Distributed Simulation of MAS

Michael Lees', Brian Logan', Rob Minson?, Ton Oguara?, and
Georgios Theodoropoulos?

1 School of Computer Science and IT
University of Nottingham, UK
{mhl|bsl}@cs.nott.ac.uk
2 School of Computer Science
University of Birmingham, UK
{txo|rzm|gkt}@cs.bham.ac.uk

Abstract. The efficient simulation of multi-agent systems presents particular
challenges which are not addressed by current parallel discrete event simulation
(PDES) models and techniques. While the modelling and simulation of agents,
at least at a coarse grain, is relatively straightforward, it is harder to apply PDES
approaches to the simulation of the agents’ environment. In conventional PDES
approaches a system is modelled as a set of logical processes (LPs). Each LP
maintains its own portion of the state of the simulation and interacts with a small
number of other LPs. The interaction between the LPs is assumed to be known in
advance and does not change during the simulation. In contrast, the environment
of a MAS is read and updated by agent and environment LPs in ways which de-
pend on the evolution of the simulation. As a result, MAS simulations typically
have a large shared state which is not associated with any particular agent or en-
vironment LP. In [1] we proposed a new approach to the distributed simulation
of MAS in which the shared state is maintained by a tree of additional logical
processes called Communication Logical Processes (CLP). In this paper we re-
fine this model by giving precise definitions of a set of operations which allow
agent and environment LPs to interact with the shared state and briefly outline
how these operations could be implemented by a CLP.

1 Introduction

Simulation has traditionally played an important role in multi-agent system (MAS) re-
search and development. It allows a degree of control over experimental conditions
and facilitates the replication of results in a way that is difficult or impossible with a
prototype or fielded system, freeing the agent designer or researcher to focus on key
aspects of a system. As researchers have attempted to simulate larger and more com-
plex MAS, distributed approaches to simulation have become more attractive [2—4].
Such approaches simplify the integration of heterogeneous agents and exploit the nat-
ural parallelism of a MAS, allowing simulation components to be distributed so as to
make best use of the available computational resources.

However the efficient simulation of a multi-agent system presents particular chal-
lenges which are not addressed by current parallel discrete event simulation (PDES)
models and techniques. While the modelling and simulation of agents, at least at a

coarse grain, is relatively straightforward, it is harder to apply conventional PDES ap-
proaches to the simulation of the agents’ environment. Parallel discrete event simulation
approaches based on the logical process paradigm assume a fixed decomposition into
processes, each of which maintains its own portion of the state of the simulation. The
interaction between the processes is assumed to be known in advance and does not
change during the simulation. In contrast, simulations of MAS typically have a large
shared state, the agents’ environment, which is only loosely associated with any partic-
ular process. The efficient simulation of systems with a large shared state is therefore a
key problem in the distributed simulation of MAS.

In [1] we proposed a new approach to the distributed simulation of MAS in which
the shared state is maintained by a tree of additional logical processes called Commu-
nication Logical Processes (CLP). In this paper we refine this model by giving precise
definitions of a set of operations which allow agent and environment logical processes
to interact with the shared state and briefly outline how these operations could be imple-
mented by a CLP. In section 2, we present a model of a MAS as a set of logical processes
and argue that MAS simulations naturally result in systems with a large shared state. In
section 3 we briefly describe our approach to the efficient distribution of the shared state
across a tree of CLPs and define a set of operations which allow agent and environment
logical processes to access and update the shared state maintained by the CLPs. We
then sketch how these operations could be implemented by a CLP, paying particular
attention to the problems of efficient sensing, parallel actions and action conflicts. In
section 4 we discuss related work and in section 5 we conclude with a brief outline of
future work.

2 Modelling a MAS

We adopt a standard parallel discrete event approach with optimistic synchronisation [5,
6]. Decentralised, event-driven distributed simulation is particularly suitable for mod-
elling systems with inherent asynchronous parallelism, such as agent-based systems.
This approach seeks to divide the simulation model into a network of concurrent Log-
ical Processes (LPs), each maintaining and processing a disjoint portion of the state
space of the system. State changes are modelled as timestamped events. Internal events
have a causal impact only on the state variables of the LP, whereas external events may
also have an impact on the states of other LPs. External events are typically realised as
timestamped messages exchanged between the LPs involved.

