
1

Javelin: Internet-Based Parallel Computing Using Java
Peter Cappello, Bernd Christiansen, Mihai F. Ionescu
Michael O. Neary, Klaus E. Schauser, and Daniel Wu

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106�
cappello, bernd, mionescu, neary, schauser, danielw � @cs.ucsb.edu

Abstract

Java offers the basic infrastructure needed to integrate computers connected to the Internet into a
seamless parallel computational resource: a flexible, easily-installed infrastructure for running coarse-
grained parallel applications on numerous, anonymous machines. Ease of participation is seen as a key
property for such a resource to realize the vision of a multiprocessing environment comprising thousands
of computers.

We present Javelin, a Java-based infrastructure for global computing. The system is based on Internet
software technology that is essentially ubiquitous: Web technology. Its architecture and implementation
require participants to have access only to a Java-enabled Web browser. The security constraints implied
by this, the resulting architecture, and current implementation are presented. The Javelin architecture is
intended to be a substrate on which various programming models may be implemented. Several such
models are presented: A Linda Tuple Space, an SPMD programming model with barriers, as well as
support for message passing. Experimental results are given in the form of micro-benchmarks and a
Mersenne Prime application that runs on a heterogeneous network of several parallel machines, worksta-
tions, and PCs.

Keywords: Global computing, Internet, Java, just-in-time compilation, World-Wide-Web.

1 Introduction

Of late, Global Computing has been a very active area of research. By the end of 1997, we expect to see
30 million hosts connected to the Internet. Ideally, the combined resources of thousand of computers could
be harnessed to form a powerful global computing infrastructure. This is difficult to achieve, however,
since most of the machines run different CPUs and different operating systems. Also, many machines are
administered individually, making it extremely difficult to obtain login access and view file resources across
a large set of machines. As a result, each individual or small group within an organization usually purchases
its CPU time according to its maximum intended usage requirements, resulting in resource fragmentation
and poor utilization.

The advent of a portable language system such as Java has provided tools and mechanisms to interconnect
computer systems around the globe in cooperative work efforts. We work toward this goal by developing
a flexible, scalable, easily-installed infrastructure that permits us to run coarse-grained parallel applications
on numerous, anonymous machines on the Internet.

1.1 Concept and Architecture

We have designed a Java based global computing infrastructure called Javelin. In our model, there are three
kinds of participating entities: brokers, clients and hosts.

A client is a process seeking computing resources; a host is a process offering computing resources. A
broker is a process that coordinates the supply and demand for computing resources. Figure 1 illustrates our
architecture. Clients register tasks to be run with the broker; hosts register their intention to run tasks with
the broker. The broker assigns tasks to hosts who then run the assigned tasks and, when done, send results
back to the clients. The role of a host or a client is not fixed. A machine may serve as a Javelin host when it
is idle (e.g., during night hours), while being a client when its owner wants additional computing resources.

April 25, 1997 – 12 : 45 DRAFT 2

Clients

Brokers

Hosts

Figure 1: The Javelin Architecture.

1.2 Goals and Philosophy

Our most important goal is simplicity, i.e., to enable everyone connected to the Internet or an intranet to
easily participate in Javelin. To this end, our design is based on widely used components: Web browsers
and the portable language Java. By simply pointing their browser to a known URL of a broker, users
automatically make their resources available to host part of parallel computations. This is achieved by
downloading and executing an applet that spawns a small daemon thread that waits and “listens" for tasks
from the broker. The simplicity of this approach makes it easy for a host to participate—all that is needed
is a Java-capable web browser and the URL of the broker.

The infrastructure is also simple for clients to use. When a client needs to run a job, it first contacts the
broker, again by pointing the web browser to a specific URL. It then provides the broker with the necessary
program code in the form of a Java applet. The broker, in turn, schedules the jobs, distributing the program
code among the available hosts. In our basic implementation, we don’t even assume that a client has a HTTP
server. All it needs is a web browser for uploading applets and spawning threads.

Additionally, since dial-up accounts and mobile computing are common, clients can disconnect from
the network after submitting a task, and retrieve the result later. Similarly, hosts can receive a task, compute
it off-line, and then re-establish the network connection to return the results.

