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Abstract—Over the last decade, an exponentially increasing
number of REST services have been providing a simple and
straightforward syntax for accessing rich data resources. To
use these services, however, developers have to understand
“information-use contracts” specified in natural language, and,
to build applications that benefit from multiple existing services
they have to map the underlying resource schemas in their
code. This process is difficult and error-prone, especially as
the number and overlap of the underlying services increases,
and the mappings become opaque, difficult to maintain, and
practically impossible to reuse. The more recent advent of the
Linked Data formalisms can offer a solution to the challenge.

In this paper, we propose a conceptual framework for REST-
service integration based on Linked Data models. In this
framework, the data exposed by REST services is mapped
to Linked Data schemas; based on these descriptions, we have
developed a middleware that can automatically compose API
calls to respond to data queries (in SPARQL). Furthermore,
we have developed a RDF model for characterizing the access-
control protocols of these APIs and the quality of the data
they expose, so that our middleware can develop “legal”
compositions with desired qualities. We report our experience
with the implementation of a prototype that demonstrates the
usefulness of our framework in the context of a research-data
management application.
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I. INTRODUCTION

Over the past 30 years, the World Wide Web revolu-

tionized the way people access data and services. Every

day the number of providers increases, as does the volume

of accessible data, the variety of available services, and

their overlap. And as the available content increases, efforts

to enable machine-understandable integration abound. It is

impractical to review these efforts in anything but a very

eclectic manner, which is why, in this paper, we reflect on

web-services formalisms and semantic data ontologies, in

order to establish the background framing our work.

Today, a substantial amount of web data is exchanged

through Web APIs that expose data in convenient structured

formats, such as JSON or XML. Nearly all the top 100

websites from Alexa1 provide their own APIs, which is

an indicator of the degree to which web services have

been adopted as the de-facto mechanism for interacting with

1Alexa (http://www.alexa.com/topsites) is a company that provides infor-
mation about web traffic data.

external resources. In the majority of cases, the structured

responses of these APIs follow a common syntactic format,

as dictated by the REST style. However, these responses are

typically not grounded in semantics, which is a necessary

prerequisite for automatically interpreting and interlinking

the content of the exchanged content. Thus, developing ap-

plications that rely on Web APIs still requires a considerable

effort by application developers. They first need to obtain the

necessary credentials from the providers to access the APIs.

Next, they have to write code for invoking eachindividual

API, which implies the need to understand the nature of the

data these APIs consume and produce, in order to compose

compatible APIs and integrate their data by mapping the

different implied schemas.

A long line of semantic representations have been moti-

vated by the need to simplify and automate this development

effort. A relatively recent development is the Linked-Data

effort, which has led to the development of knowledge-

representation languages for complex domain models, and

reasoning techniques for inferring new knowledge. Cur-

rently, the Linking Open Data (LOD) project has more than

1,000 interlinked datasets, spanning a number of diverse

thematic areas such as government, media, and life sciences,

among others [1]. In parallel, numerous2 controlled vocab-

ularies have been established as the preferred conceptual-

modeling methodology for data integration, due to their flex-

ibility and evolvability. Some prominent examples include

schema.org, and Dublin Core.

The key intuition motivating our work is that the align-

ment of these two widely adopted technologies, REST APIs

and Linked-Data vocabularies, can provide the level of inter-

operability required for supporting automated composition
of web APIs, in practice. The emergence of REST APIs as

the de-facto standard to securely exchange data on the web

along with the increasingly popular Linked-Data repositories

enable the automated semantic integration of data within

a specific domain, which is the objective of our LRA

framework.

More specifically, in this paper, we propose a methodol-

ogy for semantically annotating REST APIs with Linked-

Data ontologies. Accordingly, we have developed a mid-

2LOV (https://lov.okfn.org/) lists 588 vocabularies.
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dleware for automatically specifying execution plans for

SPARQL queries that invoke these APIs, link and compose

their responses, while taking into account their access-

control constraints and the trade-offs of data quality and

performance.

The remainder of this paper is organized as follows.