Agents are autonomous. The actions performed by an agent are not solely a function
of events in its environment: in the absence of input events, an agent can still produce
output events in response to autonomous processes within the agent. As a result, agent
simulations have zero lookahead [7]. We therefore adopt an optimistic synchronisation
strategy as this theoretically gives the greatest speedup and avoids the problem of looka-
head. With optimistic synchronisation, LPs run asynchronously and each has its own
local notion of time within the simulation, referred to as its Local Virtual Time (LVT).
In distributing the simulation across multiple processes a key problem is ensuring that
there are no causality violations. An LP is said adhere to the local causality constraint
(LCC) if it processes all events in nondecreasing time stamp order. If a message arrives

in an LP’s past (as determined by its LVT) it must rollback its state to the timestamp
of the straggler event, and resume processing from that point. It must also cancel any
messages it sent with timestamps greater than that of the straggler event, which may in
turn initiate rollbacks on other LPs.

We model agents and their environment as Logical Processes. Each agent in the sys-
tem is modelled as a single Agent Logical Process (ALP). Similarly, the properties and
behaviour of the objects comprising the agents’ environment, e.g., walls, doors, light
switches, clocks, etc. and processes not associated with any particular object in the en-
vironment, e.g., weather, are modelled as one or more Environment Logical Processes
(ELP). For example, in a simple Tileworld simulation [8], each Tileworld agent would
be simulated by an ALP and the objects in the Tileworld environment (tiles, holes, ob-
stacles etc.) by one or more ELPs.! In addition to creating the objects in the environment
at simulation startup, the ELP(s) would also be responsible for the creation and deletion
of tiles and holes during the simulation. ALPs and ELPs are typically wrappers around
existing simulation components. They map to and from the sensor and action interfaces
of the agent and environment models to a common representation of the environment
expressed in terms of entities and attributes, and also provide support for rollback pro-
cessing. In what follows we shall use the generic term ‘LP’ to refer to both ALPs and
ELPs, since, unless otherwise noted, their behaviour is very similar.

Each LP has both public data and private data. Private data is data which is not
accessible to other LPs in the simulation, e.g., an agent’s model of the environment, its
current goals, plans etc. or the internal state of a complex object. Public data is data
which can, in principle, be accessed or updated by other LPs in the simulation, e.g., the
colour, size, shape, position etc. of an agent or object. Public data is held in globally
accessible locations or state variables, while private data is local to a particular LP.
Access to public data and/or the ability to update it may be restricted particular groups
of LPs. For example, it may be impossible for any LP to change the size or colour of
objects in the environment or for ALPs to update the position of some objects such
as obstacles. We model the public data of the LPs in terms of entities and attributes.
We assume each entity in the simulation (agent or object) has a type, and each entity
type is associated with a number of attributes. For example, a Tileworld simulation
might contain entity types such as agent, tile, hole and obstacle and attributes such as
x-position, y-position etc. The shared state of the simulation would therefore consist of
a variable number of entities (agents, tiles, holes obstacles etc.) whose properties are
defined by the value of their attributes.

In a conventional decentralised event-driven distributed simulation each LP main-
tains its own portion of the simulation state and LPs interact with each other in a small
number of well defined ways. The topology of the simulation is determined by the
topology of the simulated system and its decomposition into LPs, and is largely static.
In contrast, with multi-agent systems, public data is updated by many LPs and is not
logically associated with any of them. Different kinds of agent and environment pro-

! Tileworld is a well established testbed for agents. It consists of an environment consisting
of tiles, holes and obstacles, and one or more agents whose goal is to score as many points
as possible by pushing tiles to fill in the holes. The environment is dynamic: tiles, holes and
obstacles appear and disappear at rates controlled by the simulation developer

cesses have differing degrees of access to different parts of the environment at different
times. In the case of agents, the degree of access is dependent on the range of the agent’s
sensors (read access) and the actions it can perform (write access). Moreover, in many
cases, an agent can effectively change the topology of the simulation, for example, by
moving from one part of the environment to another. It is therefore difficult to determine
an appropriate topology for a MAS simulation a priori, and such simulations typically
require a (very) large set of shared variables which could, in principle, be accessed or
updated by the ALPs and ELPs.

