MACE3J: Fast Flexible Distributed Simulation of Large,
Large-Grain Multi-Agent Systems

Les Gasser

ABSTRACT

Scientific study of multi-agent systems (MAS) requires in-
frastructure such as development testbeds and simulation
tools for repeatable, controlled experiments with MAS struc-
ture and behavior. Testbeds and simulation tools are also
critical for MAS education and development. A number of
MAS testbeds currently exist, but to date none meets in a
comprehensive way criteria laid out by many analysts for
general, scientific, experimental study of MAS by a large
community. Moreover, none really scales to very large MAS
or exploits the power of modern distributed computing en-
vironments such as large multiprocessor clusters and com-
putational grids. Because of this, and specifically to fulfill
widespread need for tools supporting distributed collabora-
tive scientific research in large-scale, large-grain MAS, we
created the MACE3J system, a successor to the pioneering
MACE testbed.

MACE3J is a Java-based MAS simulation, integration,
and development testbed, with a supporting library of com-
ponents, examples, and documentation, distributed freely.
MACE3J currently runs on single- and multiprocessor work-
stations, and in large multiprocessor cluster environments.
The MACE3J design is multi-grain, but gives special at-
tention to simulating very large communities of large-grain
agents. It exhibits a significant degree of scalability, and has
been effectively used in fast simulations of over 5,000 agents,
10,000 tasks, and 10M messages, and on multiprocessor con-
figurations of up to 48 processors, with a future target of at
least 1000 processors.

This paper presents MACE3J design criteria and our ap-
proach to a number of critical tradeoffs that, to our knowl-
edge, have not previously been treated explicitly in MAS
literature or platforms. We present the innovative features
of the MACE3J architecture that contribute to its breadth,
flexibility and scalability, and finally give results from the
use of MACE3J in real experiments in realistic MAS do-
mains, both simple and complex.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

AAMAS 02, July 15-19, 2002, Bologna, Italy.

Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Kelvin Kakugawa
Graduate School of Library and Information Science
University of lllinois at Urbana-Champaign
Champaign, IL 61820, USA

{gasser, kakugawa}@uiuc.edu

745

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence|: Multiagent
systems, languages and structures; 1.6.7 [Simulation and
Modeling]: simulation support systems, types of simula-
tion—parallel, distributed, discrete-event; C.1.4 [Parallel
Architectures|: distributed architectures; C.4 [Perfor-
mance of Systems]: modeling techniques

1. INTRODUCTION

Scientific study of multi-agent systems (MAS) requires in-
frastructure such as development testbeds and simulation
tools to perform repeatable, controlled experiments with
MAS structure and behavior. Testbeds and simulation tools
are also useful, if not critical, for MAS education and devel-
opment [9]. MAS researchers do use simulation and system
construction tools widely, and a number of MAS testbeds
have been built (e.g., [2, 6, 11, 22]). Unfortunately, to date
none of these testbeds meets in a comprehensive way the
criteria laid out by a number of analysts for general, scien-
tific, experimental study of MAS by a large community (e.g.,
[5, 9, 12, 15, 18]). Because of this, and specifically to fulfill
our needs for a widely-available tool for scientific research in
large-scale, large-grain MAS, we launched the construction
of the MACE3J system, a successor to the original MACE
testbed [6].

MACE3J is a Java-based MAS simulation, integration,
and development testbed, with a supporting library of com-
ponents, examples, and documentation, distributed freely.
MACE3J currently runs on single- and multiprocessor work-
stations, and in multiprocessor cluster environments such
as Sun multiprocessor clusters or the SGI Origin (both of
which we use). The MACE3J design is multi-grain, but
gives special attention to simulating very large communities
of large-grain agents. It exhibits a significant degree of scal-
ability, and has been effectively used in fast simulations of
over 5,000 agents, 10,000 tasks, and 10M messages, and on
multiprocessor configurations of up to 48 processors, with a
future target of at least 1000 processors.

This paper presents MACE3J design criteria and our ap-
proach to a number of critical tradeoffs that, to our knowl-
edge, have not previously been treated explicitly in MAS
literature or platforms. We present the innovative features
of the MACE3J architecture that contribute to its breadth,
flexibility and scalability, and finally give results from the
use of MACE3J in real experiments in realistic MAS do-
mains, both simple and complex.

