1 SPARQL
queries as input and rewrites them to another batch of Type 1

and Type 2 queries. It can be extended to optimize a batch of
input queries with both Type 1 and Type 2 queries.

To this end, it requires a preprocessing step on the input
queries. Specifically, by the definition of left-join, a Type 2

input query will be rewritten into its equivalent Type 1 form,
since our MQO algorithm only works on Type 1 input queries.
The equivalent Type 1 form of a Type 2 query GP (OPTIONAL
GPOPT)+) consists two sets of queries: (i) a Type 1 query solely
using the GP as its query graph pattern; and (ii) the queries
by replacing the left join(s) with inner join(s) between GP and
each of the GPOPT from the OPTIONAL, i.e., ∪GP �� GPOPT.
For example, to strip off the OPTIONALs in the Type 2 query
in Figure 6(a), applying the above preprocessing will result in
a group of three Type 1 rewritings as in Figure 6(b).

na
m
e

zip

mboxwww

?x

?n

10001

?m

?p

nam
e

zip?x

?n

10001

na
me

zip
mbox

?x

?n

10001

?m

na
me

zip
www

?x

?n

10001

?p

(a) A Type 2 query (b) Equivalent Type 1 rewritten queries

GP GP GPopt0 GP GPopt1︸ ︷︷ ︸

Fig. 6. A Type 2 query to its equivalent Type 1 form

By applying the above transformation to all Type 2 queries
in the input and then passing the batch of queries to algorithm
in Figure 4 for optimization, we can handle Type 2 queries
seamlessly. Finally, the result to the original Type 2 query

can be generated through the union of the results, from the
transformed Type 1 queries after MQO.

V. EXPERIMENTAL EVALUATION

1 5 10 15 20 25 30 35 40 45 50

10
−1

10
0

10
1

S
el

ec
tiv

ity
 (

%
)

Predicate ID

 

 

Selective Non−selective

Fig. 7. Predicate selectivity

We implemented all algorithms in
C++ and performed an extensive ex-
perimental evaluation using a 64-bit
Linux machine with a 2GHz Intel
Xeon(R) CPU and 4GB of memory.
Datasets: Our evaluation is based
on LUBM benchmark. The popular
benchmark models universities with
students, departments, etc., using only 18 predicates [11]. This
limits the complexity of queries we can evaluate (similar lim-
itations in [5], [28]), and results in queries with considerable
overlaps (which favors MQO but is not very realistic). Thus,
we extended the LUBM data generator, and added a random
subset from 50 new predicates to each person in the dataset,
where predicate selectivity follows the distribution in Figure 7.
Therefore, given the number of triples N in a dataset D, the
number of times that a predicate appears in D (dubbed its
frequency) is precisely its selectivity multiplied by N .
RDF Stores: We experimented with three popular RDF stores:
Jena TDB 0.85, OpenLink Virtuoso 6.01, and Sesame Native
2.0. Due to space constraints, we analyze mainly the exper-
iments with Jena TDB. Results for the other two stores are
highly consistent with the results from Jena TDB. For all
stores, we created full indexes using the technique in [39].
For Virtuoso, we also built bitmap indexes as reported in [3].
Metrics: For all experiments, we measure the number of
optimized queries and their end-to-end evaluation time, in-
cluding query rewriting, execution and result distribution. We
compare our MQO algorithm with the evaluation without any
optimization (i.e., No-MQO), and the approach with structure-
only optimization (i.e., MQO-S). To realize the latter strategy
as a baseline solution, we need to turn off all the cost-based
comparisons in Figure 4. Specifically, in line 24 of Figure 4,
instead of walking through the set of SubQ (which correspond
to different common substructures), structure-based optimiza-
tion (i.e., MQO-S) simply returns the the largest clique (i.e.,
the largest common subquery) for optimization.