3 Distributing the shared state

We therefore propose an approach in which the shared state is loosely associated with a
group of special LPs, namely Communication Logical Processes (CLPs), and the distri-
bution of state (i.e., its allocation to CLPs) changes at run-time, in response to the events
generated by the ALPs and ELPs during the simulation. Both the allocation of state to
CLPs and the synchronisation window are driven by an underlying characteristic of the
agent simulation, which we call the sphere of influence [1]. In the Tileworld example
above, public data such as the positions of the agents and objects in the environment
(tiles, holes and obstacles), the height of the tilestacks, depth of the holes, etc. would be
maintained by the CLPs.

ALPs and ELPs interact with the shared state maintained by the CLPs via events,
implemented as timestamped messages. The purpose of this interaction is to exchange
information regarding the values of those shared state variables which can be accessed
or updated by the agent’s sensors and actions or by environment processes. Different
types of events will typically have different effects on the shared state, and, in general,
events of a given type will affect only certain types of state variables (all other things
being equal). The ‘sphere of influence’ of an event is the set of state variables read
or updated as a consequence of the event. We can use the spheres of influence of the
events generated by each LP to derive an idealised decomposition of the shared state
into logical processes (see [1] for details).

3.1 CLPs

The CLPs form a tree with the ALPs and ELPs as the leaves and each CLP maintains
a subset of the shared state which is associated with the ALPs/ELPs which are below
it in the tree (see Figure 1). CLPs also hold partial information on attributes of entities
maintained by other CLPs in the tree, to allow routing of events to the appropriate CLP.

ALPs and ELPs interact with CLPs by exchanging messages. There are 5 message

types:

add one or more attributes (and their initial values) at a given timestamp;
remove one or more attributes from a given timestamp;

read the value of one or more attributes at a given timestamp;

write the value of one or more attributes at a given timestamp; and
rollback and resume processing from a given timestamp.

Shared State

Fig. 1. The tree of CLPs

add, remove, write and rollback are non-blocking. A read blocks until the requested
values are returned. Add, remove, read and write messages originate with an ALP or
ELP, while rollbacks are initiated by a CLP. All operations on the shared state occur
asynchronously and at the specified simulation time. We assume that the operations are
atomic and may be arbitrarily interleaved.?

In the remainder of this subsection, we consider each message type in turn and
briefly describe their arguments, possible reply messages and any side-effects on the
shared state and the state of other LPs. We consider first the case in which the message
argument(s) are maintained by the ALP’s/ELP’s parent CLP. In section 3.2 we describe
how messages which can’t be handled by the parent CLP are propagated through the
tree.

Add messages When an ALP or ELP creates a new entity in the simulation its parent
CLP adds a new variable to the shared state to hold the value of the attribute. The
timestamp indicates the simulation time at which the attribute of the new entity acquired
the specified value. Adding the first attribute to an entity instance implicitly creates the
entity in the shared state. For simplicity, we assume that entities are only ever created
in their entirety, i.e., we cannot create an entity without specifying all values for all its
attributes.

2 The distinction between read and write operations is similar to the query event tagging pro-
posed in [9] and should have similar advantages in reducing both the frequency and depth of
rollback and the state saving overhead.

Remove messages Removing an attribute of an entity in effect deletes the attribute
from the specified time forward. Subsequent read and write operations on the attribute
with timestamps prior to the specified timestamp proceed as normal. Reads with times-
tamps later than the specified timestamp give rise an empty list of values. Attempting
to add a new attribute with a timestamp greater than the specified timestamp has no
effect (i.e., it is not possible to recreate an attribute after it has been removed from the
simulation). As with creation, we assume that entities are only ever deleted in their
entirety.

Read messages To sense the environment an ALP or ELP it must issue a state query.
A state query is either a range query (query by attribute value) or an id query (query by
attribute id). A range query is a list of 4-tuples of the form:

< entity-type, attribute-type, value-range, timestamp >

where the value-range indicates the attribute values which are of interest (i.e., that
match the query). Range queries allow sensing such as ‘all tile x-positions within 5
squares’. For example, in a Tileworld simulation, an ALP simulating an agent may
issue a range query to discover which tiles are within the sensor range of the agent.
Similarly, an ELP responsible for the creation of tiles within a particular region of the
Tileworld may issue a range query to check that the cell in which a new tile is to be
placed is not currently occupied by an agent (or by a tile created by another ELP and
pushed into this region of the Tileworld by an agent).
An id query is a list of 2-tuples of the form:

< attribute-id, timestamp >

Id queries allow query by reference, for example, it allows an ALP or ELP to obtain
the current value of one of its own public attributes or the current value of an attribute
returned by a range query. They are provided as an optimisation for those cases where
the attribute in question is guaranteed to persist until after the timestamp of the query.

