
Distributed, Parallel Simulation of Multiple, Deliberative Agents 

A.M.Uhrmacher K.Gugler 
Department of Computer Science 

Universit~it Ulm 
D-89069 Ulm 

Germany 
e-mail: lin@informatik.uni-ulm.de, kgugler@mathematik.uni-ulm.de 

A b s t r a c t  

Multi-agent systems comprise multiple, deliberative 
agents embedded in and recreating patterns of interactions. 
Each agent's execution consumes considerable storage and 
calculation capacities. For testing multi-agent systems, dis- 
tributed parallel simulation techniques are required that 
take the dynamic pattern of composition and interaction of 
multi-agent systems into account. Analyzing the behavior 
of agents in virtual, dynamic environments necessitates re- 
lating the simulation time to the actual execution time of 
agents. Since the execution time of deliberative components 
can hardly be foretold, conservative techniques based on 
lookahead are not applicable. On the other hand, optimistic 
techniques become very expensive if mobile agents and the 
creation and deletion of model components are affected by a 
rollback. The developed simulation layer of JAMES (a Java 
Based Agent Modeling Environment for Simulation) imple- 
ments a moderately optimistic strategy which splits simu- 
lation and external deliberation into different threads and 
allows simulation and deliberation to proceed concurrently 
by utilizing simulation events as synchronization points. 

1 I n t r o d u c t i o n  

The definition of agents subsumes a multitude of differ- 
ent facets [17]. Agents are reactive, deliberative, or com- 
bine reactive with deliberative capabilities. They should be 
sufficiently flexible to adapt to changing environments and 
changing requirements. Reasoning strategies allow them to 
anticipate the consequences of possible actions and choose 
the most rational action. Deliberation is typically a time and 
space consuming operation. Hybrid agents combine delib- 
eration with a reactive behavior pattern to allow timely re- 
actions within a dynamic environment. Besides these "com- 
plex" internal processes, multi-agent systems exhibit struc- 

tural behavior as well [14]. Agents are mobile and solve 
problems by creating new software components during run- 
time, moving between locations, and initiating or joining 
groups of other software components [5]. 

JAMES, a Java-Based Agent Modeling Environment for 
Simulation, [15, 16] constitutes a framework which is 
aimed at supporting experiments with agents under tem- 
poral and resource constraints. Its core libraries provide 
the means for the description of variable structure models 
and their distributed, parallel execution. For that purpose, 
JAMES reuses and combines concepts of distributed systems 
and parallel discrete event simulation with ideas of endo- 
morphy, i.e. models which contain internal models about 
themselves and their environment [18], and variable struc- 
ture models, i.e. models whose description entails the pos- 
sibility to change their own structure and behavior [15, 16]. 
The focus of this paper will be on the parallel simulation 
techniques employed. 

2 JAMES - A S h o r t  Sketch  

The model design in JAMES resembles that of parallel 
DEVS (Discrete Event System Specification) [19], enriched 
by means to support variable structures. Time triggered au- 
tomata with the ability to assess and access their own struc- 
ture are the coarse frame for the description of BDI agents 
whose attitudes comprises beliefs, desires, and intentions 
[15], and other agent architectures and for testing single 
modules, e.g. planning or learning components. 

As does DEVS, JAMES distinguishes between atomic and 
coupled models. Testing of agents means rooting mental at- 
titudes within the state of an atomic model, embedding de- 
liberation, reaction and filtering of options within the state 
transition functions, and transforming the activities of an 
agent into JAMES constructs. An agent might need some 
time to decide which action to take, this "reaction" and 
"deliberation" time is translated into the atomic model's 

0-7695-0677-1/00 $10.00 © 2000 IEEE 
101 



Agent 

Cognitive Component 

- -  ~ Dis-~ 
name 
beliefs, 
desires, O ~  
intentions 

, position, 
/ tiles, score, 

fuelLevcl 

 id-E'°en' 

Figure 1. Agents in TILEWORLD 

time-advance function. The chosen action of  an agent are 
translated into outputs of  the atomic model or into invoking 
JAMES methods to initiate structural changes, e.g. adding 
an agent to a location (Figure 1). 