The key technology underlying our approach is the ability to safely execute an untrusted piece of
Java code sent over the Internet, something most WWW browsers can do (assuming all security bugs
have been fixed). While existing Java virtual machines currently have a high interpretation overhead,
new technologies such as just-in-time compilation, dynamic compilation, and software fault isolation are
becoming commercially available. These will eventually eliminate most of the interpretation overhead
to allow efficient execution of Java, while still maintaining safety. Since a standard WWW browser can
register CPU time at the user-level, no changes to the operating system have to be made. We therefore
expect thousands of hosts to participate.

1.3 Scope of our Work

The purpose of this work is to provide a simple yet efficient infrastructure that supports as many different pro-
gramming models as possible without compromising portability and flexibility. As discussed in [AISS97],
there are several important issues such an infrastructure must provide to be successful. In this paper, we do
not attempt to study these issues, but instead focus on a particular design, discussing the constraints imposed
by standard, Java-enabled web browsers. Future versions however will take these aspects into account.
These issues include:

Security: Hosts must be able to trust the programs being executed on their machines. We therefore assume
the usual Java security restrictions that apply to applets. For example, applets downloaded from
the broker are permitted to communicate with the broker only. Additional Java security issues are
discussed in [DFW96]. In this version, we do not provide levels of security beyond what Java-enabled
web browsers offer.

April 25, 1997 – 12 : 45 DRAFT 3

Scalability: We envision extending our broker to a scalable network of brokers. The local broker then
can contact other brokers if it does not have enough resources to run a job. This is a high priority
enhancement.

Fault tolerance: The Broker is responsible for scheduling, load balancing and fault tolerance. However,
in this version we do not concentrate on any of these issues.

Economic aspects: Participation in such a global computing infrastructure can be encouraged by providing
hosts with benefits (e.g., digital cash, or bartering computer resources). The construction of such
exchange mechanisms can be undertaken with the tools provided by Javelin.

Result verification: Clients must have some level of assurance that the results received from anonymous
hosts are correct. Assurance methods exist for some kinds of computations. For general computations,
it appears to be an interesting research topic.

Privacy: Clients may want to secure their program and data from spying by hosts.

The initial implementation of Javelin can be used by organizations with intranets consisting of a large
number of heterogeneous computers. Running within a restricted intranet simplifies many security, privacy,
and network performance issues that are present in full Internet applications.

1.4 Contributions

We present a system that makes it easy for computers all over the world to cooperate in parallel computations.
In doing so, we:

� identify some architectural implications of using a heterogeneous, secure, Internet execution environ-
ment, in the form of Java applets running under standard Web browsers;

� present a set of abstract behaviors that must be implemented to realize the architecture, and discuss
some implementation tradeoffs;

� design and implement a portable and flexible infrastructure, called Javelin, and illustrate how it can
be used to implement several programming models, including the Linda tuple space, and SPMD
programming;

� provide measurements of Javelin’s current performance on a popular parallel application: Mersenne
Primes. These measurements shed light on those aspects of the system that would most benefit from
greater efficiency.

2 Design and Implementation

2.1 Basic Design Issues

One of the most important goals of our design is to minimize the administrative overheads associated with
operations such as installing a broker, registering resources at a host and submitting tasks at the client. Since
Web browsers are available on almost every platform and architecture and very common to almost every
user, we expect our framework to allow for the registration of hosts and submission of tasks from clients
using a web browser. Similarly, in implementing the broker we want to leverage existing HTTP server
technology and ways of extending server functionality using CGI scripts [Rob] or servlets [Sun96c]. In
other words, we want our architecture to be build on top of the existing Internet infrastructure.

Consequently, our design is based on the following premises:

Tasks: A task on which a host can operate is represented as an applet embedded in an HTML page. It
resides on an HTTP server and is accessible through a URL.

April 25, 1997 – 12 : 45 DRAFT 4

Hosts: The simplest form of a host is just a Java-enabled web browser. To work on a task the host opens
the corresponding URL.

Clients: Clients create tasks by producing the equivalent applet. We do not assume that clients have to run
their own HTTP server. In fact, just like a host, the simplest form of a client is just a Java-enabled
web browser that uploads an applet to a broker.