Comparing MQO with MQO-S illustrates the benefits of
blending structured-based with the cost-based optimization
versus a purely structural approach. In the algorithms, we
use the suffix -C to denote the cost by rewriting queries
(e.g., MQO-C) and the suffix -P to denote the cost by parsing
and distributing the query results (e.g., MQO-P). For finding
cliques, we customized the Cliquer library [21], which is an
efficient implementations for clique detection. For selectivity
estimation, we implemented the technique in [33]. All experi-
ments are performed using cold caches, and the bootstrapping
parameter k in the k-means algorithm is set to k = �|Q|/40.
Table I provides the summary along with ranges and the
default values used for various parameters in our experiments.
Queries: LUBM has only 14 SPARQL queries, which have lim-
ited variance in both structure and evaluation cost. Therefore,

672672



Parameter Symbol Default Range
Dataset size D 4M 3M to 9M
Number of queries |Q| 100 60 to 160
Size of query (num of triple patterns) |Q| 6 5 to 9
Number of seed queries κ 6 5 to 10
Size of seed queries |qcmn| ∼ |Q|/2 1 to 5
Max selectivity of patterns in Q αmax(Q) random 0.1% to 4%
Min selectivity of patterns in Q αmin(Q) 1% 0.1% to 4%

TABLE I
PARAMETER TABLE.

S1

S1 S3

S2

S1 S2

P1

P2 P3

P4

c1
c2 c1

c3

P1

P2 P3

P4

P1

P2 P3

P4

c1 c2 c3 c4 c1 c4

c2 c3

(a) Star (b) Chain (c) Circle

Fig. 8. Three basic query patterns

we created a module to generate query sets Q with varying
sizes |Q|, where we generated queries that combine star, chain,
and circle pattern structures. In addition, we attached to each
person (as a subject) in the LUBM data a (random) subset of
50 new predicates P1 ∼ P50. In particular, we customized
the data generator of LUBM in such a way that whenever a
triple (s Pi ci) is added to the data, ci is an integer value
serving as the object of this triple and it is set to the number
of predicate Pi existed in the dataset so far. Therefore, triples
with different predicates could join on their subjects or objects,
so as the triple patterns in the query, which we will detail next.

Our query generator utilizes the aforementioned patterns
in the customized data to compose queries. Specifically, we
ensure that the queries have reasonably high randomness in
structure (such that they are not replicas of limited query
templates) and reasonable variances in selectivity (such that
any predicate could be part of a query regardless of the
structure). To this end, we first show how to compose three
basic query patterns: star, chain and circle with a set of four
basic triple patterns; see Figure 8 (a) – (c). The star and the
chain can be built with any number of triple patterns while the
circle can only be built with an even number of triple patterns.

To blend the three basic patterns into one query Q with
|Q| triple patterns, the generator first randomly distributes
the set of triple patterns into k groups of subqueries (k is
a random integer, k ∈ (0, |Q|)), with each subquery randomly
composing one of the three basic patterns, i.e., star, chain
and if possible, circle. To ensure Q to be conjunctive, the
generator then makes equal the (randomly) chosen pairs of
subjects and/or objects from the k subqueries by unifying their
variable names or binding them to the same constant. This
concludes composing the structure of Q. Finally, to ensure that
Q conforms to the selectivity requirement posed by a specific
experiment (refer to Table I), the generator fills in the structure
of Q with the predicates that would make Q a legitimate query.

In the experiments, a group of queries in Q were rendered
to share a common seed sub-query qcmn. The generator first
constructs qcmn and the remaining portion of the queries
independently. Then, by equaling the subjects and/or objects
of these two sub-queries, the generator propagates qcmn over
the group such that qcmn joins with each of the sub-queries
in the group. In addition, individual query sizes |Q| can be

varied where the probability of a predicate being part of a
query conforms to its frequency in the dataset. We ensure that
90% of the queries in Q are amenable to optimization, while
10% are not. We use a parameter κ to determine seed queries
that will be used to generate the queries in this 90%. For a
given κ, κ seed-groups are generated, each corresponding to
�(90/κ)% of queries in Q. The seed in each seed-group is
what our algorithm will (hopefully) discover.
In short, we generated datasets and queries with various

size, complexity, and statistics to evaluate the proposed MQO
algorithm in a comprehensive way.