Section II gives an overview of the evolution of semantic

description of web services, in parallel with the development

of integration systems based on web-services. Then, in order

to understand the challenges of data integration based on

web services, in Section III, we present an example that

illustrates how different data sources may converge in an

integrated framework. Section IV presents the proposed

semantic description for Linked REST APIs, discussing

its design guidelines and improvements over previous ap-

proaches. Section V introduces the sequence of steps that

support the integration process. In Section VI, we present

the implementation of a prototype for a research-data man-

agement application, that demonstrates the usefulness of our

framework. And the final section concludes the article.

II. RELATED WORK

The original web-services activity advocated for SOAP-

based services, described through WSDL specifications in

terms of their operations and their input and output types,

and explicitly composed in BPEL processes. A variety of

development tools were produced for this stack of stan-

dards, and a wave of metadata proposals were put for-

ward to semantically describe these web services, such as

OWL-S [2], WSMO [3], WSDL-S [4] (W3C submissions),

and SAWSDL [5] (a W3C recommendation). Numerous

related proposals followed SAWSDL, such as hRESTS &

MicroWSMO [6], WSMO-Lite [7], and the Minimal Ser-

vice Model (MSM) [8], which proposed a composition of

concepts shared by SAWSDL, MicroWSMO, WSMO-Lite,

and hRESTS. None of these proposals were supported by

working middleware with enough traction to drive the de-

velopment of a community, which led to their abandonment.

A notable example of a framework is the METEOR-S [9]

system, which covered the complete service-integration life-

cycle, including semi-automatic annotation, discovery, and

composition of web services, relying on WSDL-S. Some

more recent work [10], [11] has focused on enabling devel-

opers to semantically annotate web services, and use the

annotations to assist the users in the manual creation of

executable process models, based on workflow templates.

Closer to our work, is the work of Sbodio et al. [12], who

use SPARQL to represent preconditions and postconditions

of web-service operations. This work was has only been

evaluated on a synthetic data set and is fundamentally

limited in that the SPARQL meta-data do not express non-

functional aspects, such as access-control rules or quality-

of-service requirements. Similarly, the Linked Data Services

(LIDS) description [13] uses RDF and SPARQL graph

patterns to describe the service inputs and outputs and

to capture the relationships among the attributes. How-

ever, this meta-data uses a string encoding to describe the

data relationships, which precludes the use of automated

reasoners for validation and composition. More recently,

Rodriguez et al. [23] proposed a framework for graph-based

service composition focused on the semantic input-output

parameter matching of services interfaces. Nevertheless,

the composition algorithm may produce incorrect solutions,

since the semantic descriptions do not capture the relations

between input and output elements.

The ultimate goal that has been motivating all the above

efforts is to provide rich and unambiguous representations

of heterogeneous APIs, that machines can reason about in

sufficient depth, for automatically discovering, composing,

and invoking them. Despite the preponderance of related-

research literature, practical semantic integration of services

remains an elusive goal. In practice, only very few experi-

mental services have such semantic descriptions. A key rea-

son for the limited adoption is the fear of typical developers

to use, seemingly complex, Semantic-Web technologies. The

desire to mitigate this fear has driven semantic-annotator

projects, but they also lack of broad adoption, due to the

unpopularity of semantic web services.

REST services have now become more common in prac-

tice, but there are no universally accepted standards for de-

scribing them. Some formats, such as OpenAPI, and RAML,

have emerged to describe REST APIs, that were traditionally

documented with natural language. Until now, these formats

have been used, mainly, to automatically generate SDKs

and to create documentation and API consoles for testing

web services. Such formats include invocation details, like

request methods, status codes, and input arguments, but

completely ignore the underlying service semantics. Our

work is motivated by our belief that the emergence of REST

APIs as the preferred syntax for exchanging data on the web,

and RDF, as the formalism for representing data semantics

and linking data, provide a unique opportunity for building

a practical, semantic service-integration methdology.