Atomic models are able to create new models, to add ex- 
isting ones within the embedding coupled model. They can 
delete themselves, and determine their interaction with their 
environment. A model can initiate its movement from one 
location to another. It can initiate its move, but for its com- 
pletion, i.e. for being embedded within the new context, it 
needs the cooperation of an on-site model. To initiate struc- 
tural changes elsewhere agents have to turn to communi- 
cation and negotiation in JAMES. Thus, a movement from 
one coupled model to another implies that another atomic 
model complies with the request to add the moving model 
into the new interaction context. To facilitate modeling, all 
atomic models are equipped with default methods that al- 
low them to react to requests, e.g. to add models, to create 
new ones, or to delete themselves. However, these default 
reactions can be suppressed to decide deliberately what re- 
quests shall be executed. The range of  structural changes 
a model can directly execute is restricted to avoid conflicts 
between concurrent structural changes [ 16]. 

Typically, the objective of  testing is to analyze how 
agents cope with knowledge constraints, i.e. incomplete 
and uncertain knowledge, and with temporal constraints in 
dynamic and open environments. To test the timeliness of  
an agent's activities within a virtual world, it becomes nec- 
essary to relate the simulation time to the time needed for 
deliberation. 

Some test beds define the simulated time depending on 
the used deliberation component and the size of  the knowl- 
edge base [4], others weigh and count instructions which 
are executed during "deliberation". This presupposes that 
the deliberation component can be executed in a timed en- 
vironment, e.g. "Timed Lisp" which simply overloads the 
standard lisp operators [1]. Most test beds determine the 
deliberation time as a function of  the actually used compu- 
tation time [3]. Even though in this case noise is induced 
due to changing work loads, which hampers repeatable test 

runs, it is the most flexible and simplistic approach in testing 
agent architectures and components. Neither does it presup- 
pose a white box implementation nor a specific implemen- 
tation language. Therefore, we choose this time model to 
facilitate the testing of  different planning systems [ 10]. 

3 The Problem 

Most test beds for multi-agent systems do not execute 
their models concurrently. They simply maintain the illu- 
sion of  simultaneity on a single machine. If  only a single 
deliberative agent is tested in a dynamic environment [1] or 
the coordination strategies of  a moderate number of  reac- 
tive agents [7], there is no need for a distributed, parallel 
execution of  agents. To efficiently test more than a single 
deliberative agent, which consumes significant space and 
computation resources, a concurrent, distributed simulation 
layer is necessary. 

As a first step, we adopted the DEVS parallel simulator in 
JAMES to exploit the parallelism inherent in the model. As 
does DEVS, Parallel DEVS [2] associates with each atomic 
model and each coupled model a simulator and a coordi- 
nator, respectively. Thus, the compositional model finds its 
pendant at the execution level in a hierarchy of processors, 
i.e. simulators and coordinators, controlled by a so-called 
root coordinator. In this hierarchy, coordinators are associ- 
ated with coupled models, and simulators with atomic mod- 
els. The latter form the leafs of  the processor tree. 

As does Parallel DEVS, JAMES propagates messages, so 
called *-messages, top down the model tree each time an 
event is scheduled. Each processor knows how many in- 
puts its associated model will receive at the current time 
step. It waits for these inputs, which are forwarded by 
the #-message, to arrive and executes the transition func- 
tion. Messages indicating the completion of  a transition, 
so called done-messages ,  report the component 's  time of  
next event, and, optionally, structural changes to the coor- 
dinator. Each coordinator waits for all its activated compo- 
nents to finish their transition, executes the indicated struc- 
tural changes, and sends a summary to its own coordinator. 
Eventually, a done-message  reaches the root coordinator. 
Thereafter, the next simulation step is initiated by the root 
coordinator. 

The problem with this approach is apparent. The time 
base of  JAMES is "quasi continuous" and only events which 
happen exactly at the same simulation time are processed 
concurrently. The virtual time an agent needs for gener- 
ating a plan is determined based on the time it needs for 
computation. Thus, the event of  two or more agents deliber- 
ating concurrently will be extremely rare. Not surprisingly, 
distributing the execution has degraded the performance of  
most parallel test runs. 