A. Experimental Results

The objective of our experiments is to evaluate: (i) how
much each step of MQO (from bootstrapping step to cost
estimation) contributes to the optimization, i.e., drop in perfor-
mance due to omission of each step; (ii) whether the combi-
nation of structure and cost-based optimization consistently
outperforms purely structure-based optimizations; (iii) how
well Algorithm MQO optimizes its alternatives, including the
comparison with the baseline approach without any optimiza-
tion, in every experimental setting; and (iv) whether Algorithm
MQO consistently works across RDF stores.

60 80 100 120 140 160

10
0

10
1

   

T
im

e 
(s

ec
on

ds
)

 

 

MQO−noKM−C MQO−C

|Q|
Fig. 9. Clustering time

10
0

10
1

10
2200

220

240

260

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−KM

Number of k-means clusters
Fig. 10. Evaluation time

Impact of each MQO step: We start with an experiment to
illustrate the benefit of bootstrapping MQO using k-means.
Figure 9 shows the cost of hierarchical clustering in Step
2 of MQO with (MQO-C) and without (MQO-noKM-C) boot-
strapping. The figure shows an order of magnitude difference
between the MQO-C and MQO-noKM-C, since without boot-
strapping Step 2 of MQO requires O((|Q| × |Q|)2) pairwise
checks between all the queries in the input set Q. The next
experiment, in Figure 10, illustrates algorithm MQO-KM which
after Step 1 of MQO, it finds the common substructures for the
coarse-grained groups that result in from k-means and then
performs Step 3 (i.e., MQO-KM does not perform hierarchical
clustering in Step 2). The figure shows that the resulting
optimization has limited (less than 10%) to no benefits in
evaluation time, when compared with the case of having no
optimizations (No-MQO). This is because k-means ignores
query structures and relies solely on the predicate names
to determine groups. Therefore, the fine-grained groups that
result in from hierarchical clustering (in Step 2) are necessary
for the considerable savings (as illustrated in the following
experiments) in terms of evaluation times.
Varying |Q|: We study scalability w.r.t. the cardinality |Q| of
the query set Q, for which we vary from 60 to 160 queries,
by an increment of 20. As Figure 11 shows, both MQO and
MQO-S are successful in identifying common substructures,

673673



60 80 100 120 140 160
0

50

100

150

   

N
um

be
r 

of
 q

ue
rie

s

 

 

No−MQO MQO−S MQO

|Q|
Fig. 11. Vary |Q|: |QOPT|

60 80 100 120 140 160
0

100

200

300

400

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|
Fig. 12. Vary |Q|: time

60 80 100 120 140 160
0

0.25

0.5

0.75

1

1.25

1.5

   

T
im

e 
(s

ec
on

ds
)

 

 

MQO−S−C MQO−C

|Q|

Fig. 13. Clustering cost

60 80 100 120 140 160
0

0.25

0.5

0.75

1

1.25

1.5

   

T
im

e 
(s

ec
on

ds
)

 

 

MQO−S−P MQO−P

|Q|

Fig. 14. Parsing cost

the former resulting in up to 60% savings and the latter
having up to 80% savings in terms of the number of queries,
compared to No-MQO. However, in terms of evaluation times
(see Figure 12), MQO-S results in less savings than MQO,
with the former achieving up to 45%, and the latter up to
60% savings in evaluation times, when compared to No-MQO.
So MQO is more efficient, despite generating a larger number
of optimized queries than MQO-S. The following example,
along with the example in Figure 3, illustrates this situation.
Consider a set of queries Q, such that (i) predicate pcmn is
common to all the queries in Q; (ii) predicate p1 is common
to the subset Q1 ⊂ Q; and (iii) predicate p2 is common to the
subset of queries in Q2 ⊂ Q, with Q1∩Q2 = ∅. MQO-S looks
only at the structure and thus it may opt to generate a single
optimized query for Q with qcmn = pcmn. If predicate pcmn is
not selective, while predicates p1 and p2 are highly selective,
then MQO will generate two different optimized queries, one
for set Q1 and involving q1, and one for set Q2 and involving
p2. As this simple example illustrates, MQO-S can generate
fewer but cost-wise less optimized queries when compared
with MQO; which is exactly the pattern in Figure 12.

