
DEVS/RMI—AnAuto-Adaptive and Reconfigurable
Distributed Simulation Environment for Engineering Studies

Ming Zhang1, Bernard P.Zeigler1, and Phillip Hammonds3

1Arizona Center of Integrative Modeling & Simulation
The Department of Electrical and Computer Engineering

The University of Arizona, Tucson,AZ 85721
3Joint Interoperability Test Command,
Fort Huachuca, AZ, 85670-2798

Abstract

With the increased demand for distributed simulation and testing environments to
support large-scale modeling and simulation applications, much research has focused on
developing a software environment to support simulation across a heterogeneous
computing networks. In this paper, a new implementation of the DEVS formalism called
DEVS/RMI system is presented as a natively distributed simulation system based on
standard implementation of DEVS. Our objective is to distribute simulation entities
across network nodes seamlessly without any of the commonly used middleware. The
DEVS/RMI system is also built to support auto-adaptive and reconfiguration of
simulations during run-time. Because Java RMI supports the synchronization of local
objects with remote ones, no additional simulation time management needs to be added
when distributing the simulators to remote nodes. The DEVS/RMI approach is well
suited for complex, computationally intensive testing programs such as the Joint
Interoperability Test Command’s 6016C standards conformance testing project. The effort
and resources required to work in other more traditional High Performance computing
environments such as MPI or PVM make development of many simulations tests an
unacceptably slow process. In contrast, DEVS/RMI provides an extremely flexible and
efficient software development environment for rapid development of tests. A test case of
a large-scale dynamic 2D-Cell space model is discussed and presented in this paper to
show how the dynamic re-configuration capabilities can be applied to simulations of
concern to the test and evaluation community. .

Keywords: DEVS, DEVS/RMI, RMI, distributed simulation, test and evaluation, standards
conformance

1.Introduction

Distributed Simulation may be called on to support various scientific and engineering
studies, including technical (e.g., standards conformance), system level (focus on a
single natural or engineered system) and operational (focus on multiple systems, such
as families of systems or system of systems). The objectives of such studies may
include testing of correctness of system behavior/function, evaluation of measures of
performance, and evaluation of measures of effectiveness and key performance
parameters. It is important to note that engineering analyses differ from training
applications in that the ability to replicate results is critical, the demand for accuracy
is typically higher and the causality and relative timing of events must be preserved.
For such applications, an ideal distributed simulation environment would have key
attributes, including:

Flexibility – must handle a wide range of dynamic, information exchange an
dialogic behaviors
Institutionalized Reuse -- support for model reuse and composability, not only at
the syntactical, but at the semantic and pragmatic levels as well.
Model Continuity - allow basic development of systems in virtual time-managed
mode, while supporting stage-wise transition to real-time hardware in the loop
implementation as well.
Quality of Service – should provide acceptable simulation performance at
minimum, and increased performance in dimensions such as execution time when
required.

Grid computing [1] is an example of an emerging technology that uses loosely coupled
network computers to contribute spare CPU time for high performance computing.
Simulation-specific middleware such as High Level Architecture (HLA) and test-range-
specific middleware such as the Test and Training Enabling Architecture (TENA) provide
higher levels of dedicated support for distributed simulation. However, they only provide
partial solutions to address the attributes of distributed simulations required for
engineering systems just listed. The Discrete Event System Specification (DEVS)
formalism [2,7] provides a more complete solution to an ideal distributed simulation
environment when implemented over middleware technologies. Distributed simulation
based on DEVS include DEVS/GRID[3], DEVS/P2P[4], DEVS/HLA[5], and
DEVS/CORBA[6]. However, such solutions provide only limited support for model
distribution, in that the mapping of model components to network nodes is largely a
manual process. Moreover, although DEVS and its associated simulation protocol are
defined abstractly to support migration to other platforms and languages, the coded
implementation still has to be redone for a new context. This means that there is still
significant work to migrate a simulation application that works well in one environment
to work with different middleware on a different operating system or network.

