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Abstract

Distributed simulation is an important instrument for
studying multi-agent systems (MAS). Such large scale MAS
simulations often have a large shared state space. More-
over, the shared state and the access pattern of agent sim-
ulations both are highly dynamic and unpredictable. Op-
timising access to the shared data is crucial for achieving
efficient simulation executions. PDES-MAS is a framework
for distributed simulation of MAS, which uses a hierarchical
infrastructure to manage the shared data. In order to en-
able agent simulations to access distributed shared data ef-
fectively and efficiently, this paper proposes two routing al-
gorithms, namely the address-based routing and the range-
based routing. The paper introduces a meta-simulation ap-
proach to evaluate the characteristics of both solutions and
provides a quantitative comparative analysis of the pro-
posed algorithms.

1. Introduction

The Logical Process Paradigm seeks to divide the simu-
lation model into a network of concurrent Logical Processes
(LPs), each of which models some object(s) or process(es)
in the simulated system. Each LP maintains and processes
a portion of the state space of the system and state changes
are modelled as timestamped events in the simulation. In
conventional distributed simulations, the shared state is typ-
ically small and the processes interact with each other in a
small number of well defined ways. The topology of the
simulation is determined by the topology of the simulated
system and its decomposition into processes, and is largely
static.

However, in the case of systems, which operate in a

complex environment and interact with it in complex and
dynamic patterns (such as multi-agent systems, battlefield
simulations, ecological systems, games etc), it is often dif-
ficult to determine an appropriate simulation topology a pri-
ori. In such systems there is a very large set of shared
state variables which could, in principle, be accessed or
updated by the processes in the model [20]. Encapsulat-
ing the shared state in a single process (e.g. via some cen-
tralised scheme) introduces a bottleneck, while distributing
it all across the LPs (decentralised, event driven scheme)
will typically result in frequent all-to-all communication
and broadcasting. This problem has received considerable
attention in the context of Interest and Data Distribution
Management for large scale distributed simulations [5, 13].

In [6] we have proposed an approach to manage the
shared data in distributed simulations of multi-agent sys-
tems (MAS). Shared data management in distributed simu-
lations needs to address two problems: data distribution and
data accessing. In [15] we have addressed the first prob-
lem and have described data distribution algorithms for the
PDES-MAS framework1. In this paper we address the sec-
ond problem of data access.

Data accessing targets both individual data items (ID
query) and selected data items overlapping given query win-
dows (Range query). Although in the area of distributed
data bases, range query strategies are increasingly used,
e.g. [1, 14], this problem has received little attention in
distributed simulations [4]. The issue becomes much more
complicated when the value and the physical distribution of
data items both are dynamic. Further problems arise when
positions of query sources are dynamic too, as in the con-
text of location-dependent information services (LDIS) [7].
In turn, LDIS do not have to cope with highly dynamic
data distributions, since data can be distributed according

1Synchronisation issues have been discussed in [8, 11].
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to physical scope.
In this paper, we propose two candidate algorithms for

data accessing in the context of the PDES-MAS framework,
namely the address-based and the range-based routing.

The rest of this paper is organized as follows: Sec-
tion 2 provides a brief overview of the PDES-MAS sys-
tem and states the problem. The candidate routing solutions
are briefed in section 3. Section 4 introduce the simula-
tion model used for the performance evaluation of the al-
gorithms. The experimental results and their analysis are
presented in section 5 while section 6 epitomizes the con-
clusions and suggests future work.

2. Background and Problem Statement

PDES-MAS is a framework for the distributed simula-
tion of agent-based systems (figure 1). Each agent in the
framework is modelled as an Agent Logical Process (ALP).
An ALP has both private, which is maintained within the
ALP, and shared state which is accessible to other ALPs.

The shared state is modelled as a set of Shared State
Variables (SSVs), each of which is a tuple of the form
< SSV ID, attributetype, value, timestamp >, where
type represents an attribute of the object’s class.

ALPs interact with the shared state and other ALPs
through read and write (update value) operations on SSVs.
This operations can have the form of an ID query or Range
query. To generate an ID query, an ALP needs to specify
the SSV ID, and its new value in the case of update. A
Range query requests a set of SSVs of a given type whose
values match a designated range. Range queries are initi-
ated to meet the need of an ALP to explore some portion of
its environment, which it may not be aware of beforehand.