2. RELATED WORK

Simulation and experimentation is a mainstay of MAS re-
search, but there has been surprisingly little analysis of the
general requirements for a range of MAS needs. This general
analysis is important to identify the shared requirements of
many projects and how to address them with new infrastruc-
tures targeted at the community level, rather than at indi-
vidual projects. Based on such analyses, community level
infrastructures will help strengthen the scientific quality of
MAS research by improving the sharing of models, data, and
results. Two such recent analyses are presented in [5, 9]; an
earlier one is [12]. Here we review several projects related to
the design goals and approaches of MACE3J, with the aims
of illustrating a) the breadth of need, b) the specialized focus
of many tools, c) the range of functionality, flexibility, and
application considered important, and d) specific approaches
taken. There is a number of MAS testbed and simulation
projects, and space precludes treatment of all of them, so we
present a representative cross-section and summary of the
main themes.

21 MACE

The original MACE [6] was a truly-distributed object-
oriented system running on early-generation workstation net-
works and first-generation distributed- and shared-memory
multiprocessors. The 1986 version of MACE included im-
plementations of the following ideas that influenced several
other MAS testbeds, and have now become mainstream: 1)
user-interface agents; i) acquaintance databases that model
attributes of other agents; i) multi-level “agentified” infras-
tructure (experiment-construction agents and a collection of
system agents in the MACE kernel); iv) 'pluggable’ testbed
interfaces that allow seamless agent transitions from simu-
lated contexts to actual real-world operating conditions; v)
visualization and display of multi-agent system behavior as a
central issue and research topic (that is still under-studied;
cf. [16]); and wvi) the philosophy of using a specific social
model to design a multi-agent system. However, MACE in-
cluded no notion of environment models (cf. 2, 4, 15, 22]

2.2 High-Level Architecture

HLA/RTI [14] is a very generic, language-independent
architectural specification (not implementation) for an in-
frastructure that integrates simulation components (“feder-
ates”) into robust, controllable aggregates (“federations”).
The “RunTime Interface” (RTI) is a specification of how
to implement the core services of HLA, e.g., with specific
Java or C++ bindings. An RTI implementation provides
interfaces and services that federation designers can call
upon to integrate active simulations and synchronize them,
including registration, time management, inter-federate in-
teraction, definitions of shared objects. HLA/RTI is not
specifically agent-based, and typical agent-oriented services
(message passing, agent communication languages, middle-
ware services, addressing, coordination infrastructures, etc.)
are not an intrinsic part of HLA/RTI. From the perspec-
tive of the MACE3J project, it is most appropriate to view
HLA/RTI as source of language, metaphors and specifica-
tions for MACE3J, a potential integration substrate beneath
MACE3J, and/or a potential integration target for stan-
dalone MACE3J simulations (i.e., one MACE3J simulation
as single HLA /RT1I federate). There is no free, open-source
implementation of HLA/RTI. Though quite complete as a

746

general integration approach, model construction overhead
is high because many kinds of interaction must be fully spec-
ified 19, 20].

2.3 SSF

The Scalable Simulation Framework (SSF) [3] is, like HLA,
a specification for a set of entities and simulation services.
Again, it isn’t specifically agent-based, and typical agent-
oriented services are not an intrinsic part. There is a C++
implementation of SSF and apparently some work on a Java
implementation. SSF was originally designed for very large
discrete event simulations of very large scale distributed pro-
cesses such as operating layers of the internet, and the C++
SSF implementations have been used in 1M node exper-
iments. The SSF is a very general model with just five
core entities: Event, Entity, inChannel, outChannel, and
process. SSF introduces the notion of flexible coalignment
among a group of entities to a common timeline. The coalign-
ment concept is a very clean abstraction for simulation, and
has been adopted in MACE3J. Like HLA, it is most appro-
priate to view SSF as source of language, metaphors and
specifications for MACE3J.

24 PDESMAS

PDES-MAS [15] is a relatively new project, whose main
focus is how to use optimistic (look-ahead) simulation tech-
niques to improve the performance of environment-based
MAS models. When a collection of agents interacts with
a globally shared environment, the environment can create
a speed bottleneck even if the individual agents are concur-
rently simulated. The approach of PDES-MAS is to dynam-
ically partition a shared environment into “interest areas”
which provide local constraints on agent-agent interaction.
Interaction within separate interest areas can be executed
concurrently, helping gain overall speedup of a simulation.
To our knowledge, there is no current free software imple-
mentation available.