Next, we further analyze the evaluating cost spent on clus-
tering/rewriting the queries, and distributing the final results.
In Figure 13, we report the clustering time, which includes
both the bootstrapping k-means clustering and the hierarchical
clustering that relies on finding common substructures. Notice
that MQO requires more time than MQO-S. This is because (i)
MQO involves an additional check on the selectivity; and (ii)
queries with non-selective common subqueries are recycled
into the pool of clusters by MQO, leading to more rounds of
comparisons and thus a slower convergence. Contrarily, since
the common subqueries rewritten by MQO-S are on average
less selective, parsing and distributing these results inevitably
requires more effort, as in Figure 14. Nevertheless, clustering
and parsing times are a small fraction of the total evaluating
cost (less than 2% in the worst case). In the remaining
experiments, we only report the end-to-end evaluating cost.

Varying |qcmn|: Here, we study the impact on optimization of
the size |qcmn| of the common subquery, i.e., the size of seed

1 2 3 4 5
0

25

50

75

100

   

N
um

be
r 

of
 q

ue
rie

s

 

 

No−MQO MQO−S MQO

|qcmn|

Fig. 15. Vary |qcmn|: |QOPT|

1 2 3 4 5
0

100

200

300

400

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|qcmn|

Fig. 16. Vary |qcmn|: time

queries. At iteration i we make sure that for the queries in
the same group of Q, we have |qcmn| = i. Figure 15 shows
the number of optimized queries generated by MQO-S and
MQO. Notice that the number of optimized queries is reduced
(optimization improves) as |qcmn| increases . This is because,
as the maximum size of each query is kept constant, the
more |qcmn| increases the more the generated queries become
similar (less randomness in query generation). Therefore, more
queries are clustered and optimized together. Like before,
MQO-S is more aggressive and results in less queries compared
to MQO. But, like before, Figure 16 shows that MQO is always
better and results in optimized queries whose evaluation time is
half less than MQO-S and up to 75% less than No-MQO. Notice
in the figure that for small values of |qcmn|, MQO-S performs
worse than No-MQO. Intuitively, the more selective GP is in a
Type 2 optimized query, the less work a SPARQL query engine
needs to do to evaluate the GPOPT terms in the OPTIONAL of
the query. MQO-S relies only on the structural similarity, while
ignoring predicate selectivity, negatively influences the overall
evaluation time for the optimized query to the point that any
benefits from the optimization are alleviated by the extra cost
of evaluating the OPTIONAL terms.

1 2 3 4 5

60

80

100

   

P
er

ce
nt

ag
e 

(%
)

 

 

MQO−S MQO

|qcmn|

No−OPTIONAL− − −

Fig. 17.Evaluating qcmn

MQO combines structured and
cost optimization and does not
suffer from these limitations. This
is evident in Figure 17, which
plots the percentage of the evalu-
ation time of the optimized query
that is spent evaluating qcmn. By
carefully selecting the common subquery qcmn, MQO results in
optimized queries whose evaluation time goes mostly (more
than 90%) into evaluating qcmn (while less than 10% goes
to evaluating OPTIONAL terms). In contrast, MQO-S results
in queries whose large extent of evaluation time goes into
evaluating OPTIONAL terms (when |qcmn| = 1 this is almost
30%). Things improve for MQO-S as the size of qcmn increases,
but still MQO retains the advantage of selecting substructures
not just based on their size, but also on their selectivity, and
therefore overall evaluation times are still much better.

Varying κ: In Figures 18 and 19, we analyze the impact of the
number κ of seed queries on the optimization, by varying κ
from 5 to 10. Figure 18 shows that as κ increases, less queries
can be optimized by both MQO-S and MQO, which resulted in
more rewritten queries. Not surprisingly, a larger κ increases
query diversity and reduces the potential for optimization. This
affects evaluation times, but MQO is still the best of the three.