The SSVs are managed by a tree-shaped hierarchi-
cal structure of Communication Logical Processes (CLPs),
which is dynamically reconfigured to reflect the shared data
access patterns in the simulation [15]. In this process, SSVs
are migrated towards the frequently accessing ALPs accord-
ing to cost measures, thus the scalability of the framework
is ensured. A CLP interacts with other LPs via ports. The
queries from an ALP are modelled as timestamped mes-
sages, for which each CLP acts as a router responsible for
forwarding them to the destination CLP(s). The ports are
designed to maintain the distribution of the values of SSVs
in the value space classified by the types of SSVs.

3. Two Routing Algorithms

In this section we propose two different algorithms to
route ID and Range queries through the tree of CLPs. The
two proposed algorithms dynamically adapt to different
properties of the shared state and the system.

Figure 1. Illustration of PDES-MAS Frame-
work

3.1. Address-Based Routing

The address-based routing scheme searches for SSVs ac-
cording to their addresses, namely their exact location (host
CLP) in the tree. Figure 2 illustrates an address-based rout-
ing scheme, which binds the ID of an SSV to its address.
Each server CLP maintains a routing table which contains
the addresses of SSVs. Furthermore, each CLP stores in-
formation about the values of SSVs that are hosted by its
immediate neighbours. This information is obtained and re-
freshed when updates on those SSVs occur. To store the
information efficiently, the overall value range of each SSV
type is divided into a number of segments. Hence, only one
bit per segment is needed to store information about the ex-
istence of SSVs with values covered by this segment. For
example if a CLP contains a set of SSVs with values listed
as: {20, 53, 56, 70, 80, 190, 310, 370}. Instead of using a
simple range description like [Min(20), Max(370)], we seg-
ment the value space, such as Seg1: [0, 100], Seg2: [100,
200], Seg3: [200, 300], Seg4: [300, 400], Seg5: [400, 500],
.... The approach logs the number of SSVs whose values
fall onto each segment.

When an ALP issues a Range query (see figure 2), its
server CLP propagates the request to all CLPs which host
SSVs of that SSV type (in this example, CLP1 and CLP2).
If the values of its SSVs are not within the segments covered
by the Range query, the neighbours of a CLP can stop the
query (unless there is another CLP that needs to be reached).

The algorithm for an ID query is straightforward. When
an ALP issues an ID query, the server CLP determines the
location of the SSV from its routing table and forwards the
query to the corresponding host CLP.

3.2. Range-Based Routing

This approach uses information about the values of SSVs
to locate them in the tree, in a fashion similar to associative
memory. The algorithm matches the query window with
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Figure 2. Address-based Routing

the value ranges along the searching paths to gradually ap-
proach the potential targets. Searching will stop at the di-
rections where the query window and value ranges do not
overlap. In the example shown in figure 3, CLPm keeps a
record of the SSV sets (denoted by the encirclings) behind
its three ports.

When an ALP issues a Range query, this procedure starts
from its server CLP. Suppose that a Range query for SSV
type “X-pos” and range [2, 6] reaches CLPm: The CLP has
two possible directions to propagate the query. Direction B
will be omitted, as the value range [8, 9] does not overlap
the window (2, 6). However, the query will be forwarded
towards direction A, because the corresponding value range
[1, 5] matches the condition.

Like the address-based routing, the range-based routing
stores the value range for each port by segmenting it. But
instead of only considering the neighbour CLPs, each bit
marks the existence of matching SSVs somewhere behind
the port. The port information will be kept up to date ac-
cording to returned messages from neighbours; if an empty

Figure 3. Range-based Routing

message is returned, there are no matching SSVs behind the
corresponding port and this information will be referred to
in the future. Obviously, the port information may need to
be updated when any SSV’s value changes.

This approach can also be applied to access SSVs by ID.
In this case, the ID number range is segmented as well, so
that ID queries can be resolved in a similar way as Range
queries.

4. Model of the Simulation System

A comparison of the two proposed algorithms is not triv-
ial, as it involves the evaluation of efficiency in performing
Range queries and ID queries, complexity for maintaining
routing information, complexity for maintaining range in-
formation, design complexity etc. From the scale of CLP
tree and number of SSVs, it is relatively straightforward to
estimate the computational and communication complexity
of the address-based routing solution using mathematical
approaches. However, the evaluation of range-based rout-
ing needs to consider other complicated factors at both ap-
plication level and simulation level.