25 MASS

The UMASS Multi-Agent System Simulator (MASS) is
designed for creating sophisticated autonomous agents that
are reactive to their environment, and that perform goal-
oriented decision-making under constraining conditions such
as deadlines and resource tradeoffs [22]. MASS agents are
created using the component-based Java Agent Framework
(JAF), and environment simulation uses the Task Analysis,
Environmental Modeling and Simulation language TAEMS
[4]. The environment itself contains global shared variables
that are used to control agent coalignment during a sim-
ulation. MASS also has exploited the notion of making
seamless, flexible transitions between simulated and real-
world tasks. Using JAF, the MASS-specific components in
an agent can be replaced with components that interact di-
rectly with the real world, allowing for a separation between
the agent’s logic and its environmental interactions. The
agent and environment models in MASS are specific to the
JAF and TAEMS models.

2.6 RePast and Swarm

RePast [2] is a derivative of the ideas in the well-known
Swarm toolkit, developed in Java (which gives it a poten-
tially wider audience than Swarm in Objective C). RePast
contains flexible agent and environment modeling facilities,

display tools that include graphs and movies, and flexible
data capture, streaming and monitoring facilities. A par-
ticular distinguishing characteristic of RePast is it nested
timing model, in which allows a designer to model a very
complex hierarchy of simulation events. RePast contains
no communication (messaging) facility, and is designed for
single-processor environments; the timing model is particu-
larly tricky to distribute across multiple processors.

2.7 MADKIit

MADKIT [11] is an agent construction testbed in Java
characterized by a novel kernel architecture. One of MAD-
KIT’s aims, like the original MACE, is to integrate a specific
social model as a foundation for system design. MADKit is
based on kernel-level support for systems built of groups
of agents, each of which holds one or more roles. Groups
and roles provide structuring abstractions that pervade all
of MADXKit’s facilities. Like the original MACE, MADKit
uses system-level agents to build the framework for user-
level multi-agent interactions. One advantage of this ap-
proach is that the framework itself can change and adapt as
the modeling and simulation needs change. Every MADKit
agent an interface by default, and MADKit contains a het-
erogeneous, flexible set of tools for building agents including
Java, JPython, JScheme languages

3. MACE3JDESIGN GOALSAND TRADE-
OFFS

These specifications, frameworks, and testbeds illustrate
the range of issues with which MAS infrastructure researchers
have grappled. Taken together, they provide an exciting po-
tential landscape for experimentation. However there are
many gaps, summarized here, and validated by our own ex-
perience with most of the actual software. First, none of the
agent-specific testbeds have facilities for importing agents
designed for other testbed environments. In general, their
specificity militates against agent-technology sharing. As an
integration framework HLA comes closest, but it provides
no specific enactment facilities of its own, and HLA is just
a specification. Second, few testbeds are freely available,
highly operational, well-documented, scalable, and oriented
to large-grain MAS. RePast, very stable and adequately doc-
umented, probably comes closest, but it contains no com-
munication model and isn’t scalable to multiprocessors. Fi-
nally information-gathering is the aim of experimentation,
and few of these testbeds have rich facilities for instrumen-
tation, information gathering, and display (Again, RePast
comes closest, to our knowledge). With this background in
mind, we describe MACE3J’s design goals and tradeoffs.

The overriding aim of MACE3J is to support scientific
approaches to the study of Multi-Agent Systems, in a way
that also supports practical application. In our view, any
scientifically oriented simulation testbed should satisfy at
least the following three objectives:

1. Transitionable Models: A simulation is a model of
a process or artifact—it’s not the real thing. Yet it is often
desirable to “unplug” simulated objects and transition them
in to real environments for a simulation-to-use development
trajectory or simply for dual-use. But simulation per se
has different aims than use, such as explorations of the ef-
ficacy of conceptual simplifications entailed by modeling, or
repeatable testing under specific controlled scenarios. The

747

easier it is to migrate an agent into a distributed computing
environments, the more positive exposure and application
agent technology is likely to have.