The agents' transition functions call the deliberation sys- 

102 



tem, e.g. the planning system. Depending on the time actu- 
ally needed by the planning system, each agent will deter- 
mine its time of  next event. The time of  next event forms 
a necessary part of  the done-message  which is sent by the 
simulator to the coordinator. The problem is that each tran- 
sition - and thus the simulator and the entire simulation - 
waits for the planning system to complete. Only thereafter, 
the time of  next event can be determined, and only then a 
done-message  can be sent to the coordinator. Since each 
coordinator waits for all its components to complete, i.e. 
for their done-messages ,  before it sends a done-message  
to its own coordinator, the entire simulation is blocked. The 
absurdness is that the simulator waits for the time actually 
needed for generating the plan to announce its time of  next 
event to its coordinator, rather than for the results. The re- 
sults will not be needed until the simulation has advanced 
to the time of  next event, which might be in the far fu- 
ture. However, all other events are blocked until the time of  
next event, the termination of  the deliberation, is scheduled, 
which unfortunately necessitates executing the deliberation. 

If  the simulator knew this time in advance a planning 
system could run concurrently with the rest of  the simula- 
tion until the time at which the results are needed by the 
simulation, i.e. the time determined as the completion time 
of  the plan. However, this time cannot be predicted. The 
question is whether it can be guaranteed that the plan gener- 
ation will take at least a certain amount of  time to complete. 
Unfortunately, as Logan and Theodoropolous summarize 
their experiences [12], lookaheads are very difficult to de- 
termine for deliberative agents. The execution time of  delib- 
erative components varies within one and the same scenario 
drastically - as not only experiences of  AI researchers show 
in general, but our experiences with testing planning sys- 
tems in particular. We tested two agents equipped with the 
planning system GraphPlan in the TILEWORLD scenario. 
In our first experiments, the generation of  a plan needed be- 
tween 2 seconds and 20 hours on a ULTRA 2 [ 15]. 

Due to the variance of  the deliberation time a conserva- 
tive strategy based on lookaheads seems questionable. An 
alternative are optimistic techniques. Optimistic schemes 
do not strictly avoid causality errors but detect and recover 
from them. A so called s t ragg le r  even t  sent by its influ- 
encers indicates that a component is ahead of  its influencers 
in time. In response the component has to roll back to the 
state before the straggler event happened. It annihilates out- 
puts sent, if any, with time stamps later than that of  the 
straggler event and proceeds by re-processing all the input 
events from the time of the straggler event. 

Keeping track of  prior states might lead to a storage 
problem - in JAMES even more so, since not only the 
state but also the structure of  the overall model has to be 
recorded. Agents move, delete themselves, change their 
couplings and add new components. These structural events 

are subject to rollbacks as any other value changes within a 
component. Thus, it is crucial to determine a time horizon 
prior to which information can be discarded [6] and to keep 
this time horizon close to the current simulation time. 

4 Toward a Solut ion 

The basic idea is not to wait until the planner is com- 
pleted but to create a separate external thread and to return 
a message which indicates that a deliberation process is un- 
der way. Thus, the transition function and the overall sim- 
ulation can proceed. However, as in other synchronization 
protocols, e.g. Moving Time Windows [11] and Bounded 
Time Warp [ 13], barrier synchronizations are introduced to 
prevent the simulation from proceeding too far ahead com- 
pared to the external processes still running. To prevent 
cascading rollbacks over several simulation steps the sim- 
ulation ensures at each step that it is safe to proceed. 

At each step the simulator does not only activate the 
models with imminent events but also those still deliber- 
ating. It applies the r e a l - t i m e - k n o b  function of  the model to 
the time consumed so far by the deliberation process. This 
function relates deliberation time to simulation time. If  the 
"thinking" consumed a sufficiently large amount of  time to 
make a completion prior to the current time impossible, the 
simulator proceeds. Otherwise it waits until it is either safe 
to proceed or the deliberation is finished. Thus, there is no 
need to roll back farther than to the last event and a rollback 
will only require the storage of  one state. 

For integrating real-time processes into the simulation, 
the definition of  models in JAMES is extended: z describes a 
port which is filled by an external source and accessed read- 
only by the model's functions. The r e a l  - t i m e  - k n o b  re- 
lates simulation and deliberation time. Models are equipped 
with methods that allow starting external programs as sepa- 
rate threads. A transition function invokes an external pro- 
gram by using these methods. In any case, transition and 
initialization functions will finish without waiting for the 
results of  the external program. Thus, the simulation can 
continue. 