For the sake of a quantitative analysis, one approach
would be to directly implement and integrate the two so-



Figure 4. Environments and Agents’ Behav-
iour Patterns

lutions into the PDES-MAS kernel. However, this would
require considerable implementation efforts, and at least
part of the implementation could be in vain, as the strate-
gies may not meet the performance requirements. To avoid
this, and to provide a generic framework for the study of
dynamic data access in distributed systems in general, we
have adopted a meta-simulation approach, as proposed for
instance in [12, 18, 16].

For the meta-simulation we follow a layered approach
similar to [3]. At the top layer we find the application
model, which is responsible for generating realistic query
patterns. The next layer is the middleware layer, where the
routing strategies are described and the PDES-MAS frame-
work is represented. The third layer, which typically is re-
served for the network model, is implicitly represented in
the performance measurements which are integrated by cal-
culating the costs of queries in the second layer. Thus, sim-
ilar to many simulations of P2P systems, the characteris-
tics of the underlying network are abstracted away by only
counting hops and messages.

Application Model. The application model focuses on
the simulation of situated agents, namely, an agent has a
position that determines its region of interest: only objects
situated in the region can be accessed by the agent. In ad-
dition, situated agents are usually able to change their own
positions.

This behaviour was modelled for a two-dimensional en-
vironment, as shown in figure 4. An agent moves step-wise
towards a pre-selected target along the shortest path, and it
randomly chooses a new target on arrival. The distance an

agent can move in each step is referred to as step size (mark
“A”). The distance of the new target, the target distance
(mark “B”), is defined by the number of steps it takes the
agent to reach it. The step size and target distance determine
the activity scope and movement speed of an agent. Af-
ter each step of movement, an agent generates ID or Range
queries concerning its actual region of interest.

We assume that all SSV types within the MAS model
have a spatial meaning, i.e. the value ranges for Range
queries reflect the actual positions of the agents. Each SSV
type represents a certain dimension of the environment,
such as ‘X-Pos’ or ‘Y-Pos’.

SSVs may have a uniform value distribution or multi-
ple normal distributions. These are illustrated in figure 4 as
light and dark dots respectively.

To investigate the impact of different SSV distributions
within the CLP tree, a custom parameter has been defined:
The fluctuation constraints the maximum difference be-
tween the largest and the smallest value of equally typed
SSVs that are hosted on one CLP. It is defined as a ratio
of the overall value range for this SSV type. For example,
suppose fluctuationX = 0.05 and SSVs of type X can
have a value from 0 to 100: A CLP may host two SSVs of
type X with values 80 and 82, but another SSV of type X,
with value 75, cannot be hosted by the same CLP, because
82− 75 > 5. Since SSVs are not moved but have dynamic
values, this condition holds only for the initial state.

PDES-MAS Model The model of the PDES-MAS frame-
work is formed by a set of SSVs. Each SSV consists of
(unique) ID, type, value and position in the CLP tree. The
modelled CLP tree is binary and complete and therefore its
structure can be defined by its depth.

Another important parameter is the number of segments
used by both routing algorithms, which determines the
granularity of the description of the value distribution of
SSVs.

To eliminate a possible source of bias, no load manage-
ment mechanism has been modeled, i.e. the SSVs could
not migrate (as proposed in [15]), although the SSVs’ dis-
tribution pattern differs for different runs. Nevertheless, the
mutual impact of routing and load management could be
considerable and should be subject of future research. The
model was simulated using discrete time steps.

5. Results and Analysis

In this section we present a quantitative comparative
analysis of the two routing algorithms. Two main metrics
are used to evaluate the algorithms:

• The number of messages is the number of all messages
that are generated by the routing algorithm in order to



resolve a query. Hence, the number of messages is a
measurement of the overall bandwidth consumption.

• The number of hops is the maximum number of mes-
sages that had to be sent sequentially until the request
could be resolved. This means, that the number of hops
corresponds to the maximal path length from the ALP
generating the request to a CLP which had to be con-
tacted, multiplied by 2 (for the query and the corre-
sponding response). Hence, the number of messages
is a measurement of the overall latency.