Varying |Q|: In Figures 20 and 21, we study the impact of

674674



5 6 7 8 10
0

25

50

75

100

N
um

be
r 

of
 q

ue
rie

s

   

 

 

No−MQO MQO−S MQO

κ

Fig. 18. Vary κ: |QOPT|

5 6 7 8 9 10
0

100

200

300

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

κ

Fig. 19. Vary κ: time

5 6 7 8 9
0

25

50

75

100

N
um

be
r 

of
 q

ue
rie

s

   

 

 

No−MQO MQO−S MQO

|Q|

Fig. 20. Vary |Q|: |QOPT|

5 6 7 8 9
0

100

200

300

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|

Fig. 21. Vary |Q|: time

0.1 0.5 1 2 4
0

25

50

75

100

N
um

be
r 

of
 q

ue
rie

s

   

 

 

No−MQO MQO−S MQO

αmin(qcmn) (%)

Fig. 22. Vary αmin: |QOPT|

0.1 0.5 1 2 4
0

100

200

300

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmin(qcmn) (%)

Fig. 23. Vary αmin: time

0.1 0.5 1 2 4
0

25

50

75

100

   

N
um

be
r 

of
 q

ue
rie

s

 

 

No−MQO MQO−S MQO

αmax(Q) (%)

Fig. 24. Vary αmax: |QOPT|

0.1 0.5 1 2 4
0

100

200

300

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmax(Q) (%)

Fig. 25. Vary αmax: time

query size, which we increase from 5 to 9 predicates in GP of
a query Q. For this experiment we keep the |qcmn|/|Q| a rough
constant and equal to 0.5. So, the increase in query size does
not result in a significant change in query overlap (or potential
for optimization). Since the size of a query increases, there is
higher chance for the query generator to assign it a selective
predicate, which in turn affects the evaluation times. As a
result, Figure 21 shows that the evaluation time of No-MQO
decreases with the query size. Clearly, MQO still provides
savings in evaluation time, ranging from 40% to 70%.

Varying αmin(qcmn): We study the impact of the mini-
mum predicate selectivity in qcmn (seed query), by varying
αmin(qcmn) from 0.1% to 4%. As Figure 22 shows, selectivity
has minimal impact for MQO-S which ignores evaluation costs,
but noticeable impact in MQO. As selectivity is reduced,
the number of optimized queries increases (less optimization)
since MQO increasingly rejects optimizations that lead to more
expensive (non-selective) common subqueries. While reduced
selectivity increases the evaluation time of queries for all
algorithms (Figure 23), MQO still achieves between 10% and
50% savings in evaluation times.

Varying αmax(Q): While changing minimum selectivity has

an impact on deciding the sub-structure that forms qcmn,
maximum selectivity mostly affects the cost of evaluating the
(non-seed) OPTIONAL terms. Here, we vary the maximum
selectivity for predicates in a query, αmax(Q), from 0.1%
to 4%. Like before, Figure 24 shows that the number of
optimized queries is almost unaffected for MQO-S. Unlike
the previous experiment, this number is also unaffected for
algorithm MQO since the change in selectivity concerns
OPTIONAL predicates and thus has less of an effect in the
generation of optimized queries. Figure 25 shows that both
MQO-S and MQO outperform No-MQO, with MQO achieving
a minimum of 50% savings. Again, notice that when MQO-S
chooses non-selective predicates for optimization, evaluation
times quickly degrade to No-MQO as when αmax(Q) > 1%.

2 4 6 8 10
0

100

200

300

Data size (× 106 triples)

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

Fig. 26. Varying |D|

Varying |D|: We investigate the
impact of dataset size |D| on the
optimization results, by varying |D|
from 3M to 9M triples. While
this does not affect the number of
rewritings of Q it clearly affects
evaluation times, as shown in Fig-
ures 26. Notice that MQO consis-
tently has a minimum of 50% (achieving up to 65%) savings.