In this paper we describe an implementation of DEVS called DEVS/RMI that was
developed from the standard DEVSJAVA [8] package by extending it to execute in
distributed fashion using Remote Message Invocation (RMI) facilities. DEVS/RMI fully
supports seamless distribution of simulator/model pairs in a heterogeneous network.

Because Java RMI supports the synchronization of local objects with remote ones, no
additional simulation time management, beyond that already in DEVSJAVA, needs to be
added when distributing the simulators to remote nodes. It also provides an auto-adaptive
and reconfigurable environment for dynamic model re-partition and simulator/model
migration. The environment simplifies simulator/model distribution across a network
without the help of other middleware while still providing platform independence through
the use of Java and its Virtual Machine (JVM) implementations. After presenting its
implementation features, we proceed to discuss an application that illustrates its abilities
to meet the criteria for distributed simulation to support engineering studies. DEVS/RMI
allows us to take advantage of current or future clusters or shared memory assets,
whatever their performance capabilities. We need the high-performance capabilities to
address the computational complexity needed to thoroughly examine complex natural
systems and also to test and certify trusted information systems..

2. Background
2.1 DEVS and DEVSJAVA

Discrete Event System Specification (DEVS) is a mathematical formalism [2] to
describe real-world system behavior in an abstract and rigorous manner. With the help of
modern object oriented language such as Java, the framework for modeling and
simulation based on DEVS has reached a mature stage and has been applied in many real-
world applications. DEVSJAVA [8] is an implementation in Java of such a framework
that has been used for solving real-world simulation problem as well as serving as an
openly available teaching tool. However, currently it has limited support of distributed
simulation because it uses Java sockets as the simulator/model communication layer. Java
sockets cannot directly support object migration with persistence and do not integrate
well with the hierarchical object structure of simulator/models in DEVSJAVA. This also
makes it hard to implement distributed simulations of variable structure models and/or
need dynamic model partitioning to achieve efficiency [13].

2.2 JAVARMI
Java remote object technology, developed with JDK by Sun [9] several years ago, is

easy to use for the programmer and simplifies distributed computing system design. A
remote object works just as local object except for the need to maintain a remote
reference to locate the remote object. Java RMI hides all low-level communication
handling from the programmer. It uses a stub class (the proxy for remote object) to works
with other local objects and it automatically supports the synchronization of object
method calls while the object resides on a remote JVM. The major problem with Sun’s
RMI implementation is communication latency due to the inefficient object serialization
and marshalling. Some other RMI implementations aimed at high performance have been
developed in recent years such as Manta RMI [10], KaRMI [11]. These systems make
RMI more attractive for high performance distributed computing including distributed
simulation.

3. DEVS/RMI System Description
3.1 SystemArchitecture

DEVS/RMI is a distributed simulation system based on the standard distribution of
DEVSJAVA that aims to support seamless distribution of simulation entities across
network nodes. DEVS/RMI makes an effort to retain all the existing class structures used
in DEVSJAVAwhile enabling the model and simulator to support java remote object
technology (RMI). In this way, distributing the simulator and model can be done without
any of the commonly used middleware such as CORBA, HLA, or GRID. Because RMI
supports the synchronization of local objects with remote ones, no additional simulation
time management needs to be added when distributing the simulators to remote machines.
DEVS/RMI maintains all the model and data structures used in DEVSJAVA with
expanded capabilities to support remote object technology. This means that a complex
model that has been tested on single machine can then be ported to a cluster of computers
without any code change. The goal of the DEVS/RMI system is to provide a simulation
application with a fully dynamic and re-configurable run-time infrastructure that can
handle load balancing and fault tolerance in a distributed simulation environment. A
second goal of the DEVS/RMI is to distribute large-scale models to the computing
clusters to speedup the simulation or to solve the simulation problems with a size that
cannot be handled by single machine’s memory or computing power.

As shown on Fig. 3-1, the DEVS/RMI system consists of several key components
including simulation controller, configuration engine, simulation monitor and remote
simulator. Each of the components will be discussed in more detail in the following
sections.