In the experiments, the application model simulates 64
agents for 300 time steps, with 31 CLPs (i.e., a binary tree
with depth 4) and each server CLP linking to 4 ALPs. There
exists 12,400 SSVs of 16 different SSV types (775 SSVs per
type, 8 types per dimension), which were uniformly distrib-
uted over the CLP tree. The initial SSV values are chosen
from a uniform distribution of real numbers in [0, 100). All
agents move on a 100 x 100 torus. In other words, the sce-
narios represent a MAS operating in an environment with 8
different objects types, each of them consisting of two at-
tributes defining their X and Y position.

The step size and target distance of an agent follow nor-
mal distribution with µ = 2.0 and σ = 1.0 and µ = 5.0 and
σ = 2.0 respectively.

Each agent generates 8 random requests per time step.
An agent’s region of interest has a diameter of 2.0 for each
dimension. For example, an agent at the position X = 50
could query a range of [49, 51) for all types associated with
this dimension. In the default setup, the fluctuation is 1.0
and value range is defined using 100 segments.

5.1. Evaluation based on SSV Properties

We have carried out a set of experiments to examine the
effect of SSVs’ value distributions and location constraints
on the proposed routing algorithms.

In the first experiment, the initial SSV values have been
assigned in a round-robin manner by one of three normal
distributions, instead of being uniformly distributed. The
mean values of these normal distributions were 16 2

3 , 50
and 81 1

3 . The deviation is varied from 0 to 10, making the
SSV value distribution changing from highly concentrated
to highly scattered.

As can be seen in figures 5 and 6, the results concerning
hops and messages have a similar characteristic. The re-
sults indicate that the concentration of the SSV values has a
huge impact on the routing performance of both algorithms
(≈ 500%): The more concentrated, the faster are both so-
lutions, although the range-based approach adapts better to
this parameter.

Another interesting study is how the configuration of the
simulation infrastructure affects the performance of routing,

Figure 5. Hops traversed for Range queries,
against different degrees of value concentra-
tion

such as a management policy regarding the SSVs’ physical
locations in the CLP tree. The policy is controlled by the
fluctuation parameter. Such a policy would, for instance,
store SSVs with similar values on a single CLP. The effect
can be reflected as in figure 7.

Given an arbitrary Range query, it is possible to calcu-
late the probability of a single edge in the CLP tree to be
used during a query. It assumes that the range-based ap-
proach has initialized all port information according to for-
mer queries, i.e. this is the best case. Let ssvPerCLPtype

be the number of SSVs each CLP is hosting per type.
Firstly, the edges from all server CLPs (except the one

generating the query) to their parent CLPs in the tree are
considered: These edges will only be used, if the CLP hosts
an SSV of the specified type whose value is within the seg-
ments that cover the queried range. Let the probability that
a single SSV is affected by a range query, given the number
of segments (seg) and a query for the range (min,max),
be P type,seg

min,max. Hence, the probability that a link will not be
used to resolve this query is:

P serverCLP
noFittingSSV s = (1− P type,seg

min,max)ssvPerCLPtype

Clearly, this probability is very small if either
ssvPerCLPtype or P type,seg

min,max is significantly high. This
equation holds true for both approaches.

The calculation of this probability for edges that are
higher up in the tree demonstrates the major difference be-
tween the range-based and the address-based approach. The
former considers the SSV values of all CLPs within the
subtree to which the edge leads. In contrast, the address-
based approach will propagate a query to any CLP whose
subtree contains a CLP that hosts an SSV of the speci-



Figure 6. Messages generated for Range
queries, against different degrees of value
concentration

fied type. For range-based routing, Pupperlevel
noFittingSSV s de-

pends on P serverCLP
noFittingSSV s. For the address-based approach,

Pupperlevel
noFittingSSV s also depends on the probability of a CLP in

the subtree hosting any SSV of this type.
The positive impact of concentrated SSV values (in fig-

ures 5 and 6) can be explained by the rather small P type,seg
min,max

for all Range queries that did not cover high concentrations
of SSV values. The same holds true for the experiment
in figure 7, because introducing the fluctuation actually al-
ters P type,seg

min,max on each individual CLP. For example, host-
ing only SSVs with higher values in the initial state would
lead to a very small probability that this CLP is affected by
Range queries covering lower values of this type.

The range-based approach benefits more from these sit-
uations, because its edge probabilities (between non-server
CLPs) are more dependent on P serverCLP

noFittingSSV s.