III. THE RESEARCH-EVALUATION EXAMPLE

Let us demonstrate the need for automated service-

integration systems with an example in the application

domain of research-program evaluation. Key to a good eval-

uation is the consideration of several activities and outputs,

as well as different evidence of impact. While many organi-

zations, such as digital libraries and funding agencies, offer

Web APIs that provide programmatic access to metadata

of millions of publications and grants programs, each one

of them offers only a fragmented view of a researcher’s

production. None of them contain all the publications of an

individual author (publisher-specific repositories are unlikely

to include publications in venues beyond the ones owned
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Table I: Sample data for Library1
ID ISBN TITLE AUTHORS YEAR PUBLICATION

10001 123-1-23-789012-3 Schema mediation J. Smith
M. Johnson
A. Williams

2003 ICDE

10002 123-4-56-789012-3 Structured Data M. Johnson 2010 WWW

10003 123-7-89-789012-3 Nonlinear Dimensionality J. Morris
M. Johnson
E. Davis

2014 J-STARS

10004 123-4-56-789021-3 Object exchange S. Walker
J. Wood

1995 ICDE

Table II: Sample data for Library2
DOC ID NAME AUTHORS YEAR CONFERENCE

123 Query Answering Rachel Brown
Michael Johnson

2001 The Very Large Databases
Journal

124 Structured Data Michael Johnson 2010 The World Wide Web
Conference

245 Documents Clustering Steve Parker
James Wood

1998 The World Wide Web and
Databases

345 Nonlinear Dimensionality Joshua Morris
Michael Johnson
Emma Davis

2014 Journal on Selected Topics
in Applied Earth...

by the publisher) nor do they contain all the information

relevant to program budgets assigned to researchers.

To illustrate the challenges of integrating data from mul-

tiple Web APIs, we consider as an example two different

publication sources Library1 and Library2, each producing

records associated with different publishers. The information

managed by the two repositories is similar, but linking the

two data sources provides broader coverage and more de-

tailed information about publications, for example, Library1
can include ISBNs, and Library2 can complement the papers

written by Michael Johnson, with paper 123, which does not

exist in Library1.

In the absence of a semantic grounding of the data of

the above resources, integrating this data is a complex task.

For example, Library1 models publication titles using title
as the attribute name, while Library2 uses name for the

same piece of information. A prominent ontology that can

represent semantic concepts in this domain is the VIVO
ontology [14], a unified, formal, and explicit specification

of information about researchers, organizations, and the

scholarly activities, outputs, and relationships that link them

together. Thus, a composition of such Web APIs will rely

on explicit mappings (whether user-defined or automatically

inferred) between the elements in the request and response

elements, and the target concepts of a mediated schema, in

this case the VIVO ontology.

In today’s API economy, businesses seek flexible and on-

demand integration with external systems that offer relevant

data and can potentially create additional value for their own

services. Then, once the services are described and mapped

to the target ontology, the goal is to enable automatic

discovery and composition, which could in turn reduce the

time and manual effort to maintain code and integrate the

logical connections among data sources. As a consequence,

a Web API-based integration has four main challenges in

answering a question like “Which are the titles of all the

documents written by Michael Johnson?”: (1) representing

the data sources using a common model, (2) understanding

the question, (3) identifying and composing potential data

sources, and (4) obtaining and unifying the information

itself. To address the first challenge, services need to be

described in terms of their data semantics and their non-

functional properties. For example, Library2 must specify

that it can provide information about the publications of an

author, given the author’s name. In Section IV, we propose

a compact and comprehensive data model for describing

Linked REST APIs (LRA), based on graph patterns. For the

second challenge, the developers have to formulate the ques-

tion in terms of the mediated schema used to describe the

REST APIs. For example, if the query asks about publication

titles, then the system should be able to recognize that Li-
brary1 and Library2 provide titles, although under different

attribute names. In Section V-A, we discuss the most popular

query languages and interfaces used to pose queries in data

integration systems. In the third challenge, the middleware

has to automatically transform the query, expressed in a

declarative language, using domain terms, into a composi-

tion of invocations to existing web services that satisfies the

query. In our example, the middleware searches for a match-

ing service, or for a chain of composable services, that can

provide titles of publications given an author name. Thus,

the results of Library1 and Library2 can be used to create a

consolidated answer. In Sections V-B and V-C, we present a

novel methodology to automatically discover and compose

APIs, based on subgraph isomorphism, which also takes into

account security (Section V-D) and quality (Section V-E)

restrictions defined by service providers and application

developers. For the fourth challenge, the middleware invokes

the services, incorporating inputs extracted from the initial

query, and security credentials provided by the application

developers. When the system receives the responses from

the data sources, the middleware translates the data into

its semantic representation, in a process known as lifting.