Reads give rise to a read-response message containing a (possibly empty) set of val-
ues (in the case of range queries), or, in the case of an attribute query, a single value. The
values returned are those which were valid at the time denoted by the query timestamp.
If there is no value with a timestamp equal to that of the query, for example, if the query
timestamp lies between the timestamps of two values or is greater than the timestamp
of any matching attribute, the read returns the value with the greatest timestamp prior
to the timestamp of the query.

Write messages When an ALP or ELP updates an attribute of an existing entity, it
sends a write message to its parent CLP with a new value and timestamp, indicating the
simulation time at which the attribute acquired the specified value. Attribute values are
stored in write periods of the appropriate state variable. A write period is a logical time
interval during which an attribute maintains a particular value. Each write period stores
its start and end time, the value of the attribute over that time period, the LP which
performed the write and the timestamp of the most recent read by each LP which read

the attribute over the time period.?> New write periods are created when an LP updates
the value of an attribute. This splits an existing write period, and triggers a rollback on
any LPs which read the previous value of the variable at a logical time between the start
and end times of the new write period (see below).

In general, there will be a delay between an agent’s sensing and action. It is there-
fore impossible for an LP to know that the state of the environment it sensed before
performing an action still holds when the write is performed. We therefore allow write
operations to be guarded. A guard is a predicate on the shared state in the form of a list
of attribute values which must evaluate to true (i.e., the attributes must have the spec-
ified values at the timestamp of the write) for the operation to be performed. A guard
functions as the precondition for the successful execution of an action in the environ-
ment. If the guard evaluates to false, the write is not performed (with the exception that
we ignore violations of the precondition due to writes performed by the same agent at
the same timestamp). For example, to prevent two (or more) agents pushing the same
tile at the same time in Tileworld, we can require that the tile is still where the agent
sensed it (e.g., directly in front of the agent) before allowing the agent to update the
position of the tile. All writes also have an additional implicit guard, namely that the
attribute being updated has not been removed at a timestamp prior to the write.

We distinguish different categories of attributes depending on the types of updates
they admit [10]. Static attributes are set once, e.g., when an entity is created, and can’t
be changed during the simulation. Attributes which can be updated at most once at a
given timestamp are termed mutually exclusive attributes. For example, in Tileworld,
we may wish to prohibit two agents picking up a tile at the same time. Cumulative
attributes can be updated at most n times by different LPs at the same timestamp. For
example, in the Tileworld, several agents may be able to drop a tile into a hole at the
‘same’ time, with each operation decreasing the depth of the hole by one. All updates of
static attributes are ignored. If two or more LPs attempt to perform conflicting updates,
e.g., attempt to specify different values for a mutually exclusive attribute at the same
timestamp or attempt to drop a tile into a hole that has already been filled by other
agents at the same timestamp, we apply the update of the LP with the highest rank. The
rank of an LP determines it’s priority when attribute updates conflict. Ranks may reflect
some property of the LP which is relevant to the simulation, but in general are simply a
way of ensuring repeatability. If both LPs have the same rank then we choose an update
arbitrarily (saving the random seed to preserve repeatability). If the attribute has already
been updated at this timestamp by an LP with lower rank, this value is over-written and
any LPs which read the previous value are rolled back (see below).

More complex environment models can be implemented using combinations of
these features. For example, with an appropriate choice of guard on a cumulative at-
tribute, we can allow several agents to push a tile at the same time to give motion which
is, e.g., the vector sum of the motion imparted by each agent. Alternatively, an entity’s
motion can be computed by the ALP or ELP responsible for maintaining the entity in

3 In practice, not all write periods need to be stored in state variables, e.g., if a write period has
a timestamp lower the LVT of any LP it is inaccessible within the simulation and can be fossil
collected.

the simulation, with each agent and object updating an input force vector represented
as a cumulative attribute.

