
Integrating a Distributed Agent-Based Simulation into an HLA Federation

Gary Kratkiewicz

Amelia Fedyk
Daniel Cerys

Distributed Systems & Logistics Department
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
617-873-2476, 617-873-7568, 617-873-4534

kratkiewicz@bbn.com, afedyk@bbn.com, cerys@bbn.com

Keywords:
Agent-Based Simulation, Distributed Systems, Cougaar, HLA, Logistics

ABSTRACT: Distributed agent-based architectures can be used to build powerful models and simulations. Although
such architectures can themselves be used as a means of interoperating with other simulations, it can more useful to
integrate them into a standard simulation interoperability architecture such as HLA, leveraging the benefits of each.

Instances of one such agent-based architecture, Cougaar, have been integrated with other models as federates in HLA
federations. Cougaar is a Java-based architecture for the construction of robust large-scale distributed agent-based
applications. It has been used to demonstrate the feasibility of using advanced agent-based technology to conduct rapid,
large scale, distributed logistics planning, execution, and replanning in extremely chaotic environments in DARPA's
Advanced Logistics Program and UltraLog Program, and to demonstrate effective analysis of logistics support for an
FCS Unit of Action in the Army's Future Combat Systems program.

This paper describes how a Cougaar-based agent society modeling a small logistics supply network was integrated as a
federate in V1.3 and 1516 HLA federations. It describes how to interface the society and the HLA RTI; how to
synchronize society time with HLA RTI time; and how to map agents, objects, and actions in the society to HLA objects
and interactions. The lessons learned in this demonstration integration effort can be applied to large-scale efforts, such
as integrating large Cougaar-based logistics simulations with combat simulations (e.g., OneSAF).

1 Introduction

Distributed agent-based architectures such as Cougaar [1]
and others [2] can be used to build powerful models and
simulations.

Agents are independent software entities that react to
events and initiate actions by themselves. Different agent-
based architectures yield agents with varying capability
levels. Agents can have or define roles, tasks, beliefs,
desires, or intentions. Agents can be static (remain on
their original platform) or mobile (can move to another
platform). Some agents are considered intelligent and
some agent systems are considered intelligent [3].

A distributed system is a collection of separate processes
or information systems that can act together as a single
system. Distributed agent computing involves agent-based

systems that operate in a distributed manner. They are
used to implement complex behavior or to model or
simulate complex systems.

Although distributed agent-based architectures can
themselves be used as a means of interoperating with
other simulations, it can be more useful to integrate them
into a standard simulation interoperability architecture
such as HLA, leveraging the benefits of each and
allowing them to interoperate with existing compliant
simulations. In this work we demonstrated integration of a
distributed agent-based architecture (Cougaar) with a
standard simulation interoperability architecture (HLA)
by designing and developing a prototype Cougaar-based
logistics simulation that was also an HLA federate.

2 Distributed Agent Computing with
Cougaar

Cougaar is a distributed multi-agent system infrastructure
developed to provide a flexible framework in which to
solve complex problems.

2.1 Cougaar Architecture

Cougaar (for Cognitive Agent Architecture) is a Java-
based architecture, which is well suited to integration with
HLA because its rich design can model diverse objects
and interactions between those objects. Problems modeled
within the Cougaar architecture are capable of reacting to
a dynamically changing environment. As plans change,
Cougaar, seen as a workflow engine, adapts. The solution
is reworked creating a modified workflow for the plan,
composed of viewable, traceable components [1].

The Society is an important concept in the Cougaar
architecture. The Cougaar Society is composed of a
collection of Agents with various capabilities (plugins)
that work together to solve a particular problem (see
Figure 1). The agents within the society can be organized
into Cougaar Communities. The communities can be
multi-tier with logically related agents, which usually
tackle a particular sub-task or may share common
information that is not made available to the rest of the
agents in the society. Membership in Cougaar
Communities is not distinct, so an agent may be a
member of one, many, or no community.

Organizing the conceptual society onto a physical
platform necessitates the definition of the Cougaar Node,
defined as a single Java Virtual Machine (JVM) instance.
Agents and communities may be grouped onto a node
based upon proximity to a data source, such as a database,
or to facilitate inter-agent communication, as the JVM is
used to shortcut the message transport layer. Agents
sharing a single JVM benefit from loop back in-memory
transport. It might be cogent to place agents with heavy
interactions on the same node as long as CPU and
memory constraints are not overburdened.

Agents are Cougaar components with a defined
functionality and a local memory store called a
Blackboard. The functionality (or behavior) of the agent
emerges from the composite of plugins within the agent’s
makeup. The agents are responsible for scheduling the
execute cycles of the plugins and the management of the
messaging system that is responsible for inter-agent
communications. Removing the details of messaging from
the plugins allows the plugins to focus on domain specific
functionality instead of infrastructure details. The plugins
themselves represent the business logic, which passes

information between itself, other plugins within the agent,
and other agents, by publishing objects to the local
Blackboard.