The simulation system shall allow external, internal, and 
confluent events to take place while an external program is 
active. If an agent is represented as an atomic model (and 
not as a coupled model with different specialized compo- 
nents), this enables an agent to react to external events while 
it is planning or learning. 

4.1 Simulator 

The simulator of  a model is activated by the *-message, 
which indicates an internal, external, or confluent event. 

when an input (*,xCount, t) has been received 

103 



am is the associated model 

amold = O 
i n p C o u n t  = x C o u n t  
o u t C o u n t  = 1 
busy f i zed  = f a l s e  
if t = t f i n i s h e d  charge Z 
if t s t a r t  • O0 

block until 

tstart + real-time-knob(used-time) > t 

V - . b u s y  

b u s y  f i x e d  ---- b u s y  
i f  "~busy f i xed  t h e n  

(* p l a n n e r  f i n i s h e d  j u s t  now *) 
t f i n i s h e d  = t s t a r t  3c r e a l  -- t i m e  -- k n o b ( u s e d  - t i m e )  

f i n i s h e d b a c k u p  = t f i n i s h e d  
t s t a r t  = O0 
i f  t f i n i s h e d  < t t h e n  r o l l b a c k  : t r u e  

endi f 

endi f 

train = m i n ( t n e z t ,  t f i n i s h e d )  
i f  -~rol lback  A ( t  = train V (t  < train A x C o u n t  > 0))  

Sol d ~ s 

tel  d = t las t  
if t = train then 

send (A(z,8)) to parent 

if xCount =0 then 

s = ~ i , t ( z ,  s) 
else 

block until inpCount = 0 

s = ~con(Z,  s ,  xb)  
endi f 

else 
block until inpCount = 0 

s = ~ e z t ( z , s , t  -- t t a s t , x b )  
endi f 

if -~busyfixed A busy then 

t s t a r t  = t 

b u s y f i x e  d = b u s y  
e n d i  f 
a m o l  d = a m  
a m  = p ( s )  

if t : t f i ~ i s h e d  then 

t f i n i s h e d  = OG 
f l u s h ( z )  

t las t  : t 
t he f t  = ttast + ta(s)  
endi f 

send (done, m i n (  tnezt  , t f i n i shed  ), var Struc Request( s ), 
ou tCoun t ,  busy  f ixe d, rollback) 
to parent coordinator 

end 

If  at the current time the completion of  a deliberation 
process is scheduled, the port z is charged with the results 
of  the deliberation process. A value of t s tar t  less than infin- 
ity indicates that an external process is running (parallel to 
the rest of  the simulation). In this case, the simulator blocks 
until the time used for deliberating has reached the current 
simulation time or until the deliberation is finished. Since 
the b u s y  flag can be set asynchronously by the deliberation 
system any time, b u s y l i z e d  is introduced to ensure a con- 
sistent execution. If  the deliberation has been finished, the 
times of  last and next event are determined. If  the delib- 

eration finishes before the time of  the *-message the com- 
pletion marks a straggler event and the variable r e  1 1 b a c k  
is set to true to initiate a rollback. If  the variable r o l l -  
b a c k  is true the simulator will return a done-message  to 
the coordinator which indicates that a rollback is necessary. 

If  the deliberation component is still running or no de- 
liberation component is running to begin with the *-handler 
proceeds as usual. It applies the appropriate state transition 
function, followed by the model transition function p which 
determines whether a new model structure shall replace the 
old one. To support a rollback the old state, the old time of  
last event and the old model structure are recorded. If  no 
internal, external, or confluent event is due and no rollback 
occurred the simulator has only been checked and it returns 
its old time of  next event with the flag b u s y l i ~ e d  still set to 
true. Whether or not an external thread has been started dur- 
ing a transition function is checked by -~busylixe d A b u s y .  

The thread controlling the external process must not reset 
the busy flag if it is finished before this expression has been 
evaluated. Otherwise the simulator will not notice that a 
planner had been started. The simulator holds two slots for 
memorizing the "normal" time of  next event ( t n e z t )  and the 
completion time of  the planner (tf inished). 