Rollback messages Some sequences of operations by the LPs give rise to further pro-
cessing of the shared state and the private state of one or more LPs.

An add, remove or write operation with timestamp ¢ which is processed in real time
after a read with timestamp ¢,., where ¢ < t,., invalidates the read, and triggers a rollback
on all LPs which read the previous (interpolated) value of the attribute. A rollback
indicates that the set of values returned in response to the read was incorrect, and that
the LP should rollback its processing to the timestamp of the read and restart.* Rolling
back an LP undoes all the updates to the LP’s private state which have a timestamp
> t, and resets the LP’s LVT to t,.. The effect is as if the LP had just returned from the
original read (at timestamp ¢,.), but this time with the ‘correct’ values of the attributes.
(A subsequent add, remove or write with timestamp ¢', where t’ < ¢ < t,- can of course
cause further rollbacks on the LP.) Rolling back an LP also cancels any add, remove or
write operations on the shared state performed by the LP which have a timestamp > ¢..
This may in turn invalidate reads by other LPs, requiring them to rollback too.

Note that the presence of rollback obviates the need for coarse-grain atomic opera-
tions, i.e., each attribute update can be processed independently of any others and may
be arbitrarily interleaved with other operations such as read operations. It is therefore
possible for an LP to ‘see’ an inconsistent version of the shared state or for the guard
conditions of a write to evaluate to true for some orderings of operations on the shared
state and false for others. When all the updates are finally made, the inconsistency will
be detected and any affected LPs rolled back.

3.2 Ports

Each CLP holds only part of the shared state. Read and write operations on shared
state variables not maintained by a CLP are forwarded through the tree to the relevant
CLP(s).

CLPs communicate with their neighbours in the tree via ports. Each port holds
information about the ranges of attribute values maintained by CLPs beyond the port in
the form of 4-tuples:

< entity-type, attribute-type, value-range timestamp-range >

For example, in a Tileworld simulation, a port tagged with entity-type tile, attribute-type
x-position value-range 10-20 and timestamp-range 50-100 would indicate that state
variables holding x positions of tiles with values in the range 10 to 20 and timestamps
between 50 and 100 are held in CLPs beyond this port. (Where the port leads to an ALP

* Note that a write with timestamp t,, which arrives in real time after a write with timestamp
t.,, where t,, < t,, and there are no intervening reads, does not trigger a rollback. In contrast
to standard optimistic synchronisation approaches which rollback on every straggler event,
or which only avoid rollbacks on straggler reads [9], this optimisation results in a significant
reduction in the number of rollbacks [11].

or an ELP, the port information is empty, since all public information in the simulation
is held in the CLPs).

In the case of range queries, the query is compared against the range information
for each port. If the ranges overlap the CLP forwards the query to the CLP beyond
the port. This process proceeds recursively until a CLP with no ports (as opposed to
maintained state variables) that match the query is reached. Each CLP waits until it
receives replies from all CLPs to which it forwarded the query, appends the value of
any state variables it manages that match the query and sends a reply to the originating
CLP. When the replies reach the root CLP for this query, the sensing is complete and
the values matching the query can be returned to the requesting ALP/ELP.

Initially, the value-range for each entity and attribute type at each port is “all values”
for all timestamp ranges and all queries are forwarded to all neighbouring CLPs. By
analysing the responses to range queries by the neighbouring CLPs, a CLP acquires
information about the kinds of attributes (and their ids) that lie beyond each port. This
provides a simple form of ‘lazy’ interest management, and avoids repeated traversal the
whole tree when sensing the environment. In addition, each port also holds information
about the attribute instances maintained by other CLPs that can be reached via the
port. This routing information allows a CLP to forward reads and writes of particular
attributes that it does not maintain to the appropriate CLP.

Updating the value of an attribute may involve updating the range information of the
ports leading to the CLP which manages the associated state variable. Each CLP keeps
a record of all queries it has received together with the port through which the query
arrived at the CLP. All add operations are checked against this query history, and, if the
new attribute value matches a previously evaluated query, the add is propagated back
along the path of the query to update the port information. When the traversal reaches
the ALP that initiated the query this triggers a rollback, as the first time the query was
evaluated, it returned too few values. Conversely, if an attribute value matches no query
in the query record, then no ALP has ever queried this attribute value at this timestamp,
and there is no need to propagate the value beyond the current CLP.