In addition, as the data comes from multiple sources, the

middleware proceeds to identify records with references to

the same entity, across data sources. In Section V-F, we

discuss our approaches to inject information to describe

semantic mappings in service responses, and link responses

from multiple providers.

In the rest of the paper, we will use a set of operations

from each data source, exposing data through REST ser-

vices. Library1 has two operations: searchAuthors and

getPapers. The searchAuthors operation receives

as an input a person name, and returns a set of authors

having that specific name, while the getPapers operation

returns a list of academic papers created by an author,

whose identifier is received as an input. And Library2 has

the operation findAuthors, which, given a name of an

author, returns a response with information about the author

and their associated documents.

IV. DESCRIPTION LANGUAGE FOR LINKED REST APIS

A key component in any integration system is the lan-

guage in terms of which the define semantic mappings
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among the underlying resources are expressed. In this

section, we introduce the semantic model underlying our

LRA framework, which uses an ontology-based integration

approach, and abstracts the complexities and weaknesses

originated by previous semantic web-services approaches.

In our approach, we introduce a vocabulary that enables

the semantic representation of REST services, based on

MSM, and the structural organization of OpenAPI and

RAML, also including information about authentication

mechanisms, quality, and relationships between inputs and

outputs. The vocabulary defines a Service element that acts

as the container of the resources and operations of a business

unit. Each Service has a number of associated Operations,

which, in turn, are associated with Graphs, that represent

the underlying service data schema. The Operations include

an attribute for the type of operation, based on Hydra [15],

to indicate that an operation results in resources being read,

created, deleted, or replaced. The Operations also have links

to input and output elements within the associated graphs.

The input elements may be defined as required or optional,
and full or partial, for the cases when the input is used in

partial match services, such as search functionalities. The

outputs define a property responsePath that represents an

XPath-like expression that is used in the lifting process. The

rationale behind connecting inputs and outputs in a graph is

that simple model references may lead to inconsistencies and

ambiguities, and cannot always fully express the required

semantics. For example, knowing that, in the getPapers
operation of the Library1 service, the input is a person

identifier, and the output a set of academic articles, is not

enough to identify the creator relationship, since there are

many possible relations between person and papers, such as

reviewer or editor.

In addition to the functional description of the service,

most Web APIs have one or more mechanisms to secure data

access, identify requests, and determine access level and data

visibility. This issue has been identified by other approaches,

like RAML’s Security Schemes, OpenAPI’s Security Defini-

tions, and Web API Authentication ontology [16], which are

used to annotate configuration information about authentica-

tion mechanisms on service descriptions. Finally, in the con-

text of automated service composition, the inclusion of web

services in a composition chain may depend on other non-

functional properties, like latency, reliability, or subjective

preference. Our LRA framework. describes quality attributes

using the Dataset Quality Vocabulary [17].

Formally, a Linked REST API is specified as a set of op-

erations, each defined by a 6-tuple (E,Gs, IGs
, OGs

, A,Q).
E denotes the grounding parameters of the service, such

as the endpoint, the URL, and the HTTP request method.

Gs defines a graph representation of the service, as a finite

collection of triple patterns, ts = (s, p, o), composed of a

subject, a predicate and an object. ts ∈ (U ∪V )×U × (U ∪
L ∪ V ), where U , L, and V are the disjoint infinite sets

(a) Linked
REST API
Model

(b) Library1’s
searchAuthors
operation

(c) Library1’s
getPapers
operation

(d) Library2’s
findAuthors
operation

Figure 1: Data model and graph representations of the data

provided by the web services in the example. Red indicates

an input attribute; green indicates an output attribute. Dashed

lines denote mappings between the REST API syntax and

the Linked-Data RDF elements.

of URIs, literals and variables, respectively. IGs
and OGs

define the inputs and outputs of the service correspondingly,

pointing to subjects or objects in the graph Gs. Finally, A
denotes the authentication mechanism used by the operation,

and Q defines the quality of service attributes associated

to the particular operation or to the service in general.