The #-handler is responsible for collecting inputs. It re- 
mains unchanged by the revised procedure. It collects the 
inputs and increases the semaphore which will finally kick 
the *-handler into action. 

when an input (#~,y,t) has been received 

block until inpCount > 0 

x b  = x b +  y 
i n p C o u n t  = i n p C o u n t  - 1 

e n d  

A new handler is introduced, the r o l l b a c k - h a n d l e r .  
I f  the r o l l b a c k - h a n d l e r  receives the request to perform 
a rollback from its coordinator it checks whether a roll- 
back was requested by itself. Otherwise, it has to update 
its associated model 's  state. I f  a rollback refers to a time at 
which the agent started deliberating t s t a r t  = t las t  the ex- 
ternal thread has to be stopped and the time tstar t is set to 
infinity. 

If  a structural change is affected by a rollback, the old 
model structure has to be reinstalled (e.g. transition, out- 
put, and time advance functions). Afterwards the rollback 
handler resets the values of  the old state. 

104 



when an input (rollback) has been received 
if rollback then 

rollback = f a l s e  
else 

if tstart : tlast then 
stopdeliberation : 
tstart : oo 

busyfized = f a l s e  
endi f 

i f  a m o l d ~ a m  A amold-~@ 
a m  : amol  d 
arnol d = @ 

endi f 

if t last = f inishedbackup then 

t f in i shed  = finishedbackup 
tlast : tel d 
a m  : arnol d 
s = Sol d 
tnext = tlast + ta(s) 
train = min( tnezt , t f inished ) 

endi f 

s e n d  (done, tmin ~ outC ount~ busy fixed , rollback ) t o  p a r e n t  
e n d  

4.2 Coord inator  

We also need a r o l l b a c k - h a n d i e r  at the level of the 
coordinator - not only to inform its components but also to 
roll back if a structural change has been executed. But let 
us first inspect the necessary changes within the *-handler. 

when an input (* , xCount ,  t) has been received 

varS t ruc  = @ 

nol d = 
n is the associated network 

I M M  : {d 6 D I tneztd : t} 
O M  : {d I d 6 I M M  A outCount  > 0} 
B M  : {d 6 D I busyd} 
I N F  : {d 6 D I 3i 6 0 M . i  6 Id V (xCount  > 0 A d y 6 Id)} 
f o r  e a c h  r 6 I N F  U I M M  U B M  

iCountr  = E d 6 I r N O M  °u tC°un td  
i f  dN E I~ t h e n  

iCountr  = iCountr  + xC oun t  
s e n d  (* , iCoun t r , t )  t o  r ' s  p r o c e s s o r  
actCount  :-- actCount  + 1 

e n d  
b l o c k  u n t i l  actCount  = 0 

tel d : tlast 
tlast = t 
rollback = V d 6 D  rollbackd 

busy : V d 6 D  bUsyd 
i f  -~rollback t h e n  

i f  varStruc-~@ t h e n .  

nol d = n 
n = p(varStruc2Do) 

endi f 
endi f 

tnext : m i n i m u m { t n e x t d }  

outCount  = ~"~{d6Did6idNAtneztd.~tne~t } outCountd 

s e n d  (done, tnezt , 0, outCount, busy, rollback) 
to parent 

end 

When a coordinator is activated by a star message no 
structural changes are pending and no storage of an older 
version of the network is necessary. In PDEVS, proces- 
sors are only activated to indicate an internal, external, 
or confluent event of their associated model. Imminent 
and influenced components respectively their processors 
( I M M  U 1 N F )  have to be informed. In this version, pro- 
cessors that have a deliberation process running ( B M )  are 
activated as well. 

Based on the number of imminents which produce out- 
puts ( O M )  and the existing coupling, the coordinator *- 
handler calculates the number of inputs each component 
will receive. Afterwards the coordinator waits for all its ac- 
tivated components to send a done-message. If no rollback 
has been indicated by any of its components it processes the 
required structural changes. The old network is stored in 
case somewhere else in the overall model a causal error will 
be detected. Delaying the execution of structural changes 
until all transitions have been completed avoids conflicts be- 
tween concurrent structural and non-structural changes. 