Fig 3-1 DEVS/RMI SystemArchitecture

3.1.1 Simulation Controller and Configuration Engine
The simulation controller is the key control unit in the DEVS/RMI system. Its main

function is to provide the dynamically generated partition plan from the configuration
engine and then create or migrate the necessary simulators/models remotely in the
network. The simulation controller can stop and restart/continue the simulation at any
stage. The configuration engine is the “brain” of the system that analyzes the model
information obtained from the simulation monitor and then applies the built-in
partition/repartition algorithm. For example, if the configuration engine decides a new
partition plan is needed and then sends this information to the controller during
simulation run-time, this controller can then stop the current execution and re-configure
the simulation environment. This might involve creating a new set of simulators on
selected nodes and migrating existing simulator and model to those nodes. The key
concern here is to maintain the model status during the migration. Java RMI supports
persistent object migration natively and therefore, the controller does not have to restart

Model Structure

Configuration
Engine

Simulation
Controller

RMI
Naming

Remote
Simulator

Model

Monitoring Engine

RMI
Naming

Remote
Simulator

Model

RMI
Naming

Remote
Simulator

Model

Machine 1 Machine 2 Machine 3

the simulation from time zero and the simulation continues seamlessly. Although not
required, the simulation controller and configuration engine can be implemented as
DEVS models In general, to implement them as DEVS models simplifies the coupling
with other DEVS models in the system.

3.1.2 Simulation Monitor
The simulation monitor is another important component in the DEVS/RMI and

provides important information about each running model in the network. The simulation
monitor can be implemented also as a DEVS model which has input ports for each local
or remote model. The simulation monitor collects the information from those models,
measures their activities and then conveys the information to the configuration engine to
determine the new partition plan at run-time if necessary. Other ways to implement the
simulation monitor are allowed such as using a relational database structure.

3.1.3 Remote Simulator
The remote simulator operates according to the same concept and hierarchical

structure used in DEVSJAVA. However, the simulator related interfaces and classes are
redefined to support remote objects.

Remote simulator classes are created by making the CoreSimulatorInterface and
AtomicSimulatorInterface extend the Remote interface. In this way, all the other
simulators or coordinators can then be remote objects because they extend the
CoreSimulatorInterface and AtomicSimulatorInterface level by level. The following are
the code segments for the remote simulator interface and coupledSimulator:

public interface RMICoreSimulatorInterface extends Remote{
public void initialize()throws RemoteException;
…
}
public interface RMIAtomicSimulatorInterface extends
Remote,RMICoreSimulatorInterface{
public void initialize()throws RemoteException;
public void initialize(Double d)throws RemoteException;
…

}

public class RMICoupledSimulator extends RMIAtomicSimulator
implements RMICoupledSimulatorInterface {

…
}

In DEVSJAVA, any message object passed among simulators is inherited from the
entity object. In order to pass messages among distributed simulators in DEVS/RMI, the
entity interface has to extend Java Serializable so that any inherited message class can be
transferred by RMI. Following are code pieces for affected entity interface and entity
class.

public interface EntityInterface extends Serializable{

…
}
public class entity extends Object implements Serializable,EntityInterface{
…
}

3.2 Remote simulator creation and registration
As shown on the architecture in Fig. 3-1, the remote simulators are created by the

simulation controller, or more precisely the coordinator. After that, the newly created
simulator/coordinator registers itself with the RMI naming server with a unique name for
later lookup by the simulation controller. The controller uses the partition/repartition plan
from the configuration engine to dynamically create and register these simulators and
then parse the corresponding models to the simulators. As shown in the following code
pieces in the RMICoordinator class, the method regRemoteSimulator (IOBasicDevs
model,string machine_name) accepts the model name and machine name as parameters
and then makes a remote method call using the remote reference “ts” to create a simulator
with passed model at remote machine. The remote machine then registers the simulator
and return the registered RMI URL back to the RMICoordinator. The RMICoordinator
can then use this URL to add a remote reference for the newly created remote simulator
using addRemoteSimulator(iod,regUrl) method.