3.3 Load balancing

As well as storing state variables and enabling communication via ports, CLPs also
facilitate load balancing. As the number of instances of each event type generated by
an ALP or ELP varies, so the partial order over the spheres of influence changes, and
the contents of the CLPs must change accordingly to reflect the LPs’ current behaviour
and keep the communication and computational load balanced. This may be achieved
in two ways, namely by swapping pairs of ALPs/ELPs, and by moving subsets of state
variables from one CLP to another. In general, it is easier to move state than LPs, and
our strategy is to bring the environment close (in a computational sense) to the LPs
within whose sphere of influence the corresponding portion of the shared state lies. For
example, in a Tileworld simulation, the state associated with entities currently being
sensed or manipulated by an agent would ideally be located on the parent CLP of the
ALP responsible for simulating the agent. As the agent moves around the Tileworld, the
state maintained by the ALP’s parent CLP (and its parent CLPs in turn) should change
to reflect the agent’s changing sphere of influence.

Periodically, the CLPs offer to swap state variables with their neighbours. A CLP
will offer to swap a state variable if doing so will reduce the total cost of access. In
order to calculate the cost, each query carries with it the ‘distance’ it travelled through
the tree before reaching the CLP. The hop counts for queries arriving through each of the
CLP’s ports are totalled for each variable maintained by the CLP, and this information
is used to determine which port (i.e., neighbouring CLP) to swap with. For example, if
the majority of accesses to a state variable arrive through a particular port, a CLP may
offer to swap the variable with the CLP which can be reached via the port.

4 Related work

There is a considerable amount of work in the simulation literature on the efficient
distribution of updates, particularly in the context of large scale real-time simulations
where it is termed Interest Management. Interest Management techniques utilise fil-
tering mechanisms based on interest expressions (IEs) to provide the processes in the
simulation with only that subset of information which is relevant to them (e.g., based
on their location or other application-specific attributes). Special entities in the simula-
tion, referred to as Interest Managers, are responsible for filtering generated data and
forwarding it to the interested processes based on their IEs [12].

In most existing systems, Interest Management is realised via the use of IP multi-
cast addressing, whereby data is sent to a selected subnet of all potential receivers. A
multicast group is defined for each message type, grid cell (spatial location) or region
in a multidimensional parameter space in the simulation. Typically, the definition of the
multicast groups of receivers is static, based on a priori knowledge of communication
patterns between the processes in the simulation [13]. For example, the High Level Ar-
chitecture (HLA) utilises the routing space construct, a multi-dimensional coordinate
system whereby simulation federates express their interest in receiving data (subscrip-
tion regions) or declare their responsibility for publishing data (update regions) [14]. In
existing HLA implementations, the routing space is subdivided into a predefined array
of fixed size cells and each grid cell is assigned a multicast group which remains fixed
throughout the simulation; a process joins those multicast groups whose associated grid
cells overlap the process subscription region.

Static, grid-based Interest Management schemes have the disadvantage that they do
not adapt to the dynamic changes in the communication patterns between the processes
during the simulation and are therefore incapable of balancing the communication and
computational load when the communication patterns change, with the result that per-
formance is often poor. Furthermore, in order to filter out all irrelevant data, grid-based
filtering requires a small cell size, which in turn implies an increase in the number of
multicast groups, a limited resource with high management overhead.

In contrast, our approach is not confined to grids and rectangular regions of multi-
dimensional parameter space and does not rely on the support provided by the TCP/IP
protocols. Rather, the shared state is distributed dynamically based on the spheres of
influence of the ALPs and ELPs in the simulation. In addition, our approach exploits
this decomposition in order to perform load balancing.

5 Conclusion and Further Work

In this paper we have argued that the efficient simulation of the environment of a multi-
agent system is a key problem in the distributed simulation of MAS. Building on work in
[1], we proposed an approach in which the shared state of a simulation is loosely associ-
ated with a group of special logical processes called Communication Logical Processes,
and the distribution of state (i.e., its allocation to CLPs) is performed dynamically in
response to the events generated by the agent and environment processes during the sim-
ulation. We defined a set of operations on the shared state which allow the interaction
of agent and environment logical processes and sketched how these operations could
be implemented by a CLP. Our approach addresses the problems of efficient sensing,
parallel actions and action conflicts, and integrates an efficient approach to state saving
which minimises the number of rollbacks with a simple load balancing scheme.