If, within this coupled model, no rollback is necessary 
the time of next event and the number of outputs to be pro- 
duced at the next internal or confluent event are determined. 
Together with the rollback and busy flag, this information is 
sent to the parent coordinator which proceeds likewise. 

w h e n  (done, thef t ,  var S t rucRequest ,  outC, b, r) 
has been received from processor p 

block until actCount > 0 

actCount  = actCount  - 1 
varS t ruc2Do  = varS t ruc2Do  U varS t rucReques t  
update information about the sender: 

rollbackp = r 
busyp  = b 
tnextp : tnezt 
outCountp = outC 

e n d  

When a done-message is received the done-handler 
decreases the number of done-messages to be received and 
updates the information about the receiver (rollback and 
busy flag). Finally, the time of next event and outputs to 
be produced are recorded. It adds the received request to 
change the structure of the network to its varStruc2Do.  
The coordinator executes the requested structural changes 
only if no rollback is announced within this coordinator. 

when an input (#,y,t) has been received 

forward outputs (xi,t) produced by i 

according to Zi,j 

if j = d N then to parent coordinator 

else to component j 

end 

The #-handler at the coordinator level remains unmodified. 

105 



/ 
(* o.t) I 

(*.l.t) 

(*.0.t 

(*.2,t) 

;.IS.T,F) 

i (done,t I.T,F) 

(done.t I ,F,F) ( d ~ . t T ,  F) 

(don¢.t I .F.F) ~(donc.t.F.F) " 

Figure 2. Message passing during rollback: a) An event is announced by propagating *-messages top down. 
Processors marked with (*) have to process an internal, external, or confluent event while processors marked (b) have a 
planner running, b) The planner of the bottom left model has just finished planning and a rollback becomes necessary. 
The root-coordinator receives this information through the d o n e  messages, c) All models that processed an event at 
t receive a rollback message and restore their old state, d) The time of next event is determined by propagating done 
messages. 

when an input (rollback) has been received 

if -.rollback then 

n = nol d 
hold = 0 

endi f 

f o r  e a c h  r 6 I M M  U I N F  [J {d 6 BMlrollbackd : true} 
s e n d  (rollback) t o  r '  s p r o c e s s o r  

actCount = actCount + 1 

endi f 

end 

block until actCount = 0 

tnext = m i n i m u m { t n e z t a  } 
outCount  ou tCount  d 2-w{ d6 DldE l d N Atne~t d =gne=t } 

busy : Vd6DbuSyd 
s e n d  (done, tne=t , @, outCount ,  busy, fa lse)  

e n d  

If a rollback reaches a coupled model it checks whether 
it is already aware of a rollback. In this case no struc- 
tural changes have been executed. Otherwise the structural 
changes executed at the network level have to be undone 
by installing the old state of the network, i.e. its old com- 
ponents and the couplings which existed among them. Af- 
terwards, the components are informed about the rollback. 

After the components completed the rollback operation, the 
r o l  lback-handler  of the coordinator will determine the 
time of next event, the number of outputs to be produced 
at the next time step and the busy flag and send its done-  
message to its own parent coordinator. The rollback flag can 
be set to f a l s e  since no successive rollbacks can occur. 

4.3  R o o t  C o o r d i n a t o r  

The root coordinator controls the simulation by sending 
*-messages indicating the time of the next event in the ab- 
stract simulator. This triggers the processing of events in the 
processor tree which is eventually confirmed by a done -  
message from the topmost coordinator. 

tnezt = tnezt (topmost coordinator) 

repeat until tnezt > tEndOfSimulation V (tnem~ = O0 A ~busy) 

if rollback 

send (rollback) to topmost coordinator 

else 

if busy A tnext = oo then 

tnezt : = estimate-tnext () 
send (*,O~tnext) to topmost coordinator 

106 



wait for (done,t,outCount,b,r) from topmost coord. 

tne~t : = t busy := b rollback := r 

If a causality error has been detected the root coor- 
dinator initiates the execution of the rollback through a 
r o l ! b a c k - m e s s a g e .  Otherwise the simulation proceeds 
as usual. There is another problem the root coordinator has 
to handle: if there are deliberation processes running and no 
events are scheduled, i.e. tnext = c~ has been returned to 
the root coordinator. In this case, the root coordinator sends 
a *-message with an estimated tnext, typically a number 
close to infinity. This will cause the simulator to wait until 
at least one of the deliberation processes has finished and 
another event (completion of the process) can be scheduled. 