Effect of our cost model: In Section III, we extrapolate that
the evaluation cost of a Type 2 query is inversely correlated
with the estimated cost of GP, i.e., the minimum selectivity
of its triple patterns. This is indeed a reasonable approxima-
tion in practice. As shown in Figure 23, reduced minimum
selectivity in the common subquery GP would incur higher
evaluation cost for Type 2 queries. Similarly, both the number
of OPTIONALs and the cost of the query pattern of each GPOPT

are indispensable factors in determining the value of Δ, as
shown respectively in Figure 19 and Figure 16. However, we
observed that when the cost of GP is small (being selective),
Δ would be a trivial value and Cost(Q) is mostly credited
to the evaluation of GP. This is clearly shown in Figure 17
that when GP is selective, the dominant cost is contributed by
evaluating GP (more than 90%) with the rest factors being
almost irrelevant. This suggests that when dealing with a
selective GP, a possibly good approximation of Cost(Q) can
set Δ � 0. This observation also motivates us to choose a
selective GP in rewriting. In practice, this simple cost model
and its approximation give excellent cost estimation in MQO.

Results from other stores: Up to now, all results reported
were performed with Jena TDB. Using the same queries and
parameters, we also ran the experiments on Virtuoso and
Sesame native, to evaluate the desired property of store inde-
pendence. In general, the results from Virtuoso and Sesame
are consistent with what we observed in Jena TDB, see
Figures 27∼32 when we used the same setup as that in the
experiments for Jena TDB, and varied values of one parameter
while using default values for all other parameters. The
proposed optimization algorithm, MQO, significantly reduces
the evaluation time of multiple SPARQL queries on both stores.

675675



60 80 100 120 140 160
0

30

60

90

120

150

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|

(a) Virtuoso

60 80 100 120 140 160
0

40

80

120

160

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|

(b) Sesame
Fig. 27. Vary |Q|: evaluation time

0.1 0.5 1 2 4
0

30

60

90

120

150

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmin(qcmn) (%)

(a) Virtuoso

0.1 0.5 1 2 4
0

50

100

150

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmin(qcmn) (%)

(b) Sesame
Fig. 28. Vary αmin(qcmn): evaluation time

0.1 0.5 1 2 4
0

50

100

150

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmax(Q) (%)

(a) Virtuoso

0.1 0.5 1 2 4
0

50

100

150

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

αmax(Q) (%)

(b) Sesame
Fig. 29. Vary αmax(Q): evaluation time

In particular, we consistently observed that the cost-based op-
timization can remarkably improve the performance in almost
all experiments, leading to a 40%–75% speedup compared to
No-MQO on both Virtuoso and Sesame. For example, using
the same setting and optimized queries as Figure 12 where we
vary the number of queries in a batch Q, Figures 27(a) and
27(b) report the results from Virtuoso and Sesame. It is clear
that MQO consistently outperforms MQO-S and No-MQO,
leading to savings of 50%–60% across engines. Similarly, in
the experiment that studies the impact of minimum selectivity
in qcmn, i.e., Figure 28(a) and Figure 28(b), reducing the
minimum selectivity of qcmn results in increasing evaluation
times for all algorithms. While MQO-S is sensitive to such
variance since it does not proactively take cost into account,
MQO still achieves 40%–75% savings in evaluation times.

VI. RELATED WORK

The problem of multi-query optimization has been well
studied in relational databases [22], [27], [31], [32], [42]. The
main idea is to identify the common sub-expressions in a batch
of queries. Global optimized query plans are constructed by
reordering the join sequences and sharing the intermediate
results within the same group of queries, therefore minimizing
the cost for evaluating the common sub-expressions. The same
principle was also applied in [27], which proposed a set of
heuristics based on dynamic programming to deal with nested
sub-expressions. There has also been studies on identifying
common expressions [10], [40] with complexity analysis of

1 2 3 4 5
0

50

100

150

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|qcmn|

(a) Virtuoso

1 2 3 4 5
0

50

100

150

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|qcmn|

(b) Sesame
Fig. 30. Vary |qcmn|: evaluation time

5 6 7 8 9
0

50

100

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|

(a) Virtuoso

5 6 7 8 9
0

50

100

150

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

|Q|

(b) Sesame
Fig. 31. Vary |Q|: evaluation time

5 6 7 8 9 10
0

25

50

75

100

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

κ

(a) Virtuoso

5 6 7 8 9 10
0

50

100

150

200

   