2. Generation of knowledge about behavior and
structure: Models are built because researchers want sim-
plified ways to study phenomena or objects. Hence a central
alm is the generation of knowledge, and a simulation envi-
ronment should support the gathering, representation, and
analysis of information in order to do so. A number of so-
called simulations and simulation testbeds overlook this key
aspect.

3. Repeatability and control: Many widely used ex-
perimental methods require controlling conditions and be-
havior, and simulations are very good at this, within as-
sumptions and limitations of model simplification and vali-
dation. There are typically two approaches. In Monte-Carlo
simulations, experimenters “control for” extrinsic fluctua-
tions in interactions and behavior by allowing them to oc-
cur. By making many runs per scenario, statistical ma-
nipulations (e.g., averaging) can be used to eliminate the
effects of irrelevant fluctuations. An alternative approach
to eliminating the effects of fluctuations in experiments is to
make fewer runs per scenario, but to randomize aspects (like
execution order or message delivery sequencing) that could
introduce unwanted experimental artifacts. The randomiza-
tion approach can make the experimental process more effi-
cient because fewer runs are needed, but experimenters need
to give careful attention to what aspects will be controlled
by randomization. To support the randomization approach,
a testbed needs to support careful, selective control of de-
terministic action. Ideally, repeatability and control should
be policy choices, and simulation support should allow flex-
ibility on them.

Toward these ends, MACE3J has extensive support for:

1. A selectable combination of deterministic (simulation-
driven), user-driven, environment-driven, and/or prob-
abilistic control of simulation events. This allows sim-
ulations to be re-run exactly, while supporting prob-
abilistic control of behavioral and timing aspects of
simulations such as message delay and system failure
(e.g., failure of message delivery or of execution).

2. Flexible data gathering and behavior visualization via
user-defined and system-defined probes and data chan-
nels.

. Flexible control and steering of simulations through ac-
tive user involvement in changing simulation parame-
ters at run-time (blurring the distinction between sim-
ulation and enactment and facilitating agent transi-
tions to application).

. Reusable components for constructing ActiveObjects’,
environments, and experiments, coupled with the abil-
ity to flexibly import these components from other
projects.

'MACE3J generalizes the concept of “agents” to ActiveOb-
jects, which are defined in MACE3J with a set of interfaces.
The MACE3J concept of ActiveObjects captures core func-
tionality that allows for implementation of many different
types of “agents”, so we use the term in this paper to de-
note the foundations for a range of typical agent types.

3.1 MACE asa General Model of Collectives
and Interactions

In addition to these straightforward, instrumental aims,
from a more general and more philosophical point of view
MACE is also an experiment in new ways of conceptual-
izing interaction and collective behavior among threaded
(“active”) objects in general. In effect, interactions among
MACE3J’s ActiveObjects (or agents) may be seen as a spe-
cialization of the problem of interaction among objects in
collections. Ideally, an agent-based simulation environment
should be founded on a general and flexible model of object
organization. Toward this end, a collection of primitive orga-
nization and interaction concepts can provide the framework
upon which to construct a flexible simulation environment
like MACE3J. (This idea is in harmony with, for example,
the approach taken in MadKit [11]. MADKit’s underlying
philosophy of using organization-structuring concepts as a
foundation for agent-support environments is in harmony
with our approach.

Simulations built with MACE are designed to be collec-
tions of threaded distributed objects [6, 7], and the structure
of the MACE system is an attempt to build a very general
conceptual framework for dynamically specifiable control of
systematic interactions between such objects. Our idea is
to exploit a very general interaction model to construct a
specific set of constrained object interactions that can be
useful as an agent-based simulation, while maintaining the
flexibility to change the fundamental nature of the simula-
tion model fairly easily. On the one hand, we could have
created a monolithic software system with a single architec-
ture of control, as has been done in every system reviewed
above. On the other hand, we could have constructed an
open, fully flexible actor-based system wherein all control
within MACE and among simulated objects alike was op-
portunistic and message driven. How should we maintain
flexibility and yet have an efficient, targeted framework?

To answer this, we have had to consider carefully the role
and meaning of message-based interaction in a distributed
object system, as differentiated from procedure call inter-
actions or co-routines. In our view, the two aspects that
most clearly differentiate these two positions are a) message-
oriented interactions have a character of mutual control choice
that procedure calls do not, and b) message-oriented interac-
tions imply that messages require (i.e. are open to) semantic
interpretation by message receivers.