5 Evaluat ion:  Agents  in TILEWORLD 

Initially, TILEWORLD was developed to test differ- 
ent control, particularly commitment, strategies of IRMA 
agents [9, 8]. 

I 2 I 3 [ 4 5 6 7 

0 i®j I |  

F i g u r e  3. A TILEWORLD scenario [10] 

TILEWORLD (Figure 3) is a two dimensional grid world 
with tiles, which can be moved, and holes, which should 
be filled with tiles. There are obstacles, which impede the 
movement of agents, and gas stations which allow the refill- 
ing of consumed energy. Tiles, holes, and obstacles appear 
and disappear at certain rates, according to global parame- 
ter settings. Thus, the environment displays probabilistic, 
dynamic behavior. 

The effectiveness of an agent is measured in terms of 
scores that summarize the number and kind of holes filled, 
and the type of tiles used for filling. TILEWORLD combines 
a counting problem, how many more tiles of what type does 
the agent need to fill a particular hole, with route planning 
in a grid world. This setting puts only few constraints on the 

search space and implies a costly deliberation with respect 
to computing time and memory. 

The TILEWORLD scenario we have chosen comprises an 
8 by 8 grid, 1000 units of simulation time, and a real-time 
knob, i.e. factor, of 1. Thus, 1 unit of simulation time 
should be about 1 second. The grid elements change, e.g. 
holes and tiles appear and disappear, every 50 time units 
with a probability of 40%. All agents we tested had a scan 
range of 5 grid elements, limited, but sufficient fuel, and 
were planning for two goals simultaneously. Within our 
implementation of TILEWORLD scanning requires intensive 
message exchange. The experiments were run on 2 Ultra 2 
machines equipped with about 200 MB each. Each experi- 
ment consisted of 15 runs. 

We first put our algorithm to test using one single agent 
in the TILEWORLD. The time the simulation runs needed to 
complete averaged slightly less than 1200 seconds. About 
150 of those were due to the scanning activity, and more 
than 900 were due to planning. 

Afterwards, we added another agent to the scenario. For 
the experiment JAMES distributed the model and the pro- 
cessor tree. The agents and their simulators, including their 
planners, were running on different machines. Each of the 
agents was planning an average of more than 900 seconds. 
The total time used for the simulation averaged about 1450 
seconds. About 250 of those were due to the scanning ac- 
tivity of the agents. 

Thus, the 900 additional seconds of planning time for 
the second agent caused almost no additional overhead in 
simulation time. The overhead caused by the sending of 
rollback messages turned out to be negligible. However, we 
did not measure the effort required for saving the state of 
the model. Not surprisingly, running two agents on a single 
machine, requires about twice the computation time. The 
scanning is of course faster but this does not compensate 
for the loss of efficiency caused by the sequential execution 
of the planners. 

6 Conc lus ion  

The testing of multiple, deliberative agents is space- and 
time consuming. External modules are plugged into a frame 
provided by the test bed. The frame provides the interface 
between agent and agent-architecture to be tested and the 
virtual environment agents shall be tested in. 

Since the performance of agents depends significantly on 
their timely decisions, a time model is employed to relate 
the actual or expected execution time of agents to the vir- 
tual time of the test environment. One time model is often 
applied due to its flexibility and simplicity: it clocks the ex- 
ecution of the deliberation component and applies a func- 
tion to transform the consumed time into simulation time. 
Thus, only after the generation of a plan the simulation will 

107 



know at what time to schedule the completion of a deliber- 
ation process. 

The proposed approach splits simulation and external de- 
liberation into different threads. We allow simulation and 
deliberation to proceed concurrently by utilizing simulation 
events as synchronization points. The simulation is delayed 
to guarantee at each step that no rollback beyond the last 
state can occur. The simulation proceeds only if the time 
used by the deliberation process exceeds the current time 
step in simulation time. Thus, stepwise, the entire simula- 
tion and the deliberation processes approach the wallclock 
and simulation time at which a deliberation component will 
finally complete its execution. On the way, other agents 
can start and finish deliberation, models that constitute the 
environment of an agent can proceed with their dynamics. 
Looking at performance, one can say that our algorithm 
simulates several planning agents close to the cost of a sin- 
gle agent, given that a sufficient number of machines are 
available. 