Figure 1 shows a diagrammatic representation of the model

for Linked Web APIs, and the graphs of the example services

introduced in Section III for Library1 and Library2.

V. THE LRA MIDDLEWARE

The main objective of the LRA middleware is to leverage

the semantic descriptions of Linked REST APIs in order

to automate the process of invoking and composing these

APIs in software applications, and to reduce the manual

work required by software developers. The LRA middleware

assumes that developers will specify the data needs of their

applications in SPARQL queries; in response, it provides

a consolidated data graph (in RDF), produced through the

composition of possibly multiple REST API chains, taking

into account the application developer’s credentials and

quality requirements.

A. End-User Interaction

The LRA middleware provides an interface for users to

submit their queries, described declaratively using SPARQL.

This implies a new model for application development using

REST APIs: developers, instead of writing code to formulate

the HTTP requests corresponding to the invocations of the

necessary REST APIs and to parse the returned data, will

have to develop code that formulates SPARQL queries and

parses the RDF graph resulting from the execution of the

automatically invoked API chain. Despite the complexity of

SPARQL query evaluation [18], the community appears to
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have reached a consensus in favor of SPARQL for linked-

data exploration. A SPARQL representation of the question

“Which are the titles of all the documents written by Michael

Johnson?”, introduced in the motivating example, can be

expressed in the following query.
SELECT ?title
WHERE { ?doc a bibo:Document ;

dc:title ?title ;
dc:creator ?author .

?author rdfs:label "Michael Johnson" }

B. Discovery

Our example service, findAuthors introduced in Sec-

tion III and represented in Figure 1d, returns only aca-

demic articles from Library2, which is a subset of the

data required by the example query. However, the concepts

and properties used in the definition of the web service,

i.e., bibo:AcademicArticle and foaf:name, do not

exactly match those of the query, i.e., bibo:Document
and rdfs:label, respectively. Our middleware, endowed

with a registry of Linked REST APIs, can reason about

the knowledge represented in the data query, and infer that

(a) bibo:Article is a subclass of bibo:Document
and (b) foaf:name is a subproperty of rdfs:label,

thus discovering this web service as a candidate service for

answering the question at hand. In effect, discovering such

services enables the integration of the data they expose.

In order to discover services dynamically, the query is

analyzed to extract elements that can be used as input and

output parameters of a service request. Outputs are simply

the projected variables of the data query; inputs are the

bound values that appear in the triples of the data query, in

the WHERE clause. Then, graph-match operations are only

performed on services that use, at least, one of the inputs,

and as a consequence, the search space is reduced. In ad-

dition, this step also considers services with entities related

by super/sub-clasees and similar concepts (extracted through

owl:sameAs and owl:equivalentClass links).

C. Composition

Given the services presented in our motivating exam-

ple for Library1, there is no single service that can sat-

isfy the example query. Nevertheless, if the data from

searchAuthors is joined with the data returned from

getPapers, the papers of a given author can be identified.

In other words, when a query graph is not contained

entirely by any of the service graphs, it can still be answered

through graph traversal, where each vertex represents a web

service, and each edge corresponds to a data production-

consumption relationship, where the outputs of the source

service are consumed as inputs by the target service. The

recursive process to compose the services dynamically,

based on graph matching, is outlined in Algorithm 1. The

process starts by extracting the triples, using Apache Jena,

and identifying the potential inputs (line 6). Then, the first

discovery step, aims at restricting the number of eventual

pairwise graph comparisons. This step uses a filter on the

predicates of the inputs, only considering service graphs that

can use at least one of the inputs in the query graph (line 7).

The next step uses subgraph isomorphism to determine

whether the query graph is present within one of the service

graphs, using an adaptation of Ullman’s algorithm [19] that

considers subsumption and equivalence relations (line 9).

As long as the match covers new elements of the query

graph, the process keeps exploring composition chains from

the current service (line 10). If the addition of the current

service covers all the required elements of the query graph,

then the service is added to the composition chain, and the

algorithm stops (lines 11-12). The algorithm is recursive,

integrating the output of previous services in the composition

chain, until no additional nodes are covered by the composed

service chain (lines 14-18).