The Blackboard is the collective memory store of the
agent. It implements a publish/subscribe API. Each plugin
is able to view objects on the Blackboard by creating
subscriptions. The subscriptions show the plugin a view
of the Blackboard in which it is interested. Likewise,
plugins add or publish objects to the Blackboard. The
published objects are available to all plugins within the
agent. These Blackboard objects can be used as a means
of communication and are persisted. The Cougaar
infrastructure facilitates notification of all changes
affecting a plugin’s subscriptions within a transaction.
The transaction represents the adds/removes/changes
made to objects described by the subscriptions since the
plugin’s last execute cycle. This ensures that the plugin is
processing a complete and consistent set of interesting
Blackboard objects. All changes that a plugin makes to
the Blackboard are kept local to that plugin until the
plugin has completed its cycle at which time the entire set
of changes is advertised to all agent members via updates
to their subscriptions.

The Logic Provider (LP) is an agent component, which
watches Blackboard activity. They are very lightweight
and are responsible for messaging and Blackboard
modifications. All adds, rescinds and changes to objects
on the Blackboard invoke an LP. The use of a Logic
Provider is nearly transparent to the plugin developer. A
plugin need only publish an inter-agent object to the
Blackboard and the LP will silently handle the message
transport.

Two common communication patterns used in the
Cougaar Architecture are Plugin-Plugin and Agent-Agent.
The plugin-to-plugin communications uses asynchronous
messaging within a JVM. This usually takes the form of a
query or object published to the Blackboard resulting in
one or more responses received back. The agent-to-agent
messaging relies upon its Logic Providers to translate the
message into “message space” [4].

2.2 Running a Cougaar Society

Cougaar societies can be defined within an XML file and
run manually with the scripts provided with the Cougaar
infrastructure. The XML files define the agents and their
plugin content. Most societies require a boilerplate set of
plugins within each agent. Plugins that may be found in
most agents are Service plugins that establish a
client/server relationship between agents, Yellow Pages
plugins which assist the agent in finding services, White
Pages plugins which do lookups to help agents find other
agents (similar to DNS), PrototypeProviders that

contribute to the creation of Assets, Servlets for data
visualization, and domain plugins to handle the job the
society is tasked to do.

Many tools have been developed under the UltraLog
project (an extension to Cougaar, described below) to aid
the user in society run and control. Although bringing up
a group of agents on each node can run a distributed
society, it becomes difficult when your society grows to
more than two or three machines. Acme was developed
under the UltraLog project for automated testing and
scripted tailoring of a society. Acme uses Ruby scripts
and rule files to modify the behavior of the society pre-
run by adding/subtracting plugins or plugin parameters.
Acme also allows the user to script time advances,
perturbations, and data retrieval into a society’s run,
which fosters growing complexity.

The preferred user interface for the Cougaar society is the
Java servlet as it easily lends itself to a distributed

architecture. Servlets are server side, browser enabled
modules that are very similar to a plugin. Many servlets
aid the user in the visualization of interesting Blackboard
objects. The UltraLog society uses servlets to monitor
society completion and correctness, profile memory usage
during runs, view objects on the Blackboard and traverse
their lineage, manually advance society time, and much
more.

2.3 UltraLog as an Application of Cougaar

UltraLog is a four-year project sponsored by the Defense
Advanced Research Projects Agency (DARPA) [5]. It is a
layer built on top of the Cougaar architecture with the
goal of adding survivability to Cougaar by incorporating
robustness, scalability, security and stability into its
design. At the core, UltraLog was developed to model
military logistics within a distributed multi-agent system.
It is composed of plugin components, containing the

Figure 1. Plugin, Agent, and Node Structure of the Cougaar Architecture [6]

PLATFORM OS
JAVA VMJAVA VM

COUGAAR NODE

Agent Binder

Agent Binder

PLATFORM SERVICES

COUGAAR NODE SERVICES

Agent Binder

AGENT.
AGENT
FRAMEWORK
SVCS.

Plugin
Binder

Plugin
Binder

Plugin
Binder

Plugin
Binder

PlugInPlugIn

COUGAAR NODE

Agent Binder

COUGAAR NODE SERVICES

Agent BinderAgent Binder

AGENT.AGENT
FRAMEWORK
SVCS.

Plugin
Binder

Plugin
Binder

Plugin
Binder

Plugin
Binder

Agent Binder

AGENT.AGENT
FRAMEWORK
SVCS.

Plugin
Binder

Plugin
Binder

Plugin
Binder

Plugin
Binder

PlugInPlugIn

PlugInPlugIn

PlugIn

PlugIn

business logic for modeled agents, domain specific data
as well as additions to the Cougaar infrastructure.

The UltraLog test society models the behavior of a large
set of military organizations provided by a set of logistics
support organizations, which interact with each other as
they plan and execute a military operation. Each agent
models a single military organization with its physical
assets, business rules, and relationships to other
organizations. The present full UltraLog society has over
500 agents running on more than twenty nodes. Each
agent’s behavior is defined by its collection of plugins.