public void setSimulatorsAuto()throws Exception,RemoteException{
…
if(iod instanceof atomic)
{
String regUrl=regRemoteSimulator(iod, “machine name”);
addRemoteSimulator(iod,regUrl);
}
…
}
Public String regRemoteSimulator(IOBasicDevs model,String machine_nm)
throws Exception,RemoteException{
testserverinterface ts = (testserverinterface)Naming.lookup("rmi://" +

machine_nm+":1199" + "/testserver");
String url=ts.regSimulator(model,machine_nm);
System.out.println("Remote simulator url "+url);
return url;
}

The other way to create remote simulator is to use a static approach, which means to
separate the process of creating simulators on local and remote machines. For example, a
simulator with corresponding model is created and registered at a remote machine by
itself, not through remote method call from RMICoordinator. The RMICoordinator can
then create a remote reference for that remote simulator using predefined URL, in
general, a RMI server address plus the model name.

The static approach is more practical for creating remote simulators for large-scale
models such as in 2D or 3D cell spaces due to the time required to pass a large number of
model components by value as required in the dynamic approach.

3.3 Local Simulator vs. Remote Simulator
It is not always effective to create a simulator as a remote reference to a remote

simulator. In some case, if the model is set in the same machine as the RMICoordinator, it
is more efficient to create the simulator just as local object. Fig. 3-2 shows the relation
ship among local and remote CoupledSimulators/CoupledCoordinators.

Fig. 3-2 Local vs. Remote Simulator

It should be noted that in the RMICoordinator construction phase, a simulator
reference can be created either as local object reference or as remote object reference. The
difference here is that the local simulator object is created and initialized when a local
simulator object reference is created; however, when a remote simulator object reference
is created, it points to the remote object created in different address space or JVM, which
either can be created by dynamic or static way mentioned in section 3.2.
Following is a piece of code that illustrates the creation of local simulator or remote
simulator depending on the model’s putWhere() attribute.

public void setRMISimulators() throws Exception,RemoteException{
….
if(iod instanceof atomic)
{

RMICoordinator

Local
Coupled
Coordinator

Remote Coupled
Coordinator (Remote
Reference)

Local
Coupled
Simulator

Remote Coupled
Simulator(Remote
Reference)

Local
coupled
simulator

Local
coupled
coordinator

coupled
simulator

coupled
coordinatorLocal

coupled
simulator …

Local
coupled
simulator

coupled
simulator

coupled
simulator

.

.

.

Remote Machine

coupled
coordinator

if(iod.putWhere().equals(localHost.getHostAddress()) ||
iod.putWhere().equals(localHost.getHostName())){

addSimulator(iod);
}
else{
String url="rmi://"+iod.putWhere()+":1199/"+iod.getName();
addRemoteSimulator(iod,url);
}
}

….
}
tellAllSimsSetModToSim();

}

3.5 Dynamic simulator and model migration across machine
The key technology used in DEVS/RMI to make the run-time reconfiguration of

simulation possible is Java RMI object persistence. RMI supports the object serialization
and reconstruction in remote JVM with persistent data which is the key concern when a
model is migrated to another machine during simulation run-time. As shown in Fig. 3-2,
The remote simulator/model pair on machine 1 can be dynamically migrated to machine
2 using predefined RMI procedure. The data consistency of the pair will be maintained
with only the change of their remote reference in the simulation controller.

Fig 3-2 Dynamic Simulator and Model Migration

3.5.1 Dynamic model reconfiguration in Distributed Environment
Dynamic model reconfiguration has been studied and implemented by Hu [14] in

DEVSJAVA as so-called variable structure. It is a very useful method to express the
dynamic model structure change for modeling complex and dynamic system. DEVS/RMI
natively supports this feature without change of the original implementation if the
relevant models are local for RMICoordinator. Furthermore, DEVS/RMI can also support
the model reconfiguration even if the models are remote to the RMICoordinator , by
which way the dynamic model structure reconfiguration in a distributed environment is
straightforward.