Broker: The broker is an HTTP server which performs two separate functions (which may be implemented
by two separate servers). First it stores the applet and secondly it matches the client task with a host.

Client

Brokerftpd httpd

Host

1. Upload applet 2. Register URL

3. Retrieve URL

4. Retrieve applet

5. Store result

6. Retrieve result

Figure 2: Steps involved in the remote execution of an applet.

Figure 2 shows the steps involved in the remote execution of an applet. These steps are:

1. The client uploads the applet and an embedding HTML page on an HTTP server. Clients that run
their own HTTP server may skip the first step.

2. The client registers the corresponding URL with a broker.

3. The host or a daemon acting on behalf of it asks the broker for work and retrieves the URL.

4. The host downloads the applet from the HTTP server and executes it.

5. The host stores the result at the server site. If communication between hosts is required, messages are
stored at and retrieved from the server site.

6. The client retrieves the result.

2.2 Design Implications

Our approach of using plain web browsers enables everyone to easily participate in Javelin. To ensure
security, a Java-enabled web browser introduces certain limitations. For example, an applet cannot open a
network connection to any computer other than the server from which it was downloaded. As a consequence,
the server has to function as a gateway for any communication to the client or to other applets (e.g., in the
case of a parallel program running on multiple hosts). Additionally, the Java API only provides an interface
to the TCP and UDP protocols. Since applets are not allowed to listen for or accept network connections
on any port of the local system, the broker cannot send datagrams to an applet. Although communication
can still be established through a shared namespace by exchanging files, it is highly inefficient. The next

April 25, 1997 – 12 : 45 DRAFT 5

section discusses alternative communication channels. Furthermore, applets are not allowed to access the
local file system. Thus data can only be stored persistently at the broker or the client, and every file access
involves communication.

All communication must be routed through the server, which additionally may serve as a file system to
large numbers of clients and hosts. This makes a single server a bottleneck. We propose to use a network
of servers instead. Then clients and hosts as well as files are migrated between servers that are connected
by high bandwidth communication channels.

A host can be migrated between brokers by making the corresponding daemon download a new daemon
from the broker it is moving to, and then terminating itself. Similarly, registration information is migrated
between brokers by asking other brokers for URLs. The physical migration of applets is supposed to reduce
the number of requests at the original site, but must respect synchronization dependencies between applets in
terms of sharing memory at some site all applets can connect to. Since communication stubs do not reduce
the number of hits we propose to perform physical balancing of applets only at the time of submission by
redirecting clients’ requests to upload an applet. Especially, a client’s request can be redirected multiple
times. Additionally, we propose to distribute large numbers of applets that need to be synchronized to
several brokers by providing a library to the application programmer implementing virtual shared memory.

Since an applet is not allowed to create instances of classes that are given by a stream of bytes1 (that
might have been received from the network) a daemon must ask the underlying web browser to open a new
location2 and thus initiate the downloading of the embedded applet with one step of indirection. Since,
unfortunately, the corresponding Java API call is restricted to applets that are currently displayed within the
Web browser, the daemon must live in a different web browser or a different frame than applets executed on
behalf of clients.

Even though these considerations seem to complicate applications programming, the programmer using
our architecture does not have to concern herself with any of these restrictions; they can be hidden in libraries
as discussed in Section 3.

2.3 Broker/Server Services

In order to submit applets, clients need to upload them to a server. The clients clients are provided a home
directory (a private namespace), and a mechanism to upload files on the HTTP server. Furthermore, the
broker allows clients to register and unregister URLs, and allows hosts to retrieve URLs.

Although abstractions of storage and communication channels as well as synchronization constructs can
be implemented by hosts and clients on top of a file system that can be accessed by both, dedicated services
at the broker site can provide better performance as well as convenience.

Recently developed HTTP servers can be extended in two ways, either by using the Common Gateway
Interface [Rob] and spawning a new process, or by installing servlets [Sun96c]. Servlets are small Java
programs like Applets, but are executed at the server side and, like CGI scripts, allow for the dynamic creation
of Web pages. They can either be embedded into Web pages or invoked like CGI scripts. Currently, Servlets
are supported by JavaSoft’s Jeeves[Sun96c] and W3C’s Jigsaw[Con]. However, we feel that Servlets will
be supported by most HTTP servers released in the near future.