All military organization agents produce demand for
materiel based on their physical assets and their planned
activities. The agents, also called organizations in this
context, equipped with the appropriate demand plugins
will produce demand tasks. The assets themselves
encapsulate their demand rate information. Special
plugins called PrototypeProviders are called during the
creation of an asset to populate it with necessary
information, usually derived from a database. For
example, demand for DF2 (diesel fuel) can be easily
traced within the society to the Major End Item (MEI)
that produced that demand, such as a tank or a truck asset.
Demand tasks are objects published to the Blackboard
that communicate need for re-supply from inventory
points. Each task has a lineage with a parent. Inventory
points within the same organization or a supporting
organization will receive the message and respond to the
task with its ability to comply. The subtleties in the task
structure, including preferences, scoring functions and
confidence, allow a rich communication between agents.

Like MEI assets, inventory assets are created with the
necessary business logic that represents the practices of
that organization. Inventory points are aggregation points.
UltraLog’s inventory managers aggregate demand over a
commodity and item pair. Although each demand task is
distinct on the Blackboard with its own lineage,
individual demand becomes indistinct within the
aggregate bin. The inventory plugins will manage their
inventory bins using detailed business logic tailored to the
specific agent in which it resides. Re-supply tasks are
issued by the inventory plugin to stock enough of a
particular item to safely accommodate demand from its
customers for a defined period of time and to keep the
supply chain from falling behind the demand.

In the UltraLog society, some of the re-supply tasks
produced by inventory points are expanded into
transportation tasks and sent to transportation agents. The
transportation agents model ground, air, and ship
transport and make use of Genetic Algorithms (GA) for
scheduling. The extent that the transportation plan meets
the request is returned in the results attached to the

transport task. The Cougaar infrastructure propagates that
information up through the expanded supply task so all
dependent agents receive notification of results.

The society can run strictly in a planning mode where the
solution is predictive or in an execution mode where the
solution is generated through simulation or captured from
real-world operations. The planning mode is based on
static information and the operation takes place entirely in
the future. One method of simulating execution of the
plan involves jumping Cougaar’s society time forward by
some expected time increment. As time moves forward,
demand generators (plugins built to produce simulated
‘actual’ demand) are employed. The actual demand is
derived from the predicted demand with some deviation
generated using a Poisson distribution. Another method
could be based on integration with combat simulation
models that model individual vehicle activities. The
execution demand is received by the inventory points who
replace the predicted customer demand with the actual
demand, where available, and modify the existing plan to
accommodate any significant variance from the
prediction.

2.4 FCS Supportability as an Application of UltraLog

The FCS (Future Combat Systems) Supportability
prototype extends UltraLog functionality. The FCS
Supportability (FCSS) society runs within the full
UltraLog society but it centers on the Unit of Action
(UA). The UA is modeled after the rapidly deployed and
self-sufficient military brigade envisioned for FCS. The
duration of its scenario is relatively short encompassing
days instead of months. Initially, FCSS is handling a
single commodity, fuel. The agents in the UA are
designed to reduce the logistics footprint, requiring much
less support than a traditional brigade. The UA agents are
also highly mobile; they traverse a hostile environment
that makes the act of re-supplying more difficult.

In keeping with this design, the functionality of the
inventory plugin was extended to bring inventory
management down to the MEI level. Each inventory asset,
for example, can now refer directly to the vehicle as well
as the item it maintains. Agents, in addition to modeling
organizations, also model trucks and tanks. Because these
mobile agents maneuver in and out of hostile territory, it
is necessary to refill at convenient points. The inventory
plugin was also extended to add new business rules and
algorithms to the refill generation module of the inventory
plugin that will find acceptable re-fueling points.

The needs of the UA society also had a dramatic impact
on the transportation plugins. The UA society has an
extremely flat support structure; all the re-supply requests
are now expanded into transport tasks. Instead of

refueling an organization, as in the original UltraLog
society, the fuel trucks must travel to each individual UA
vehicle and meet the vehicle during its requested time.
Being late or early may result in the truck arriving during
an offensive period, putting the truck at higher risk. New
GA scheduling rules were developed to handle this
interesting scheduling problem.

Simulation in the UA took on the characteristics of the
society itself, in that its time advance is at a greater pace,
hourly instead of daily, to better mirror the quickly
changing scenario. The demand generators were also
enhanced for FCSS to generate hourly actual demand as
well as accept the simulation data from an outside source.
This opens the way for FCSS to interact with third party
simulation tools.

3 The High Level Architecture (HLA)

The High Level Architecture (HLA) is a standard
technical architecture for the interoperation of
simulations.

3.1 Overview of HLA

HLA is based on the idea that a single simulation cannot
meet the needs of all users. Originally developed for the
US Department of Defense under the leadership of the
Defense Modeling and Simulation Office, it was specified
as the standard technical architecture for all DoD
simulations in 1996. The latest version of this HLA
specification (1.3) was adopted in 1998. This
specification formed the basis for the draft IEEE standard
for simulation interoperability (IEEE 1516), which was
approved as an open standard in 2000 [7, 8].

A group of simulations interoperating via HLA is known
as a federation. A federation has three main functional
components. The first component is the set of simulations
themselves, referred to as federates. Federates can also be
interfaces to live players and tools that passively collect
simulation data and monitor simulation activities.