RMI Naming
Server

Remote
Simulator

Model

RMI Naming
Server

Remote
Simulator

Model

Machine 1 Machine 2

Dynamic
Object
Migration

As shown in the following piece of code in atomic class, the model in remote machine
can locate the RMICoordinator by the attribute coordWhere, and then remotely call the
addRMICoupling(…) or removeRMICoupling(…) methods in the RMICoordinator, by
which way the RMICoordinator is updated with new model structure information.

public void addRMICouplingR(String src,String p1,String
dest,String p2)throws RemoteException{
digraph P = (digraph)getParent();
if(P!=null){

P.addPair(new Pair(src,p1),new Pair(dest,p2));
try{
RMICoordinatorInterface rc = (RMICoordinatorInterface)
Naming.lookup("rmi://"+coordWhere+":1200/co");
rc.addRMICoupling(src,p1,dest,p2);
}catch(Exception e1){}

3.4 Model Partition in DEVS/RMI

In DEVS/RMI, model partitions can be performed either in a static way or in a fully
dynamic way. Models can pass a parameter to remote simulator or they can pre-exist on
the remote machine.

3.4.1 Static model partition

Static model partition is implemented in the model construction phase and then
manipulated by the corresponding simulator. As shown in the following code, a new
ViewableAtomic model is created with name “rainFall” and is put to machine “t2”. In
such a way, the model can be assigned to computing node during the initialization phase
of simulation. To partition a large-scale cell space using some predefined manner is also
straightforward by assigning selected columns or rows of cells to certain node.

ViewableAtomic rain_proc = new rainfall("rainFall","t2");
add(rain_proc);

3.4.2 Dynamic model partition

Dynamic model partition means that the model partition can be changed during
simulation runtime. In dynamic model partition, the models need to be dynamically
passed to remote machine as a parameter. The simulation controller can apply a new
partition plan with the help of dynamic simulator/model migration supported by
DEVS/RMI. The simulation loop can temporarily stopped during this process and then
resume its execution after the new partition plan is applied.

3 Experimentation

3.5 Introduction

In order to verify the effectiveness of DEVS/RMI on simulating large and complex
dynamic system, it is necessary to select a model system that can represent one of such

kind of system. In this experiment, a valley fever model [15] is chosen to be simulated on
a Linux based cluster of computers with the support of DEVS/RMI. Relevant
experimental results are collected and analyzed.

3.6 Valley fever model

The Agent-based Valley Fever Model valley fever model initially designed by
Bultman, Fisher and Gettings [15] is a 2D dynamic cell space model to represent how the
fungal spores grow on a patch of field over a long period of time with given
environmental conditions such as wind, rain, moisture and etc. As shown on Fig 4-1, it
consists of several individual model components: wind model, rainfall model, coupling
control model and patch model. All these components are DEVS atomic models except
patch model, a DEVS coupled model consisting of an atomic model called “Sporing
Process” and another atomic model called “environment”. All these models are put to a
2D cell space DEVS diagraph and the patch models are in fact have x-y coordinator in the
cell space. The wind model and the rainfall model are both statistic models which can
generated wind data and rain data periodically. The output from them are then sent to the
coupling control model which uses the input rain data and wind data to determine the
dynamic coupling of rain model with patches as well as the dynamic coupling among
patches. This model structure highly dynamic and changes its structure every simulation
step.

Fig. 4-1 Valley Fever Model in DEVSJAVASimView

3.7 Distributed Simulation of Valley Fever Model

3.7.1 Linux Cluster

In this experiment, 10 nodes of a 40 node Linux cluster are used to test the valley
fever model under DEVS/RMI. Each node in the cluster has a AMD Athlon XP 2400+
with 2GHz CPU and 512M physical memory and all the nodes are connected by 100M
Ethernet switch. The operating system of each node is GNU/Linux 2.4.20 with Java
Runtime 1.4.1-01 installed.

4.3.2 Partition Model Components to Clusters
In this experiment, the static model partition mentioned above in section 3.7.1 is used

in order to reduce the cost of dynamically creating remote simulators with model passing
as parameter. Several different partition methods are implemented for testing, it was
found that the distributing other model component except patch cells did not have much
difference regarding the simulation execution time. With the increase of the patch cells
for the model, it is easier to see that it is necessary to partition these cells.