References 

[1] S.D. Anderson. Simulation of Multiple Time- 
Pressured Agents. In Proc. of the Wintersimulation 
Conference, WSC'97, Atlanta, 1997. 

[2] A.C. Chow. Parallel DEVS: A Parallel Hierarchical, 
Modular Modeling Formalism. SCS - Transactions on 
Computer Simulation, 13(2):55-67, 1996. 

[3] P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. 
Howe. Trial by Fire: Understanding the Design Re- 
quirements for Agents in Complex Environments. AI 
Magazine, 10(3):32--48, 1989. 

[4] E. H. Durfee. Coordination of Distributed Problem 
Solvers. Kluwer Academic Publishers, Boston, 1988. 

[5] M. R. Genesereth and S. P. Ketchpel. Software 
Agents. Communications of the ACM, 37(7):48-53, 
1994. 

[6] D. Jefferson and H. Sowizral. Fast Concurrent Simu- 
lation Using the Time Warp Mechanism. In SCS Dis- 
tributed Simulation Conference, pages 63-69, 1985. 

[7] N. Minar, R. Burkhart, C. Langton, and M. Aske- 
nazi. The SWARM Simulation System: A 
Toolkit for Building Multi-Agent Simulations. 
http://www.santafe.edu/projects/swarm, June 1996. 

[8] M. E. Pollack, D. Joslin, A. Nunes, U. Sigalit, and 
E. Eithan. Experimental Investigation of An Agent 
Commitment Strategy. Technical Report 94-31, Uni- 
versity of Pittsburg, Department of Computer Science, 
1994. 

[9] M. E. Pollack and M. Ringuette. Introducing the 
Tileworld: Experimentally Evaluating Agent Archi- 
tectures. In AAAI-90, pages 183-189, Boston, MA, 
1990. 

[10] B. Schattenberg. Agentenmodellierung und - 
evaluierung im Rahmen eines objekt-orientierten, 
verteilten Simulationssystems. Master's thesis, Uni- 
versity of Ulm, Department of Computer Science, 
1998. 

[11] L. Sokol, D. Briscoe, and A. Wieland. Mtw: A strat- 
egy for scheduling discrete simulation events for con- 
current execution. In Proc. of the SCS Western Mul- 
tiConference on Advances in parallel and Distributed 
Simulation., pages 169-173, 1988. 

[12] G. Theodoropoulos and B. Logan. A Framework 
for the Distributed Simulation of Agent-Based Sys- 
tems. In H. Szczerbicka, editor, European Simulation 
Multi Conference - ESM'99, pages 58-65. SCS Eu- 
rope, Ghent, 1999. 

[13] S. Turner and M. Xu. Performance Evaluation of 
the Bounded Time Warp Algorithm. In Proc. of the 
6th Workshop on Parallel and Distributed Simulation, 
pages 117-126, 1992. 

[14] A.M. Uhrmacher. Concepts of Object- and Agent- 
Oriented Simulation. Transactions of the Society of 
Computer Simulation, 14(2):59-67, 1997. 

[15] A.M. Uhrmacher and B. Schattenberg. Agents in Dis- 
crete Event Simulation. In European Simulation Sym- 
posium - ESS'98, Nottingham, October 1998. SCS. 

[16] A.M. Uhrmacher, P. Tyschler, and D. Tyschler. Mod- 
eling and Simulation of Mobile Agents. Future Gen- 
eration Computer Systems, (to appear 2000). 

[17] M.J. Wooldridge and N. R. Jennings. Intelligent 
Agents: Theory and Practice. Knowledge Engineer- 
ing Review, 10(2):115-152, 1995. 

[18] B. P. Zeigler. Object-Oriented Simulation with Hi- 
erarchical Modular Models - Intelligent Agents and 
Endomorphic Systems. Academic Press, San Diego, 
1990. 

[19] B.P. Zeigler, H. Praehofer, and Kim T.G. Theory of 
Modeling and Simulation. Academic Press, 1999. 

108 