The second component is the Runtime Infrastructure
(RTI), which is a distributed operating system for the
federation. It provides the following services for the
federation:

• Federation management
• Declaration management
• Object management
• Ownership management
• Time management
• Data distribution management

A reference RTI was originally available through DMSO.
A variety of RTIs are now commercially available in
HLA 1.3 and IEEE 1516 versions. Some of these RTIs are
fully asynchronous while others are partially
asynchronous (requiring periodic calling of a “tick”
method to allow the RTI to perform operations).

The third component of the federation is the RTI
interface. This allows the federates to interface to the RTI
and access its services. The federates interact with each
other through these services. The HLA interface
specification mandates APIs in various languages
including Java and C++.

The HLA Federation Object Model (FOM) describes the
set of objects, attributes and interactions shared across a
federation. It is specified in a file read by each federate at
startup.

Three general time synchronization methods can be used
with HLA [9]:

• No synchronization: Each federate advances time at

its own pace. This results in federations running with
divergent representations of time.

• Conservative synchronization: This avoids the
possibility of processing events out of time stamp
order. Messages sent under this synchronization are
given time stamps. In federates that can receive or
send these messages, their time is referred to as
logical time. Different federates can have different
logical times. The RTI manages messages so they
cannot be received by a federate until no earlier
messages can be received; it manages time
advancement requests with the same restriction.

• Optimistic synchronization: This allows the
possibility of processing events out of order, but
provides a mechanism for rolling events back when
this occurs.

3.2 Purpose and Goals of Integration

Existing military combat simulations lack sophisticated
logistics components. As recent reports indicate, logistics
support is critical to combat operations [10].

Although Cougaar-based logistics simulations provide
capabilities not available in current military simulation
systems, a roadblock to their use has been a lack of
interoperability with these systems. The primary purpose
of our work was to demonstrate the ability of Cougaar
societies to interact with other simulations via HLA.
Showing that Cougaar-based logistics capabilities are
applicable to existing simulation test beds would allow
credible proposals of simulation systems based on
Cougaar-HLA linkages. Specifically, this would allow the

addition of realistic simulation of logistics to combat
simulations such as OneSAF.

Our specific technical goals with respect to our
demonstration prototype were as follows:

• Demonstrate that a Cougaar-based society of agents

can act as an HLA federate, successfully publishing
information to the federation and receiving
information from the federation.

• Demonstrate that Cougaar time mechanisms can
successfully integrate with HLA time
synchronization.

• Demonstrate that a Cougaar society can work with a
variety of RTIs:
o HLA 1.3 and HLA 1516.
o Fully asynchronous and partially asynchronous

(tick-based)
o Java and non-Java based

• Develop techniques for creating or modifying
Cougaar societies to be HLA federates.

• Identify further areas of research as well as additional
functionality required in a full-scale Cougaar HLA
federate.

4 Integration Approach

Our integration approach involved reducing in size an
existing Cougaar-based logistics simulation society,
splitting the society into two societies that modeled the
same organizations but which performed different
functions, augmenting the societies to operate as HLA
federates, and then interfacing them with various RTIs.

4.1 Federation and Society Design

We started with a small Cougaar-based UltraLog society
that simulated the logistics aspects of a military hierarchy
and its use of various supply items such as fuel,
ammunition, and supply parts. We pared the society down
to model only bulk fuel consumption and to contain only
two fuel-consuming battalions at the bottom of the
hierarchy. These were an artillery battalion (1-35-ARBN)
and an infantry battalion (1-6-INFBN). The society
contained a total of 19 organizational entities, which
included the two battalions, their organizational chain of
command (with NCA, National Command Authority, at
the top), and their supply hierarchy.

A Cougaar agent modeled each organizational entity.
Each of these agents contained a variety of plugins to
perform their actions. The fuel-consuming organization
agents contained a demand generation plugin to project
their bulk fuel requirements and to generate bulk fuel
Supply tasks to model these requirements. Other plugins

would then obtain these tasks from the blackboard and
order fuel.

For the initial proof-of-concept demonstration we created
an HLA federation with two federates. The first federate
was a general simulation of the above logistics
organization. The second federate was a specific fuel
demand model. The first federate obtained fuel demand
data from the second federate via HLA.

To create the federation we duplicated our demonstration
society into two societies:

• A high-fidelity logistics society that performed the

general simulation
• A demand generation society to model fuel demand

In the high-fidelity logistics society we removed the
demand generation plugin for the fuel consuming
organization agents. In the demand generation society we
left this plugin, but removed others that dealt with the
Supply tasks after they were generated. We also removed
all organizations not necessary for the demand generation
function. This pruned society contained seven agents.

4.2 Non-Cougaar Federate

To ensure that our prototype experiments were valid with
non-Cougaar-based federates, we performed verification
experiments where the demand generation society was
replaced with a non-Cougaar federate that performed the
same function. This was a Java-based, non-agent program
that performed the demand modeling with no Cougaar
code.

4.3 RTI Selection

We tested our prototypes with three HLA RTIs that were
readily available to us and which covered the capabilities
we want to test:

• Pitch 1516 LE
• Pitch 1.3 LE
• DMSO NG 1.3

This selection allowed us the feasibility of using Cougaar
with both DMSO 1.3 and IEEE 1516 RTIs, with fully
asynchronous (Pitch) and partially asynchronous (DMSO)
RTIs, and with Java-based (Pitch) and non-Java-based
(DMSO) RTIs.