Therefore, the patch cell space are evenly divided by columns according to the
number of computing node, for example, to partition a 10 by 10 patch spaces on 5 nodes,
every two columns of cells will be put to one node. All the other model components are
put with the RMICoordinator. On each computing node, a program called “testserver” is
started to start RMI registry by itself and create a set of simulator/model pairs which
belong to this node according the model’s putWhere() attributes, then the references of the
simulators are registered with RMI registry for the lookup by the RMICoordinator. After
above mentioned initialization of each node, the RMICoordinator is started at the main
simulation control node.

As shown in Fig. 4-2, a 10 by 10 patch space is divided into 1, 2, 5, 10 nodes
respectively to measure the total simulation time spent in terms of 100 simulation loops.
It can be seen that the simulation time has a significant increase with the increase of the
computing nodes due to the added communication overhead, however, there is no
significant execution time increase for simulating the model among two nodes, five nodes
and ten nodes.

0

100

200

300

400

500

1 2 5 10

Execution
Time(S)

Fig. 4-2 Simulation execution time(seconds) vs. No. of Computing node in original
model

3.8 Workload injection to the distributed cells

From the experiment result obtained from section 4.3.2, it can be inferred that the
increase of simulation execution time is due to the increased communication load among
the nodes. It is worthwhile to examine what can happen if the workload is increased on
distributed cells without increasing the communication load such as number of RMI calls
through network. A 5 by 5 cell space is tested in terms of 400 simulation loop because
larger cell spaces can cause unacceptable delays for collecting results. Fig 4-3 shows the
situation changes when different workload is injected to the distributed cells. For the left
figure, whenever each patch cell gets an external event, it will calculate the sum of integer
from 1 to 100, it can be seen that the total execution time of overall simulation is slightly
increased for 5 nodes compared with for 1 node. For the right figure, whenever each
patch cell gets an external event, it will calculate the sum of integer from 1 to 150, the
total execution time of overall simulation is greatly reduced when using 5 nodes
compared with using only 1 node. It can be then seen that the workloads on the
distributed cells play an important role in affecting the performance of the distributed
simulation with DEVS/RMI. For the original valley fever model, the distributed cells do
not have enough workload to compensate the cost of increased communication incurred
by RMI calls across network.

0

200

400

600

800

1000

1 5

workload1

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5

workload2

Fig. 4-3 Simulation execution time(seconds) vs. No. of Computing node under different
workload on distributed cells

4 DEVS/RMI Performance Issues

3.9 Speedup of the Simulation with Increased Workload
3.10

From the experiment performed on the cluster, it was found that the performance of
DEVS/RMI highly depends on the model component partition, especially the model
component workload partition. For example, if the distributed components or cells have
less workload, the performance of the simulation can become worse compared with that
in single machine due to the latency of the network and the remote method calls among
distributed simulators. When the workload on cells increases without increasing the
number of RMI calls, such as in the testing case, the speedup of the simulation is
significant when running the model on cluster with DEVS/RMI.

3.11 Dynamic Model Reconfiguration in Distributed Environment

Dynamic model reconfiguration in distributed environment is fully supported in
DEVS/RMI. However, the change of model structure such as coupling information
among distributed machines is costly due to the RMI calls and network latency. For
instance, if the coupling control model in the experimental case is placed with the
RMICoordinator, the dynamic coupling is then determined by local calls instead of
remote method calls, thus, the reduced cost from RMI calls can then benefit the overall
performance of the simulation on cluster.

3.12 Simulation of Large Models

Another important issue that needs to be considered is that it is impossible to
simulate a valley fever java model in single machine with a cell space larger than 85 by
85 because of limited memory. This implies that there is a limitation of problem size
when simulating large-scale cell space on single machine, which can be solved by
distributing the large size model to a computer cluster with DEVS/RMI. In such
situations, distributing the model to multiple computing nodes is the only solution so long
as the performance is not overly degraded by a communications burden.