We have found the servlet approach to be a very convenient way of extending the functionality of HTTP
servers with application-specific services. Actually, in our prototype implementation, we even allow the
application to upload its own new servlets. Unfortunately, ensuring security is not easy. Thus, we envision
that in the final deployed system, only a fixed set of servlets will be provided. One of the most interesting
open research questions is how much resources (CPU time, memory, disk space) an individual user should
be able to get on such servers.

We propose to extend the HTTP server by services that allow an efficient implementation of parallel
programming paradigms, efficient communication and convenience functions such as wrapping an applet
around compiled Java classes or an HTML page around an applet.

1Object java.lang.Class.newInstance()
2void java.applet.AppletContext.showDocument(URL url)

April 25, 1997 – 12 : 45 DRAFT 6

2.4 Communication

Since fast communication is crucial for parallel programs, services allowing for efficient message passing
should be provided. In general, messages between applets must be routed through the broker, because
an applet cannot open a network connection to any site other than the one from which it was loaded.
Additionally, the Java API only provides an interface to the TCP and UDP protocols. Since applets are not
allowed to listen for or accept network connections on any port of the local system, the broker cannot send
datagrams to an applet.

Basically, there are two possibilities to enable message passing. A routing service at the broker site can
either link two permanent or two temporary socket connections possibly running a connection-less protocol
such as HTTP (which is directly supported by the Java API) on top of TCP. These alternative approaches
present a trade-off between performance and the maximum number of hosts that can be served by a single
broker, since the number of socket connections that can be kept open at the same time is usually limited.

Obviously, if no routing service is in place, one must be requested before establishing a socket connection
to the broker site. Figure 3 shows the steps involved in establishing a logical communication channel between
two applets.

Applet

Broker

Applet

1. Request peer

2a. Create socket connection
2b. Create socket connection

Figure 3: Steps involved in establishing a communication channel between two applets.

When HTTP is used, the receiver must continuously invoke its routing service to pick up messages,
since applets cannot listen for HTTP requests from the router. Unfortunately, clients and hosts continuously
connecting to the HTTP server increase contention as well as its work load, and thus affect the overall
performance. This can be avoided by delaying responses to HTTP requests, and returning tokens sporadically
to avoid time-outs at the requesting site.

Additionally, since every request increases the work load, the number of requests polling for some event
must be minimized without introducing gaps to keep the overall overhead low. We propose the use of
adaptive polling, i.e., a client or host polling the broker is returned a new polling interval that depends on the
current work load, and all recently assigned intervals. As long as all clients and hosts obey these intervals,
the overall overhead is reduced, although it may increase for individual applications.

2.5 Implementation

Our implementation is based on an HTTP server entirely written in Java that runs servlets compatible with
the API used by JavaSoft’s Jeeves[Sun96c]. The broker is implemented as a servlet and schedules applets
using a FIFO queue. Furthermore, servlets provide additional services such as form-based file upload (as
described in RFC 1867), semaphores, a Linda tuple space and communication channels (as described in
the previous section). Since form-based file upload is supported by a broker servlet, clients can submit an
applet by visiting a broker web page and filling out a form as shown in Figure 4. The form data is posted to
the servlet which creates a new directory for the task, wraps the applet into an HTML page residing in the
task directory, and enqueues the corresponding URL in the task queue.

Our daemon continuously polls a broker servlet until it receives an URL from the broker’s queue. On
receipt of the URL, the daemon asks the underlying Web browser to open it in one of two frames. Since

April 25, 1997 – 12 : 45 DRAFT 7

Figure 4: Submitting an applet to Javelin

the URL points to a web page embedding an applet, the web browser is indirectly asked to download and
execute an applet. Unfortunately, in the current implementation of Netscape and Internet Explorer, applet
security does not prevent hostile applets from killing the daemon.