4.4 Simulation Models

There are two types of simulation models that HLA is
designed to handle: continuous (time-stepped) and

discrete (event-driven). A Cougaar society can map into
either of these, depending on how it is set up. Time moves
ahead in a Cougaar society in two ways. First, it
continuously advances at the same rate as real (wallclock)
time. Second, time can be advanced ahead to some future
time.

If time is left to continuously advance with real time or is
advanced ahead in equal steps, the Cougaar society maps
into the time-stepped simulation model. If time is
advanced in unequal steps, the Cougaar society maps into
the event-driven model.

A simulation can operate in real-time, scaled real-time, or
non-real-time. Although Cougaar societies generally are
not designed to operate in real-time, there is nothing
preventing them from doing so, since Cougaar by default
runs in real-time. A properly designed Cougaar society
with agents appropriately distributed across adequate
machines can operate in real-time in conjunction with
other real-time simulations or with humans. The design
must ensure that the society operation is not constrained
by inadequate computing resources.

However, the great majority of existing Cougaar societies
perform simulations lasting on the order of minutes to
hours of wallclock time that model operations and events
on the scale of days or months. They require time to be
advanced ahead to perform useful analyses. In these
cases, if time is stepped evenly, the society would operate
in scaled real-time. If stepped unevenly, it would operate
in non-real-time.

4.5 Time Management

In a Cougaar society, simulation time (also known as
society time) is initialized to the start of physical time (the
time in the system being modeled by the simulation) at
the beginning of a run. Simulation time then advances at
the same rate as wallclock time (one second per second).

Simulation time can be stepped to a future point, at which
point it resumes advancing at the same rate as wallclock
time. For an accurate simulation, time should not be
stepped unless the society is in a state of quiescence
(reached a steady state after a planning change or
previous time step). Although Cougaar does not prevent
this by default, a Cougaar society can be set up to wait for
quiescence before allowing a time step.

Here is how the general HLA time synchronization
methods apply to Cougaar federates:

• No synchronization: This is not useful for a Cougaar

society in execution (simulation) mode. However, if a
society is only used as a planning model, this would

be fine as there would be no point in expending effort
to synchronize the society.

• Conservative synchronization: This is the appropriate
mechanism for a Cougaar society in execution mode.
It fits well with Cougaar’s time advancement
mechanism.

• Optimistic synchronization: This is not a good match
for a Cougaar society because Cougaar currently
cannot roll back time. Since federations can contain
federates with different synchronization methods, this
does not limit the ability of Cougaar societies to be
federation members.

4.6 Development Approach

To minimize development time and maximize learning,
we used an iterative development approach with three
main phases. This approach allowed us to get the
prototype working in a simple, albeit non-standard,
manner before moving on to the correct but more
complex way.

The technical details of these steps as well as the lessons
learned are covered in Section 5.

1. Build a federation without HLA time management

This federation included two federates, each mapping to a
Cougaar society. It involved building the prototype
societies and checking that they ran independently on the
same computer with no Cougaar interactions, interfacing
the Cougaar society to a Java-based 1516 RTI via a single
ambassador class, communicating demand via supply
interactions, and coordinating time via time interactions.
It also involved updates to some plugins and the time
advance servlet. Once this operated successfully, we
tested it with a non-Cougaar federate performing demand
generation, and then moved it to a Java-based 1.3 RTI and
confirmed operation.

2. Build a federation with HLA time management

This federation also included two federates, each mapping
to a Cougaar society (Figure 2). It involved upgrading the
society-RTI interface from a class to a Cougaar service,
moving to a non-Java-based, partially asynchronous 1.3
RTI, and replacing time interactions with a standard RTI
time synchronization mechanism. It also involved further
updates to some plugins and the time advance servlet.

3. Build a federation with a multi-node Cougaar society:

This federation included three federates, two mapping to
each of the two nodes in the high-fidelity logistics society,
and the third mapping to the other society (Figure 3). It
involved splitting the high-fidelity logistics society into
two nodes and retesting the federation.

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

High-Fidelity Logistics Society

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

Demand Generation Society

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

HLA RTI Supply Task Interaction

Time Management

Federate 1 Federate 2

Figure 2. HLA Federation with Cougaar Federates

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

High-Fidelity Logistics Society Demand Generation Society

HLA RTI Supply Task Interaction

Time Management

NCA

1-35-ARBN

Ambassador
Service

1-6-INFBN

Advance
Time

Ambassador
Service

NCA

1-35-ARBN
1-6-INFBN

Advance
Time

Cougaar Node Cougaar Node

Federate 1 Federate 3

Ambassador
Service

Cougaar Node

Federate 2

Figure 3. HLA Federation with Cougaar Federates Including a
Multi-Node/Multi-Federate Cougaar Society

4.7 Results of Integration Experiments

We met all of our technical goals during development and
testing of the prototype system.
We demonstrated interoperability in the following types
of federations:

• Two Cougaar societies as federates in an

asynchronous and a partially asynchronous HLA 1.3
federation

• Two Cougaar societies as federates in an HLA 1516
federation

• A multi-node Cougaar society as two federates and
another society as a third federate in an HLA 1516
federation

• A Cougaar society and a simple non-Cougaar
simulation as federates in an HLA 1.3 federation

• A Cougaar society and a simple non-Cougaar
simulation as federates in an HLA 1516 federation

We demonstrated the following operations:

• Subscribing a Cougaar federate to specific HLA

interactions
• Detecting tasks in one society, transferring the task

information via HLA interactions, and reconstituting
the tasks in a second society

• Synchronizing society time via HLA interactions
• Interfacing a Cougaar society to the RTI via a single

ambassador class
• Subscribing plugins to specific HLA interactions
• Interfacing a Cougaar society to the RTI via a

Cougaar service
• Synchronizing society time via the HLA mechanism

using conservative synchronization

We learned techniques for creating or modifying Cougaar
societies to be HLA federates (described in Section 5).

We identified further areas of research as well as
additional functionality required in a full-scale Cougaar
HLA federate (described in Section 6).

5 Lessons Learned

We learned or developed a number of techniques for
creating or modifying Cougaar societies to be HLA
federates.

5.1 Interfacing Between Society and HLA RTI

There exist a number of ways to interface between a
Cougaar society and an HLA RTI. In our prototype we
first created a singleton ambassador class that handled the
communication. We used different ambassador classes for

different RTIs instead of modifying the same one. This
simplifies moving back and forth when necessary.

The ambassador class performs interactions between the
society and federation, including instantiating the RTI’s
ambassador class, joining the federation execution
(creating it first if necessary), connecting to interactions
and objects. It also handles the interactions and object
attributes from the federation and distributes them to the
appropriate agent in the society.

We later changed the interface to a Cougaar service,
which essentially provided the same functionality (by
wrapping the ambassador class) but in a Cougaar-
compliant manner. In a multi-node Cougaar society, the
ambassador class is instantiated separately for each node.
Each node thus becomes a separate federate. If this is not
desired, the ambassador service would need to be
modified to create only one federate per society.

5.2 Implementing Time Synchronization

We implemented conservative time synchronization in
two different ways. For maximum flexibility, we used a
servlet-based, user-directed time advancement mechanism
in our demonstration societies. This allowed us to operate
with a variety of simulation models.

In phase one of the prototype, we implemented time
synchronization without HLA time management. In this
implementation, the high-fidelity logistics society
advanced its own time directly and advanced time in the
demand generation society using HLA interactions. When
the user advanced time in the high-fidelity logistics
society, it sent a time interaction to the RTI. When the
demand generation society received the interaction, it
advanced its time to the specified value. This scheme
worked because the second society was so small it was
already ready to advance time when the other society
requested. We implemented it so we could focus on
learning about interactions at that point in our
development cycle. Although it works in special
situations, it is not appropriate for general-purpose use.

In phases two and three of the prototype, we implemented
time synchronization with HLA time management. This
implementation involved performing conservative time
synchronization using the standard HLA mechanism and
a modified version of the user-directed Cougaar time
advancement mechanism. As described earlier, the
existing Cougaar mechanism for advancing time directly
advances time when the user requests it. To work with
HLA, this mechanism must be expanded to obtain
permission from the RTI before advancing time in the
society. This augmentation involved implementing the

ambassador class, adding plugins to handle time, and
modifying the time advance servlet.

5.3 Details of Time Management Integration

Time synchronization with HLA time management
requires close coordination between the two mechanisms.

At initialization the ambassador class joins the federation
execution, gets handles, and sets up interactions. It then
performs the following operations to set up for time
synchronization:

• Enable asynchronous delivery of messages
• Enable time-constrained mode (allows the federate to

receive time-stamped messages); wait for
confirmation

• Enable time-regulating mode (allows the federate to
generate time-stamped messages) with default
lookahead and default current time; wait for
confirmation

• Request a time advance to the current society time

From that point on, the ambassador class handles
interactions and time advance requests asynchronously.

The Cougaar society uses a servlet at the top-level agent,
which allows the user to advance time. In this prototype,
the user needs to manually confirm that the society has
reached quiescence before attempting to advance time (in
a full system this would be automated). For experimental
purposes, the servlet allows the user to manually drive a
time-stepped or event-driven style simulation (this also
would be automated in a full system).

Normally, this directly changes the society time. To work
with the RTI time synchronization method, this needed to
be changed by modifying the servlet and adding a plugin
to the agent. Instead of directly changing the society time,
the servlet now places a time change request object on the
Cougaar blackboard for the agent.

The plugin added to the agent subscribes to the time
change request object. When it appears on the blackboard,
the plugin reads the time request and calls the ambassador
service with the time and a pointer to itself. The service
makes sure that there isn’t a pending request for a time
change and sends the time advance request to the RTI.

If there is a pending request, the new request gets dropped
in the prototype. This could be handled differently in a
full implementation.