The work reported is still at a preliminary stage. To date, we have implemented
the core of the CLPs including the rollback mechanism and calculation of virtual time
[15] and load balancing [16] and are currently working on the implementation of in-
terest management. Initial experiments with the rollback mechanism are encouraging,
and show a reduction in the number of rollbacks compared to other approaches in the
literature which rollback on every straggler event [17].

Acknowledgements

This work is part of the PDES-MAS project’ and is supported by EPSRC research grant
No. GR/R45338/01.

References

1. Logan, B., Theodoropoulos, G.: The distributed simulation of multi-agent systems. Proceed-
ings of the IEEE 89 (2001) 174-186

2. Anderson, J.: A generic distributed simulation system for intelligent agent design and evalu-
ation. In Sarjoughian, H.S., Cellier, F.E., Marefat, M.M., Rozenblit, J.W., eds.: Proceedings
of the Tenth Conference on Al, Simulation and Planning, AIS-2000, Society for Computer
Simulation International (2000) 3644

3. Schattenberg, B., Uhrmacher, A.M.: Planning agents in JAMES. Proceedings of the IEEE
89 (2001) 158-173

4. Gasser, L., Kakugawa, K.: MACE3]J: Fast flexible distributed simulation of large, large-grain
multi-agent systems. In: Proceedings of AAMAS-2002, Bologna (2002)

5. Ferscha, A., Tripathi, S.K.: Parallel and distributed simulation of discrete event systems.
Technical Report CS.TR.3336, University of Maryland (1994)

6. Fujimoto, R.: Parallel discrete event simulation. Communications of the ACM 33 (1990)
31-53

7. Uhrmacher, A., Gugler, K.: Distributed, parallel simulation of multiple, deliberative agents.
In: Proceedings of Parallel and Distributed Simulation Conference (PADS’2000). (2000)
101-110

5 http://www.cs.bham.ac.uk/research/pdesmas

10.

11.

12.

13.

14.

15.

16.

17.

Pollack, M.E., Ringuette, M.: Introducing the Tileworld: Experimentally evaluating agent
architectures. In: National Conference on Artificial Intelligence. (1990) 183-189

Sokol, L.M., Briscoe, D.P., Wieland, A.P.. MTW: A strategy for scheduling discrete sim-
ulation events for concurrent simulation. In: Proceedings of the SCS Multiconference on
Distributed Simulation. SCS Simulation Series, Society for Computer Simulation (1988)
34-42

Minson, R., Theodoropoulos, G.: Distributing RePast agent-based simulations with HLA.
In: Proceedings of the 2004 European Simulation Interoperability Workshop, Edinburgh,
Simulation Interoperability Standards Organisation and Society for Computer Simulation
International (2004) (to appear).

Lees, M., Logan, B., Minson, R., Oguara, T., Theodoropoulos, G.: Distributed simulation
of MAS. (In: Proceedings of the Joint Workshop on Multi-Agent and Multi-Agent-Based
Simulation MAMABS’04))

Morse, K.L.: Interest management in large-scale distributed simulations. Technical Report
ICS-TR-96-27 (1996)

Morse, K.L.: An Adaptive, Distributed Algorithm for Interest Management. Ph.D. thesis,
University of California, Irvine (2000)

Defence Modeling and Simulation Office: High Level Architecture RTI Interface Specifica-
tion, Version 1.3. (1998)

Lees, M., Logan, B., Theodoropoulos, G.: Adaptive optimistic synchronisation for multi-
agent simulation. In Al-Dabass, D., ed.: Proceedings of the 17th European Simulation Mul-
ticonference (ESM 2003), Delft, Society for Modelling and Simulation International and
Arbeitsgemeinschaft Simulation, Society for Modelling and Simulation International (2003)
77-82

Oguara, T.: Load balancing in distributed simulation of agents. Thesis Report 5, School of
Computer Science, University of Birmimgham (2004)

Lees, M., Logan, B., Theodoropoulos, G.: Time windows in multi-agent distributed simu-
lation. In: Proceedings of the 5th EUROSIM Congress on Modelling and Simulation (Eu-
roSim’04). (2004)