3 The Parallel Programming Language Layer

The Javelin services presented in the previous sections provide a low-level layer of code distribution,
communication and process execution. Though they provide a very flexible layer for communication and
process creation, programming at this low-level layer can be a daunting exercise. For this reason, we describe
simple programming models that enable programmers to express many parallel programming constructs in
their client applet code. These programming models are realized by executing specialized servlets on the
broker.

3.1 Language Support for Javelin

Language support for a distributed and parallel programming environment usually involves a suite of pro-
gramming tools such as libraries, compilers, pre-processors, and stub generators. The Javelin programming
environment provides a number of library support classes and tools to map different programming models
onto the current applet infrastructure. To illustrate how these language constructs can be mapped, we
consider the following programming models:

April 25, 1997 – 12 : 45 DRAFT 8

3.2 SPMD Programming Model

The Single Program Multiple Data programming model is perhaps the most widely supported form of
parallel programming. Each node on a network executes a common copy of the same program code.
Parallelism is obtained by providing different data inputs to each node, and combining their computations
into a common result.

The SPMD model is easily mapped onto Javelin. Each node on the network executes a common applet,
representing the single program code. Data can be read in at run-time through the broker, or can be coded into
the applet and replicated among all the hosts, each node working on its portion of the data. Synchronization
mechanisms conducted through the broker is provided to coordinate the tasks involved. We explore two
commons forms of synchronization primitives:

3.2.1 Support for Send & Receive

Message passing is often required in a parallel program to pass information between hosts and direct the
flow of computation. Toward this end, we illustrate how we map a Send and Receive onto Javelin.

The following steps are performed:

� Each pair of host passes send and receive requests to the broker.

� If a send arrives before the receive request, the broker stores the data and acknowledges the sending
process. The sending process can continue with its computation. When the receive request arrives, the
broker passes the data to the receiving process, so the receiving process can also continue processing.

� If a receive request arrives before a send, the broker must reply to the receiving process that the send
data is not yet available. The receiving process, in turn, blocks and proceeds to poll the broker until
the corresponding send request arrives with the data. If no send request does arrive, eventually, the
receive request times out.

As indicated above, no polling is required in a send-and-receive request unless a receive arrives before the
send. Such polling is an expensive process involving issuing repeated HTTP GET requests to contact the
broker and check if the sending data has arrived.

In the mapping to Javelin, we can perform a modest optimization by keeping the HTTP GET connection
active until the send data has arrived. The broker periodically sends NOOP data to the host in order to
prevent the GET connection from timing out. The host ignores the NOOP message until the intended send
data finally arrives. As a further optimization, we can employ socket connections between host and broker
to avoid polling altogether, at the expense of maintaining these connections.

3.2.2 Support for Barriers

One other common form of synchronization that we must support in SPMD program is a barrier. Each
processor executing a barrier must wait until all processors have reached that point in computation; only then
can the processor be fully synchronized and continue with subsequent execution. As with send-and-receive
requests, it is fairly simple to implement a barrier in Javelin by extending the broker with a barrier servlet.

� Each host executes a barrier operation, by sending a barrier request to the broker, indicating the
number of hosts, � , participating in the barrier synchronization. The host then polls the broker
waiting for the broker to acknowledge with a release reply.

� The first barrier request that arrives at the broker indicates to the broker the number of pending barrier
requests, ��� 1, to expect before releasing the barrier. When the broker receives subsequent barrier
requests, it decrements the number of pending requests by 1.

� If the number of pending requests is 0, the broker acknowledges each host poll with a release reply;
otherwise if replies with no-release.

April 25, 1997 – 12 : 45 DRAFT 9

Just as with send-and-receive requests, a barrier can time out if a polling host does not receive a release
reply from the broker within an allotted amount of time. We can further perform the same optimizations of
keeping the HTTP GET connection alive when a host polls a broker, or of employing socket connections.

3.3 Linda Tuple Space

To illustrate the flexibility of the Javelin design, we will also show how SPMD programming can be achieved
by building upon Javelin applet layer a programming abstraction known as Linda tuple space.

The Linda programming model[WL88] was originally developed by Gelernter and Carriero of Yale
University in 1988. This Linda model provides a construct known as tuple space that concurrent processes
can access to insert, delete, and update data known as tuples. Atomic operations known as Out, Rd, and In
provide synchronization for these accesses. The tuple space is viewed as a central pool of storage that hosts
contact to share data. Programming is vastly simplified because each parallel program need only invoke
these three primitives to pass and update information.