3.13 Other Performance Considerations

In general, Sun’s RMI used in DEVS/RMI should not be the best implementation for
high performance distributed simulation. However, a large-scale model still achieve
performance advantages using DEVS/RMI if the distributed model components can be
designed to have a large workload. If an alternative high-speed RMI protocol is
implemented in DEVS/RMI, it can be expected that a high performance fully object-
oriented distributed simulation environment can be built to solve very complex and large
simulation problem.

7 Applications to Test and Evaluation

We have developed the DEVS/RMI approach because it is well-suited for complex,
computationally intensive workload testing programs such as the Joint Interoperability
Test Command’s 6016C standards conformance testing project. This testing project is a
semi-automated suite of tools that translates the natural language standard and converts it
to an XML expression of the standard that can then be evaluated and translated into a
series of automated tests. The analysis of the dependencies of the standard and the
subsequent automated test case generation require “higher” performance or traditional
high performance computational platforms in the form of clusters or shared memory
systems in order to produce comprehensive scientific experimentation and robust
standards conformance testing. Other applications of DEVS/JAVA based RMI HPC
include automated test case generation for other standards, the local and distributed
analysis of test data, and development of monologic and dialogic data for testing
scenarios such as those used in Joint Distributed Engineering Plant (JDEP). The effort
and resources required to work in other more traditional HPC environments such as MPI

or PVM make development of time critical experiments and tests an unacceptably slow
process. In contrast, DEVS/RMI provides an extremely flexible and efficient software
development environment for rapid development of tests.

5 Conclusions

In this paper, DEVS/RMI system is presented as a natively distributed simulation
system based on standard version of DEVSJAVA with support for dynamic structure
models, auto-adaptive and reconfigurable simulation. This system reduces the overhead
that is added by middleware solution for the distributed simulation. A test case of a large-
scale 2D dynamic cell space model was studied and analyzed to demonstrate the
effectiveness of employing the DEVS/RMI system on a cluster of computers.

We have noted that scientific and engineering analyses differ from training applications in
that the ability to replicate results is critical, the demand for accuracy is typically higher
and the causality and relative timing of events must be preserved. Let us review to what
extent the DEVS/RMI system can address the requirements of a highly demanding
distributed simulation environment as expressed earlier.

The DEVS formalism affords the flexibility to handle a wide range of dynamic,
information exchange an dialogic behaviors. Its rigorous framework provides for
accurate modeling and simulation and time management that is provably correct.

DEVS’s modular and hierarchical model construction and associated abstract
simulator protocol support model reuse and composability with dynamic system
semantics thus enabling institutionalized reuse of simulation model assets.

DEVS/RMI supports DEVS Model Continuity. Although restricted models
developed in DEVSJAVA, DEVS/RMI supports basic development of systems in
virtual time-managed mode through their model implementations in a single
machine, and enables easy distribution of such models over networks and clusters
to gain the advantages of distributed simulation. Although currently DEVS/RMI
does not support stage-wise transition to real-time hardware in the loop
implementation, the work by Hu[14] to support model continuity in DEVSJAVA
can be extended using the same RMI approach as discussed here.

We have shown how DEVS/RMI can provide Quality of Service in that it can
provide acceptable simulation performance when migrating DEVSJAVA from
single machine to distributed form. For future work, better RMI implementations
other than Sun’s, such as Manta RMI system, needs to be considered to get higher
performance. Further, repartition algorithms for hierarchical DEVS models, such
as defined by Park [13], need to be implemented in DEVS/RMI and compared
with their implementations on existing distributed DEVS simulation
environments. With the native support of RMI, no additional simulation time
management needs to be considered when distributing the simulators to remote

nodes because RMI supports the synchronization of local objects with remote
ones. Also migration of models with persistent data can be done seamlessly. For
these reasons, we believe that comparison with other implementations will
establish performance advantages for DEVS/RMI.