If no other messages less than or equal to the new time are
forthcoming, the RTI grants the time advance to the
society. If the time advance request is granted, the

ambassador service calls a callback method on the plugin
to actually change the time. This design keeps all society
time interaction in the plugin code and all RTI time
interaction in the ambassador code. The ambassador class
knows about the callback method through a simple Java
Interface, so all society information is hidden from it.

Whenever a time advance request is granted, the
ambassador class stores the new federation time so that it
can check whether the next request is successful. The RTI
delivers messages to the society with times less than or
equal to the new time, and the society starts handling
them. If the time advance is not granted, the ambassador
service does nothing. In this prototype it is up to the user
to repeat the request.

In this implementation, the user must make time requests
in both societies using the Cougaar time advance
mechanism. A time advance in a society was not granted
until the other society had requested an advance to that
time or beyond.

5.4 Mapping Agents, Actions, and Objects

A Cougaar society contains many objects, so mapping
these objects to HLA actions and objects must be done
with care to ensure acceptable performance. Data can be
transferred in HLA via interactions (events) and/or object
attributes. How these entities map to Cougaar entities is
heavily dependent on the society design.

In general, Cougaar agents or asset objects would map to
HLA objects. This mapping should only be set up for
those agents and objects where information needs to be
transferred. This could be the case for equipment agents
(i.e., where an agent is modeling a tank).

Events in Cougaar would map to HLA interactions.
Again, the mapping should only be made for those events
where information needs to be transferred throughout the
federation.

Cougaar objects such as UltraLog tasks could be mapped
either way. In our prototype, we only needed to know
when the tasks appeared in the demand generation society
and what they contained. In this case, it made sense to
model them as interactions. The information was
transferred throughout the federation and then the
interaction disappeared.

In other cases, tasks could be modeled as objects. Tasks
can exist for an extended period of time and their contents
can change. If this is important to capture in other
federates, it would be appropriate to model the tasks as
objects.

6 Design Considerations for Full-Size
Societies

This section discusses some considerations for designing
a full-size Cougaar society for integration with an HLA
federation.

6.1 Society and Federation Organization

Society and federation organization need to be carefully
considered when designing a full size Cougaar society
that is HLA compliant.

One factor to consider is the federate granularity: the level
of mapping of federates to portions of a Cougaar society.
The federate granularity should be based on what makes
sense for the size and organization of the society, as well
as what makes sense for interoperability with the non-
Cougaar federates. In our demonstration prototypes, each
Cougaar node mapped to a federate. In a large complex
society, however, a logical group of agents (covering
multiple nodes) might logically constitute a single
federate. For example, this might be a group of agents
defining the transportation organization or modeling a
specific combat organization. Single agents could even
map to individual federates. However, if this design
causes many of the normal Cougaar mechanisms to be
bypassed, it might make sense to implement the agents
differently.

If a federation contains multiple Cougaar societies, a
factor to consider is society design. Specifically, which
agents are present in each society? There are two ways to
organize the Cougaar societies. In our prototype we used
a functional split where the same (or subset of the) agents
had different functions. This allows the entire simulation
organization to be modeled in a single society, with
various organizational functions handled within the
society or by other simulations in the federation.

Another way to design the societies is with an
organizational split. Each society would contain different
agents in logical groupings. For example, one society
could contain the combat organization agents while a
second society could contain the transportation
organization agents. In this case, a society could be
replaced by another federate if it better modeled the
organization.

6.2 Time Synchronization

The time advance mechanism in our demonstration
prototype requires manual operation for experimental
purposes. In a full operational society, this mechanism
would need to be automated. The time advance requests

would be triggered automatically, either according to a
regular time schedule or driven by an appropriate event or
events. The mechanism would also need a check to ensure
that the society had reached quiescence before requesting
a time advance.

An important point to keep in mind is that Cougaar
society time is always advancing at wallclock time, even
though its HLA logical time is still that of its last time
advancement grant. The time step in these federations
needs to be large enough so that the society time advances
an insignificant amount between these time steps.

6.3 Adaptive Society Design

There are enhancements that can be made to a society to
allow it to operate more flexibly in the presence of a
federation.

The prototype HLA ambassador class hardcodes the HLA
interactions and objects to which it subscribes, along with
their attributes. The problem with this is that when we
want to use a new interaction or when an interaction
definition in the FOM file changes, we need to modify
this class.

A better way to do this would be to hardcode nothing in
the ambassador class. Each plugin would register with the
ambassador class and tell it which interactions and objects
it was interested in. The ambassador class would then
dynamically subscribe to the requested interactions, read
the FOM file to get the attributes for each interaction, and
then dynamically get the attribute handles.

In addition, instead of hardcoding knowledge of objects
throughout the federation, it could use object discovery to
match up objects in federates with those in the society.
Cougaar incorporates a sophisticated service discovery
mechanism; object discovery could leverage it.

6.4 Operation Independent of Federation

For more flexibility and survivability, a society can be
designed to operate whether or a not a federation is
present, and whether or not the appropriate federates are
present. For example, the society could be designed to
contain various default plugins that perform default
simulation operations. However, if a federation with more
advanced simulation elements was present, these would
be preferable to use. The society could check for the
presence of federates that perform these functions; if not
found, it would use the default plugins.