Mapping Linda tuple space onto the Javelin applet layer is fairly straightforward. The broker can serve
as a tuple space manager by executing a dedicated servlet that implements the response handler for the Out,
Rd, and In operations. When host machines running applet programs contact the broker, they now invoke a
high-level Linda primitive to exchange data and information. We show how the two SPMD synchronization
mechanisms can be implemented through the tuple space.

3.3.1 Linda Support for Send & Receive

Earlier, we saw how send-and-receive required a broker executing a dedicated servlet to handle synchro-
nization requests. Though the broker must once again execute a servlet to provide tuple space management
facilities, programming a send-and-receive can be vastly simplified using this tuple space abstraction: The
host processor performing a send inserts a message into the tuple space by executing an Out command,
while the receiving processor executes a blocking In. The In command deletes the message from tuple space
and delivers it to the receiving processor.

3.3.2 Linda Support for Barriers

To provide a barrier we extend the functionality of the tuple space to include a general semaphore. When
each processor reaches the barrier, it signals the tuple space manager to decrement the count of the semaphore
by 1, then queries for the semaphore’s current value. While in the barrier, the host processor performs a
busy wait, polling the tuple space manager until the semaphore value reaches 0.

A Linda tuple space thus provides a simple programming model to implement message passing and
shared memory abstractions. By extending the tuple space with additional synchronization primitives, such
as a barrier, we can fully realize the benefits of SPMD programming in Javelin.

4 Experimental Results

In this section we present performance results for our initial prototype implementation. We conducted our
experiments on a heterogeneous network of computers consisting of a 64 node Meiko CS-2, Sun Ultrasparcs,
SGIs and PCs connected by SCI and 10 Mbit Ethernet networks.

4.1 Micro Benchmarks

From a client’s point of view, the overhead of executing applets remotely, and the overhead of passing mes-
sages between remote applets are of great interest. We present experimental results for our implementation,
and discuss their implications for using the proposed architecture.

April 25, 1997 – 12 : 45 DRAFT 10

Overhead ms

Applet Start-up 2000
Send using permanent sockets 4
Send using HTTP 135

Table 1: Micro benchmark results between three workstations connected by Ethernet

4.1.1 Remote Execution of Applets

To be executed by a host, an applet must be sent to the broker, and downloaded by a host. Finally, its results
must be sent back to the client via the broker.

The client posts its applet to the broker, where a servlet enqueues it. When a daemon polls the broker,
the URL of a web page embedding the applet is sent to it. Then, the daemon opens the URL, and thus
invokes the embedded applet. Our micro-benchmark applet immediately invokes a servlet at the broker to
indicate that it is done. Finally, the client polls the corresponding servlet at the broker site for results.

On a standard 10 Mbit Ethernet network, downloading and invoking an applet takes about 2 seconds for
an idle broker. This basic overhead increases as the work load at the broker increases. However, a substantial
part of it is caused by the underlying browser starting a new Java thread. Notice that when running identical
applets on different parameter sets this initial overhead can sometimes be reduced. Applets that have finished
may query the client or broker for new parameters before quitting the host to avoid the overhead of sending
the same applet to a different host. However, reloading it to the same host might take advantage of a cache
provided by the used web browser.

This seems to imply that only coarse-grained applications can take advantage of the proposed architec-
ture. On the other hand, the reader should not forget that most parallel machines have similarly high start-up
costs when spawning parallel work. Having paid this start-up cost, communication can now be implemented
more efficiently, as discussed next.

4.1.2 Message Passing

As discussed in Section 2.4 message passing can either be implemented by linking two permanent or two
temporary socket connections (possibly running a connection-less protocol such as HTTP).

With an established permanent socket connection a single message can be sent within 4 milliseconds on
a standard 10 Mbit Ethernet network. As long as applications are coarse-grained, the overhead of opening
a socket connection can be ignored.

When HTTP is used, the receiver must either poll the broker site continuously or the response to its
request for the message must be delayed until it arrives. Applying the latter technique, a single message
takes about 135 milliseconds.