5.2. Evaluation based on Granularity

The experiments and results presented in this section
mainly concern the granularity of segmenting value ranges.
A larger number means a more precise attribute range de-
scription. The routing cost against segment number is re-
ported in in figure 8. Increasing the number of segments
leads to a reduction of generated messages. Although the
performance of both routing algorithms are very similar for
small segment numbers, range-based outperforms address-
based routing when the number of segments is increased.

As mentioned above, both algorithms will show the same
behaviour when accessing server CLPs for a Range query,
but the range-based approach will save more communica-
tion between CLPs at higher levels. Of course, this is only

Figure 7. Messages generated for Range
queries against different fluctuation values

possible if P serverCLP
noFittingSSV s is sufficiently high. One way of

increasing this expression is to increase the number of seg-
ments, which explains the performance difference between
both solutions (figure 8).

Consequently, it could be argued that the number of seg-
ments should be as high as possible, but a high number of
segments also results in increasing storage and runtime re-
quirements. Moreover, this way of optimization only in-
creases the routing precision and can therefore only approx-
imate an ’ideal’ system, which would use a full list of SSVs
instead of segments.

5.3. Evaluation based on Write Operations

In addition to routing Range queries efficiently, we have
evaluated the performance of the routing algorithms for
write operations (figure 9).

The number of update messages may strongly influence
the speed of the PDES-MAS kernel, because the fast exe-
cution of write queries is crucial for optimistic simulations.
If the write access to the shared state is too slow, this may
provoke rollbacks [9].

Considering the nature of range-based routing, one could
presume that the number of update messages it generates
should be higher than that created by the address-based ap-
proach. However, this is not always the case, as illustrated
in figure 9.

In the figure, the graphs of update messages and hops
have very different characteristics, caused by the inher-
ent properties of the solutions: An update message for
the address-based approach will not be propagated further,
since only the direct neighbours of a CLP need an update.
On the other hand, all neighbours will receive a message in
this case. Hence, given that the average degree of a node in



Figure 8. Number of messages generated for
Range queries using different segment num-
bers

the CLP tree is≈ 2, the message graph can be interpreted as
the hop graph multiplied by the average degree of the CLP
tree.

This is in contrast to the range-based approach, where
the number of hops is very similar to the number of mes-
sages. This means that the message propagation is usually
stopped after reaching the first neighbour, and often only
one neighbour (instead of all) needs to be updated. This
situation changes slowly when the number of segments is
increased.

5.4. A Combined Comparison

Figure 10 illustrates a comparison of the two algorithms
in terms of the difference in the total number of messages
they generate (range-based minus address-based) and for
different parameters.

Obviously, either algorithm may outperform the other
one within certain regions of the parameter space. To fa-
cilitate an accurate comparison, we have also calculated the
minimal number of hops and messages, as the optimal cost
of each scenario. In this experiment, the probability for the
occurrence of a Range query varies between 50% to 99%
(with the rest being write queries) and the number of seg-
ments varies from 1 to 200. Each point is the result of a
single simulation. A negative value means a better overall
result for the range-based approach, whereas positive val-
ues show situations in which the address-based approach
performed better.

Figure 9. Number of update messages gener-
ated for write queries using different segment
numbers

6. Conclusions and Future Work

In this paper, we have identified efficient data accessing
as a key issue to optimising the execution of MAS-based
distributed simulations and we have described two differ-
ent routing algorithms to achieve that in the context of the
PDES-MAS framework.

The main conclusions drawn for the evaluation of the
algorithms can be summarized as follows: (a) A highly or-
dered (low-fluctuation) system can significantly reduce (ap-
prox. 50%) the number of messages for Range queries. This
fact needs to be considered in designing future data distrib-
ution mechanisms. (b) The address-based solution is supe-
rior to the range-based one when segments are very precise.
When range-based routing is adopted, precise segmentation
implies accurate routing, but this also leads to a large over-
head in dealing with update queries. (c) The range-based
solution with proper configuration can provide very effi-
cient Range queries, whereas the address-based solution has
an excellent performance for ID queries. A combination of
both solutions would be desirable.

Future work will integrate the two proposed routing al-
gorithms in the PDES-MAS kernel and evaluate their run-
time performance. Another important issue is to analyse the
impact of alternative load management mechanisms on the
performance of the routing algorithms.
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Figure 10. Overall message difference be-
tween range-based and address-based solu-
tion
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