Algorithm 1: Composition through graph matching

Input: A query graph Gq , A finite set GS = {Gs1 , Gs2 , ..., Gsn} of service
graphs, a maximum exploration depth max, and a current depth depth.

Output: A list of composition chains L.
1 Function compose(Gq , GS , max, depth)
2 L = ∅
3 if depth > max then
4 return L

5 while Gq is not covered do
6 in = getInputPredicates(Gq)
7 services = getCandidates(GS , in)
8 for each s in services do
9 match = getMatch(Gq , s)

10 if match covers new elements of Gq then
11 if match covers the rest of Gq then
12 add s to L
13 else
14 G+

q = Gq + output of s

15 next = compose(G+
q , GS , max, depth + 1)

16 if next is not empty then
17 chain s to services in next
18 add s to L

19 return L

In the case of data-modification operations, namely in-

sertion, update, and deletion, LRA adopts a conservative

approach by restricting the composition chains to only one

service, and thus, ensuring the consistency of the data, and

delegating the transaction management to the local data

sources.

D. Access Control

Security, namely protection against unauthorized ac-

cess, has to be an essential part of service integration.

Maleshkova et al. [16] conducted a survey of web-service

authentication mechanisms, finding that more than 80% of

the APIs have some kind of authentication, with the API

key mechanism being the most popular. Then, the LRA

middleware must ensure that only users with the proper

credentials on a service can include its operations in their

applications.

LRA service descriptions include annotations for authen-

tication requirements, in such a way that the middleware

knows which security credentials have to be provided by
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the user, in order to invoke the web services. Then, the

composition chains generated from the previous step can be

filtered. For example, if Library2 requires an API Key, but

the user does not provide it, then, the system would not be

able to create a valid request, therefore, invalidating all the

composition chains where a service from Library2 appears,

at design time.

E. Quality

In LRA, information is obtained from numerous sources,

each exhibiting a different level of quality. In the LOD

project, for example, it is common to find inconsistencies

among different sources. Similar problems with inconsisten-

cies and variable data quality are expected when integrating

web services. This leads to the general optimization problem

of selecting a composition of web services for each query so

that the overall quality and cost requirements are satisfied.

Quality-aware composition has been addressed extensively

by other authors [20], proposing several approaches based on

exact algorithms or elaborate heuristics. Thus far, our mid-

dleware has adopted a simple approach, where developers or

informations system managers declare desired levels of qual-

ity, for attributes such as response time and availability, using

the Dataset Quality Vocabulary. These features can be used

to rank and discard composition chains that, in conjunction

with other services in the chain, fail to provide the quality

specified by the users, or have a low rank. For example, if

the user specifies a maximum latency of 1.5 seconds, but

the composition of the services in Library1 are of 1 second

for searchAuthors, and 1 second for getPapers, then

the composition chain should be discarded.

F. Data Lifting and Linkage

Once the invoked services return, the middleware ‘lifts’

the data contained in the response documents based on

the service semantics. In some web-service formalizations,

such as SAWSDL, lifting is performed by XSLT scripts,

which is quite complex and never widely adopted. JSON-LD

provides a good alternative to ‘lift’ service responses, but

it is not popular among web-service implementations. The

LRA middleware supports JSON-LD, but also uses XPath-

like expressions to associate output resources of the Linked

REST APIs graph to elements in the response of the ser-

vice. For example, an output resource with a responsePath
represented by /author/name would retrieve the values

of the “name” object inside the “author” object, at the root

of the response document. After the responses are lifted, the

middleware merges the responses in a composition chain, by

joining the responses based on the attribute values generated

as output by an API invocation, and reusing them as inputs

in subsequent service calls.

After mapping the data to a common ontology, the middle-

ware cross-references equivalent entities across repositories.