It is interesting to note that rapid technological advances continually change the
definition of high performance computing. For example, the HPC capabilities of the 60s
and 70s are surpassed by today’s laptop computers; even a relatively small Linux cluster
can now out perform most massively parallel systems from the 80s and early 90s. Being
based on a mathematical formalism, such as DEVS, the methodology we describe in this
paper is not hardware technology dependent. Indeed, using DEVS/RMI, we can take
advantage of current or future clusters or shared memory assets, whatever their
performance capabilities. We need the high-performance capabilities to address both
complexity and temporal demands of experimentation and testing. In the applications
described above, multiple processors are needed to handle computations that are
interdependent, and we need the results to provide standards conformance or
interoperability certification as quickly as possible to deliver critical experimental results
thoroughly tested systems.

References
1. www.gridforum.org/
2. Bernard P.Zeigler, Tag Gon Kim and Herbert Praehofer, “Theory of Modeling and Simulation”,

Academic Press, 2000.
3. Chungman Seo, Sunwoo Park, Byounguk Kim, Saehoon Cheon, Bernard P. Zeigler, “Implementation

of Distributed High-performance DEVS Simulation Framework in the Grid Computing
Environment” , 2004 High Peformance Computing Symposium.

4. Saehoon Cheon, Chungman Seo, Sunwoo Park, Bernard P.Zeigler, “Design and Implementation of
Distributed DEVS Simulation in a Peer to Peer Network System” , 2004 Military, Government, and
Aerospace Simulation.

5. Jong-keun Lee, Min-Woo Lee, Sung-Do Chi, “DEVS/HLA-Based Modeling and Simulation for
Intelligent Transportation Systems”, SIMULATION, Vol. 79, No. 8, 423-439 (2003).

6. Bernard P.Zeigler, Doohwan Kim, Stephen J. Buckley, “Distributed supply chain simulation in a
DEVS/CORBA execution environment”, December 1999 Proceedings of the 31st conference on
Winter simulation: Simulation---a bridge to the future - Volume 2.

7. Bernard P.Zeigler, Yoonkeon Moon, Doohwan Kim, Jeong Geun Kim, “DEVS-C++: A High
Performance Modelling and Simulation Environment”, January 1996, Proceedings of the 29th Hawaii
International Conference on System Sciences (HICSS'96) Volume 1: Software Technology and
Architecture.

8. http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/DevsJavaUserGuidev1.1.zip.
9. http://java.sun.com/docs/books/tutorial/rmi/
10. Jason Maassen, Rob van Nieuwpoort, Ronald Veldema,Henri E. Bal, and Aske Plaat. “An efficient

implementation of Java's remote method invocation”, In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP, pages 173-182, May 1999.

11. Michael Philippsen, Bernhard Haumacher and Christian Nester, “More Efficient
Serialization and RMI for Java”, In Concurrency: Practice and Experience
12(7):495-518, John Wiley & Sons, Ltd., Chichester,West Sussix, May 2000.

12. Ntaimo, L., Khargharia, B., Zeigler, B.P, and Vasconcelos, M., "Forest fire spread and
suppression in DEVS", SIMULATION, Vol 80, No. 10.

13. Park, Sunwoo, “Cost-based partitioning for Distributed Simulation of Hierarchical
Modular DEVS Models”, Ph. D. Dissertation, The University of Arizona, 2003

14. Xiaolin Hu, Bernard P.Zeigler and Saurabh Mittal Dynamic Reconfiguration in DEVS
Component-based Modeling and Simulation, Simulation: Transactions of the Society of
Modeling and Simulation International, November 2003

15. R. Jammalalika, et. al., Re-implemenation of an Agent-based ValleyFever Model (Originally
Developed by Bultman and Fisher by Gettings) in DEVS, DEVS Symposium, April, 2005.

16. X. Hu, Ph. D. Dissertation: A Simulation-based Software Development
Methodology for Distributed Real-time Systems, Fall 2003, Electrical and
Computer Engineering Dept., University of Arizona

Acknowledgement and Thanks

The authors would especially like to acknowledge and thank Dr. Mark Gettings and Dr.
Mark Bultman of the USGS for the use of the USGS Beowulf cluster and for the
opportunity to use their experimental frame and data. We look forward to cooperating
and supporting their projects more in the future.