Another approach would be to use the Cougaar Message
Transport Service (MTS) and create an HLA-specific link
protocol. This approach would be appropriate in an

environment where a society may or may not be a
member of a federation and where it has a number of
other communication channels at its disposal. MTS would
then select the appropriate communication method based
on availability and prioritization of channels. This could
also allow interoperation with simulations that exist
outside of both the Cougaar society and the HLA
federation.

7 Conclusion

We have described how a Cougaar-based agent society
modeling a small logistics supply network was integrated
as a federate in V1.3 and 1516 HLA federations.
Although distributed agent-based architectures can
themselves be used as a means of interoperating with
other simulations, it can be more useful to integrate them
into a standard simulation interoperability architecture
such as HLA, leveraging the benefits of both
architectures. Our work established how to interface the
society and the HLA RTI; how to synchronize society
time with HLA RTI time; and how to map agents, objects,
and actions in the society to HLA objects and interactions.
We also examined considerations for integrating a full-
size Cougaar society with an HLA federation. The lessons
learned in this demonstration integration effort can be
applied to large-scale efforts, such as integrating large
Cougaar-based logistics simulations with combat
simulations such as OneSAF. Such integrated simulations
would provide greater effectiveness than combat-only
simulations.

8 References

[1] “Cougaar Open Source Web Site,”
http://www.cougaar.org/.

[2] J. Stavash, B. Chadha, J. Wedgwood, J. Welsh, M.
Parker, D. Teitelbaum, “Agent Based Models for
Logistics in Wargaming,” Proceedings of the Fall
2003 SISO Simulation Interoperability Workshop.

[3] “About Distributed Agents,” IEEE Distributed
Agents Online,
http://dsonline.computer.org/agents/about.htm.

[4] M. Thome, “Multi-Tier Communication Abstractions
for Distributed Multi-Agent Systems,” 2003 IEEE
KIMAS Conference, Boston, MA, 2003.

[5] “UltraLog Web Site,” DARPA,
http://www.ultralog.net/.

[6] K. Kleinmann, R. Lazarus, R. Tomlinson, “An
Infrastructure for Adaptive Control of Multi-Agent

Systems,” Presentation Slides, 2003 IEEE KIMAS
Conference, Boston, MA, 2003.

[7] “High Level Architecture,” Defense Modeling and
Simulation Office, US Department of Defense,
https://www.dmso.mil/public/transition/hla/.

[8] J. Dahmann, R. M. Fujimoto, R. M. Weatherly, “The
DoD High Level Architecture: An Update,”
Proceedings of the 30th Winter Simulation
Conference, Washington, D.C., 797 – 804, 1998.

[9] R.M. Fujimoto, "Time Management in the High
Level Architecture", Simulation, 71:6, 388-400,
1998.

[10] E. Schmitt, “Army Study of Iraq War Details a
'Morass' of Supply Shortages,” New York Times,
Feb. 3, 2004.

Author Biographies

GARY KRATKIEWICZ is a Scientist at BBN
Technologies in Cambridge, Massachusetts. He has
developed software for a variety of advanced systems,
including a data-intensive Web-based logistics modeling
system for the U.S. Defense Logistics Agency and a
large-scale distributed agent-based logistics system for
DARPA. Gary has spoken at a number of technical
conferences, including JavaOne, the Lightweight
Languages Workshop, and the SISO Simulation
Interoperability Workshop. He holds an S.B. from MIT
and an M.S. from Stanford University.

AMELIA FEDYK is a Senior Software Engineer at BBN
Technologies in Cambridge, Massachusetts. She has
developed plugin and infrastructure software for Cougaar,
an open source agent architecture for large-scale,
distributed multi-agent systems. Prior to working with
BBN, Ms. Fedyk worked primarily in time-critical
interfaces including air traffic control systems and
distributed battle simulators. She holds B.A. and B.S.
degrees from St. John Fisher College.

DANIEL CERYS is a Senior Scientist at BBN
Technologies in Cambridge, Massachusetts, where he has
applied advanced software capabilities in the logistics
domain for over a decade. He has been applying
distributed agent-based technologies to military logistics
programs for DARPA, DLA, and the Army. He holds
B.S. and M.S. degrees from Stanford University.

	I
	Introduction
	Distributed Agent Computing with Cougaar
	Cougaar Architecture
	Running a Cougaar Society
	UltraLog as an Application of Cougaar
	FCS Supportability as an Application of UltraLog

	The High Level Architecture (HLA)
	Overview of HLA
	Purpose and Goals of Integration

	Integration Approach
	Federation and Society Design
	Non-Cougaar Federate
	RTI Selection
	Simulation Models
	Time Management
	Development Approach
	Results of Integration Experiments€

	Lessons Learned
	Interfacing Between Society and HLA RTI
	€Implementing Time Synchronization
	Details of Time Management Integration
	Mapping Agents, Actions, and Objects

	Design Considerations for Full-Size Societies
	Society and Federation Organization
	Time Synchronization
	Adaptive Society Design
	Operation Independent of Federation

	Conclusion
	References