But beyond LOD repositories, and for most domains, there

Figure 2: Graph representation of the five data sources used

in the implementation of the middleware. The colors show

the sources that can provide the particular data types or

attributes.

are no owl:sameAs links, even when there is signifi-

cant overlap in the repository contents, which, in effect

renders these repositories into isolated silos. The problem

is exacerbated by naming-convention differences, different

representation formats, and errors, such as typos. The LRA

middleware employs blank nodes to represent objects whose

URI is not provided, and in the post-processing step, it uses

the properties associated to the nodes in order to identify

references to the same real-world entity across different data

sources, and deduplicate the records in the generated graph,

in a process known as record linkage. In our motivating

example, for instance, the paper 1002 of Library1 should be

linked to the paper 124 of Library2, because their properties

have a high similarity. To integrate the results across the

composition chains, we implement a clustering algorithm,

based on the attributes of entities, and a similarity function,

depending on the data type of the values. From this last step,

the response is consolidated and returned to the user.

VI. THE EXAMPLE REVISITED

To evaluate the applicability of the middleware, we part-

nered with IBM Canada in a project designed to ana-

lyze the activities and productivity of their collaborations

with members of academic institutions. Considering that no

service can cover all the types of activities, in our IBM

project, we used LRA to integrate services provided by

five different data sources. CASCON contains data about

interactions, represented by papers, workshop, exhibits, de-

mos, and keynotes, as part of the Conference of the Centre

for Advanced Studies on Collaborative Research, at IBM

Canada. CAS is a proprietary system that provides data about

collaborations (teams, grants, and research outcomes) with

researchers from academic institutions, IBM researchers and

technologists within the Centre for Advanced Studies (CAS)

in IBM Toronto Laboratory in Canada. PUBS exposes a
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dataset, semi-automatically extracted, from several sources,

including Mendeley, Sciverse, and Canadian funding agen-

cies. KMTI contains information about publications, grants,

and awards for a specific project. ACM is a data source based

on a data dump from the ACM Digital Library, accessible

through a REST API that we developed ourselves.

The aforementioned web services expose operations for

searching by name or title, and for obtaining detailed

information about a repository entity, given its identifier.

The operations in CASCON and KMTI APIs return JSON

documents with embedded objects. For example, the search
author operation returns authors, with embedded publica-

tions, in a similar way as other web services, such as the Dig-

ital Public Library of America (https://dp.la/info/developers/

codex/), or Twitter (https://dev.twitter.com/rest/public). On

the other hand, CAS, PUBS, and ACM provide similar

operations as the other data sources, but in the search

operations, the responses only contain information about the

target entity, in the same way as Scopus (https://dev.elsevier.

com/sc apis.html) or DBLP(http://dblp.org/search/). Finally,

the web services do not require authentication, except for

CAS, which implements an API key security mechanism.

The five data sources are described as Linked REST

APIs, using the model presented in Section IV, and mapping

the concepts to the VIVO ontology. The descriptions were

materialized using RDF. A diagrammatic representation of

the data in each data source and its mapping to VIVO, can

be found in Figure 2. The Linked REST API descriptions

are stored as a queryable TDB dataset, using Apache Jena,

and other information, such as user’s security credentials is

stored in a relational database.

For IBM Canada Lab, it is crucial to consider multiple

types of research activities in the assessment of projects

and collaborations with research institutions. One general

method by which communicative activity may be explained

and interpreted, is to consider the objects, agents, events,

products, and contexts of such activity as entities to be

counted, measured, or quantified [21]. In the following, we

demonstrate how diverse types of techniques available to

map scientific progress and influence were answered, con-

sidering multiple data sources, and using our middleware.

Figure 3 shows the resulting composition chains for each

evaluation technique, following the same color convention

as in Figure 2.

Research Production Indicators Relevant indicators of

research output are publications, including conference pa-

pers, journal articles, posters, patent applications and more.

Given the variety of types of publications, we can take

advantage of the flexibility of knowledge representation

provided by ontologies, by using super-classes, in this

case bibo:Document, which covers, for example, journal

articles (bibo:AcademicArticle) from ACM, patents

(bibo:Patent) from CAS, and general academic articles

from all the data sources (bibo:Article). Query 1,

(a) Research
Production
Indicators

(b) Link
Analysis

(c) Input-
Output
Studies

(d) Col-
laboration
Metrics

Figure 3: Composition chains for ‘Research Evaluation’

examples.

shown in Figure 4, retrieves the name of the author, title,

and date of publications for Michael Johnson3.