T
im

e 
(s

ec
on

ds
)

 

 

No−MQO MQO−S MQO

κ

(b) Sesame
Fig. 32. Vary κ: evaluation time

MQO; the general MQO problem for relational databases is
NP-hard. Even with heuristics, the search space for individual
candidate plans and their combinatorial hybrid (i.e., the global
plan) is often astronomical [27]. In light of the hardness,
[27] proposed some heuristics which were shown to work
well in practice; however, those heuristics were proposed to
work inside query optimizers (i.e., engine dependent), and are
only applicable when the query plans are expressible as AND-
OR DAGs. Dalvi et al. [7] considered pipelining intermediate
results to avoid unnecessary materialization. In addition to
pipelining, Diwan et al. [8] studied the issue of scheduling
and caching in MQO. A cache-aware heuristics was proposed
in [20] to make maximal use of the buffer pool.

All of the above work focus on MQO in the relational case,
MQO has also been studied on semi-structured data. Hong
et al. [12] considered concurrent XQuery join optimization in
publish/subscribe systems. Join queries were mapped to a pre-
computed tree structure, called query template, for evaluation.
Due to the limitation of the pre-computed templates, only basic
join structures were supported. Another work by Bruno et
al. [6] in XML studied navigation and index based path MQO.
Unlike the MQO problem in relational and SPARQL cases,
path queries can be encoded into a prefix tree where common
prefixes share the same branch from the root. This nature
provides an important advantage in optimizing concurrent
path queries. Nevertheless, the problem of multi-query join
optimization was not addressed. The work of Kementsietsidis
et al. [15] considered a level-wise merging of query trees

676676



based on the tree depth of edges in a distributed setting, with
the main objective to minimize the communication cost in
evaluating tree-based queries in a distributed setting.

In summary, existing MQO techniques proposed in relational
and XML cases cannot be trivially extended to work for
SPARQL queries over RDF data (which can be viewed as
SPJ queries over generic graphs), since relational techniques
need to reside in relational query optimizers, which cannot
be assumed in the management of RDF data, and notions
like prefix-tree and tree depth do not apply to generic graphs.
Also there have been work on query optimization for single
SPARQL query [18], [29], [33], as well as single graph query
optimization for general graph databases [41]. However, to the
best of our knowledge, our work is the first to address MQO
for SPARQL queries over RDF data.

VII. CONCLUSION

We studied the problem of multi-query optimization in the
context of RDF and SPARQL. Our optimization framework,
which integrates a novel algorithm to efficiently identify
common subqueries with a fine-tuned cost model, partitions
input queries into groups and rewrites each group of queries
into equivalent queries that are more efficient to evaluate. We
showed that our rewriting approach to multi-query optimiza-
tion is both sound and complete. Furthermore, our techniques
are store-independent and therefore can be deployed on top of
any RDF store without modifying the query optimizer. Useful
extensions on handling more general SPARQL queries are also
discussed. Extensive experiments on different RDF stores show
that the proposed optimizations are effective, efficient and
scalable. An interesting future work is to extend our study
to generic graph queries over general graph databases.

VIII. ACKNOWLEDGMENT

Wangchao Le and Feifei Li were partially supported by NSF
Grant CNS-0831278.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable
semantic web data management using vertical partitioning. In VLDB,
2007.

[2] R. Angles and C. Gutierrez. The expressive power of SPARQL. In
ISWC, 2008.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded:
A scalable lightweight join query processor for RDF data. In WWW,
2010.

[4] N. Biggs, E. Lloyd, and R. Wilson. Graph Theory. Oxford University
Press, 1986.

[5] C. Bizer and A. Schultz. The berlin SPARQL benchmark. International
Journal On Semantic Web and Information Systems, 2009.

[6] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation- vs.
index-based XML multi-query processing. In ICDE, 2003.

[7] N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan. Pipelining in
multi-query optimization. In PODS, 2001.

[8] A. A. Diwan, S. Sudarshan, and D. Thomas. Scheduling and caching
in multi-query optimization. In COMAD, 2006.