Since message passing on top of TCP is slow compared to dedicated parallel machines, and networks
of heterogeneous machines produce unpredictable applet runtimes, only computation-intensive parallel
applications take advantage of the proposed architecture.

Table 4.1.2 summarizes the micro benchmarks of our architecture.

4.2 The Mersenne Prime Application

As an interesting application for our Javelin infrastructure, we implement a parallel primality test which is
used to search for prime numbers. As we shall see, this type of application is well suited for Javelin, since
it is very coarse-grained, with a high computation-to-communication ratio when testing large Mersenne
primes.

A Mersenne prime is a prime number of the form 2
� � 1, where the exponent � itself is prime. Discovery

of prime numbers was at one time relegated to the domain of mathematicians working in number theory, but

April 25, 1997 – 12 : 45 DRAFT 11

the advent of the computer provided a powerful tool to search and verify Mersenne primes. Beginning in
the 1952, with the discovery of the 13th Mersenne prime by Raphael M. Robinson[Rob54], all subsequent
Mersenne primes have been found by computer. To date only 35 Mersenne primes have been discovered.
With larger and larger prime exponents, the search for Mersenee primes becomes progressively more
difficult.

In our current implementation, we developed a Java application to test for Mersenne primality, given a
range of prime numbers. Our application works as follows:

1. First, the client submits to the broker an applet containing the Mersenne primality test and a servlet
that coordinates the range of numbers to be checked.

2. The broker running the servlet waits for hosts to participate in the Mersenne prime test. It maintains
a FIFO of primes to be checked, parceling them out among the hosts that join in the computation.

3. When a user registers with a broker, the host daemon downloads the Mersenne Applet to the host site
and executes the applet. The applet then contacts the broker to obtain a prime exponent � to check if
the resulting Mersenne 2

� � 1 is prime.

4. After the host applet has completed its computation, it reports the result back to the broker. The
broker marks whether the prime exponent � the host has tested corresponds to a Mersenne prime. The
host then asks for the next prime to test, and the broker dispenses subsequent primes until the FIFO
is empty.

4.2.1 Measurements

For our measurements, we chose to test the Mersenne primality for all the prime exponents less than
3000. We conducted the experiments on a heterogeneous computing environment consisting of various
architectures: Sun Ultrasparc (both single and multiprocessor), Pentium PC, PowerMac, SGI MIPS (both
single and multiprocessor) and a 64-node Meiko CS-2. We used the Netscape Navigator browser on all
platforms except the Pentium PCs (running Windows 95) where we used Microsoft Internet Explorer (the
explorer has a just-in-time compiler, and we performed measurements for both compiled and interpreted
versions of our test program). We started by measuring the total execution time on each architecture
separately. Figure 5, shows the total time needed to test all the prime numbers less than 3000 on a single
machine. The tests were performed using the Javelin infrastructure, therefore the reported times include all
overheads. As we can see from Figure 5 newly released compilers for Java (such as the ones for PCs) have
a dramatic impact on the execution time (for example a 7.4 times improvement in the case of the 166 MHz
Pentium).

The second set of measurements were performed on clusters of identical machines. Figure 6 presents
the speedup curves for test runs on a 64-node Meiko CS-23 (left) and for a cluster of 8 Sun Ultrasparcs
(right). In both cases, the speedup was close to linear as long as the ratio of job size to number of processors
was big enough, to achieve a good distribution of tasks to processors. For our tests, we chose a worst-case
scenario, when the biggest tasks (large amount of computation) were enqueued at the end of the task queue,
which strongly affected the speedup because full parallelism was not exploited for the last tasks. This shows
that clever task distribution is an important issue that has to be taken into consideration.

Finally, we tested our prototype on a heterogeneous environment consisting of 2 PCs running Windows
95, 8 Ultrasparcs and 32 Meiko nodes running Solaris. We chose an uneven distribution of platforms to
reflect a possible real situation of computing resources registered at a broker at some moment. The broker’s
job would be to distribute the tasks such that it makes a close to optimal utilization of its resources. Figure 7
shows total execution times for different combinati