Link Analysis In evaluative link analysis, citation counts

are used as indicators of quality, importance, and more

generally impact of a researcher’s output. The query shown

in Query 2 in Figure 4 fetches the documents that cite any

of the publications of Michael Johnson.

Input-Output Studies Some studies have attempted to cor-

relate research expenditures with publication output, which

have become recurrent in institutions evaluating researcher’s

performance. Query 3 shown in Figure 4 collects informa-

tion about grants awarded to Michael Johnson, which are

consolidated from data in CAS, PUBS, and KMTI.
Collaboration Metrics The study of collaboration, influ-

enced by the work of Katz and Martin [22], has shown that

research collaboration can bring co-authors greater research

productivity and research impact. For that reason, measuring

sociability, defined simply as the number of coauthors, is

important for researcher’s evaluation. Query 4 in Figure 4

extracts the name of the coauthors of Michael Johnson.

Query 1: SELECT ?name ?title ?date
WHERE { ?author a foaf:Person ;

foaf:name ?name ; foaf:name "Michael Johnson" .
?doc a bibo:Document ; dc:creator ?author ;

dc:title ?title ; dc:date ?date }

Query 2: SELECT ?name ?title ?date
WHERE { ?author a foaf:Person ;

foaf:name ?name ; foaf:name "Michael Johnson" .
?doc a bibo:Document ; dc:creator ?author ;

bibo:citedBy ?citing .
?citing a bibo:Document ; dc:title ?title ;

dc:date ?date }

Query 3: SELECT ?name ?title ?date ?amount
WHERE { ?author a foaf:Person ;

foaf:name ?name ; foaf:name "Michael Johnson" .
?grant a vivo:Grant ; vivo:relates ?author ;

vivo:totalAwardAmount ?amount ;
dc:title ?title ; dc:date ?date }

Query 4: SELECT ?author2_name
WHERE { ?author1 a foaf:Person ; foaf:name "Michael

Johnson" .
?doc a bibo:Document ; dc:creator ?author1 ;

dc:creator ?author2 .
?author2 a foaf:Person ; foaf:name ?author2_name }

Figure 4: Query for research production indicators

3’Michael Johnson’ is a fictional name as are all the data reported in this
section.
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VII. CONCLUSIONS

In this paper, we described the LRA middleware for

automatically discovering, composing and invoking REST

APIs. The middleware relies on a semantic specification

of the input-output functionalities of the APIs and their

non-functional attributes, described in terms of Linked-Data.

The LRA language for the semantic description of web

services builds on lessons learned from a long history of

semantic web services and service-description formats. We

have chosen Linked-Data RDF ontologies for semantically

annotating REST APIs, because of their wide adoption, and

their flexibility to express functional relationships among el-

ements in a web service. Accordingly, the LRA middleware

presents a novel approach to answering SPARQL queries

through a fully automatic process. This process, supported

by the LRA middleware, involves the discovery of REST

APIs relevant to the input SPARQL query, the composition

of these APIs through their data production-consumption

relationships, the execution of the composed plans through

the invocation of the APIs, and the linking and merging of

their responses. In addition, the middleware process takes

into account the access-control constraints and the trade-offs

of data quality and performance of the registered APIs.

We tested the usefulness of our middeleware on a

research-program evaluation example, for the IBM Centre

for Advanced Studies. Note that this is a real system,

built based on our industrial-partner’s requirements. This

example involved (a) specifying a number of services, both

proprietary and open-data based, in terms of the LRA model,

and (b) demonstrating how the middleware responds to a

number of queries required in our partner’s application. Our

scenario motivates our contribution and demonstrates the

feasibility of our approach.

In the future, we plan to conduct larger-scale integrations

and support semi-automatic description of services, based on

a collection of sample invocation URLs provided by users.

In addition, we are working on controlled empirical studies

that involve developers using our middleware, in order to

quantify the effectiveness of the proposed approach and the

ease-of-use of our middleware tools.
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