[9] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets. In
SIGMOD, 2011.

[10] S. Finkelstein. Common expression analysis in database applications.
In SIGMOD, 1982.

[11] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge
base systems. Journal of Web Semantics, 2005.

[12] M. Hong, A. J. Demers, J. Gehrke, C. Koch, M. Riedewald, and W. M.
White. Massively multi-query join processing in publish/subscribe
systems. In SIGMOD, 2007.

[13] G. Ianni, T. Krennwallner, R. Martello, and A. Polleres. Dynamic
querying of mass-storage RDF data with rule-based entailment regimes.
In ISWC, 2009.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Comput. Surv., 1999.

[15] A. Kementsietsidis, F. Neven, D. V. de Craen, and S. Vansummeren.
Scalable multi-query optimization for exploratory queries over federated
scientific databases. PVLDB, 2008.

[16] I. Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 2001.

[17] W. Le, S. Duan, A. Kementsieditis, F. Li, and M. Wang. Rewriting
queries on SPARQL views. In WWW, 2011.

[18] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF.
In PVLDB, 2008.

[19] T. Neumann and G. Weikum. Scalable join processing on very large
RDF graphs. In SIGMOD, 2009.

[20] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Multiple query opti-
mization by cache-aware middleware using query teamwork. In ICDE,
2002.

[21] P. R. Östergård. A fast algorithm for the maximum clique problem.
Discrete Applied Mathematics, pages 195–205, 2002.

[22] J. Park and A. Segev. Using common subexpressions to optimize
multiple queries. In ICDE, 1988.

[23] A. Polleres. From SPARQL to rules (and back). In WWW, 2007.
[24] N. Preda, F. M. Suchanek, G. Kasneci, T. Neumann, W. Yuan, and

G. Weikum. Active knowledge : Dynamically enriching RDF knowledge
bases by web services. In SIGMOD, 2010.

[25] J. W. Raymond and P. Willett. Maximum common subgraph isomor-
phism algorithms for the matching of chemical structures. Journal of
Computer-Aided Molecular Design, 16:521–533, 2002.

[26] Resource Description Framework. http://www.w3.org/RDF/.
[27] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible

algorithms for multi query optimization. In SIGMOD, 2000.
[28] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A

SPARQL performance benchmark. ICDE, 2009.
[29] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query

optimization. In ICDT, 2010.
[30] T. Sellis and S. Ghosh. On the multiple-query optimization problem.

IEEE Trans. Knowl. Data Eng., 2(2):262–266, 1990.
[31] T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,

13(1):23–52, 1988.
[32] K. Shim, T. K. Sellis, and D. Nau. Improvements on a heuristic

algorithm for multiple-query optimization. Data and Knowledge En-
gineering, 12(2):197–222, 1994.

[33] M. Stocker, A. Seaborne, and A. Bernstein. SPARQL basic graph pattern
optimization using selectivity estimation. In WWW, 2008.

[34] The TPC Benchmarks. http://www.tpc.org/.
[35] E. Tomita and T. Seki. An efficient branch-and-bound algorithm for

finding a maximum clique. Discrete Mathematics and Theoretical
Computer Science, LNCS, 2003.

[36] N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman. Multi-
query optimization for sensor networks. In Distributed Computing in
Sensor Systems (DCOSS), LNCS.

[37] P. Vismara and B. Valery. Finding maximum common connected
subgraphs using clique detection or constraint satisfaction algorithms.
Modelling, Computation and Optimization in Information Systems and
Management Sciences, pages 358–368, 2008.

[38] W3C Wiki for Currently Alive SPARQL Endpoints.
http://www.w3.org/wiki/SparqlEndpoints.

[39] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for
semantic web data management. PVLDB, 2008.

[40] H. Z. Yang and P. Larson. Query transformation for PSJ-queries.
PVLDB, 1987.

[41] P. Zhao and J. Han. On graph query optimization in large networks. In
PVLDB, 2010.

[42] Y. Zhao, P. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous op-
timization and evaluation of multiple dimensional queries. In SIGMOD,
1998.

677677