For message senders, mutuality of control means that the
choice to send a message is the result of some explicit, sit-
uationally-grounded computation of the need for a message
and of its contents. This computation is a control computa-
tion that is carried out locally by the sender. For message
receivers, the mutuality means that a receiver can choose
whether, when, and how to react to a message. This en-
tails control computations in the receiver that are contexted
against the receiver’s local situation. “Mutual selection” as
a basis for distributed control was first introduced by Davis
and Smith in the Contract Net system, and specifically ori-
ented toward market-like distributed problem solving. Here
we are talking more generally about the natural implica-
tions of any asynchronous message-based communications
and control among semi-autonomous objects that actually
interpret the messages.

Another set of choices that objects or agents make in
message-based communications is a) what to send in a mes-

748

sage in order to foster an expected response, and b) how to
act on a received message. This is the general problem of
how to associate a communicated form with a meaning or
(expected) response, i.e. the general problem of language.
(This particular structural-functional view of language as
the problem of consistently associating linguistic forms with
localized meanings is widely used in the Language Evolu-
tion community; see e.g., [1, 21]. Both of these choices
(what to send and how to interpret what is received) are
made as a result of some computation made by the sender
or receiver object. Such dynamic interpretation clearly adds
to the flexibility of a system, but it also incurs additional
computational overhead. In any case, the explicitly inter-
pretive computation is what differentiates message-oriented
communication from procedure calls, which entail no explicit
interpretation step, just reactive action. For MACE, the key
issue has been which internal, external, and simulated inter-
actions should incorporate this interpretive layer, and which
should be pure, highly-structured, procedure calls.

3.2 Design Dilemmasand Tradeoffs

3.2.1 Agent-Centered vs. Testbed-Centered Auton-
omy

Agents are typically defined as objects with autonomy of
knowledge, control (decisionmaking), and interaction. How-
ever, the degree of control needed for deterministic simula-
tion interacts with the autonomy of an ActiveObject in con-
text. This is a fundamental issue for agent-based simulation
and it appears in the context of time management and en-
vironmental interaction. In an autonomous-objects model,
ActiveObjects are always running in their own processes,
and they explicitly request activation and synchronization
services from the simulator kernel. Under this model, there
may be several general classes of synchronization (possibly in
a nested synchronization model, ala RePast [2]), and user-
defined synchronization classes for events. ActiveObjects
would ’subscribe’ to one or more of these classes of events
and be synchronized on them. Also from this perspective,
the simulator “traps” some object actions and executes them
under a controlled simulation model. Other object actions
are not trapped and proceed in a ’'natural’ way. So, for
example, a communication action may be trapped and han-
dled by the MACE3J MessagingSystem (MMS), or it could
be sent via some sort of 'real’ communication service exter-
nal to MACE3J. In this way the MMS becomes part of the
virtual environment supplied by the testbed, and whether
it gets used or not is be a matter for specification of an
experiment.

An alternative is an autonomous simulator model in which
the simulator kernel creates a thread for an ActiveObject
and starts the object in that thread only when needed (In
many cases, not all potentially-active objects are actually
active during each time slice). Under this model, ActiveOb-
jects have no control over synchronization, are not fully
autonomous, and have environmental interactions that are
strongly mediated by the testbed. The choice between these
two models has strong interactions with the base ActiveOb-
ject model of the testbed.

There is a fairly simple way of merging these two ap-
proaches, which combines object requests with a proxy-ori-
ented interface between the ActiveObject and the testbed,
and this is MACE3J’s approach. ActiveObjects can request

either or both of two kinds of services from the simulator
(specifically from an ActivationGroup: threads and/or syn-
chronization services. Requesting a thread supplies an active
object with a thread of control, and the object is responsi-
ble for relinquishing control and passing it back to MACE3J
when appropriate (this is also the approach taken in HLA
and SSF).

Requesting a “pulse” (here using the terms of the MASS
simulator [22]), would yield a control token sent to the ob-
ject at the appropriate time, knowing that the object was
already active (had a process thread) and needed a synchro-
nization token to begin processing for that time unit. HLA
also provides this method.

3.2.2 Determinismand Control vs. Opportunismand
Realistic Dynamics

Testbed environments for agents can be modeled and sim-
ulated or they can be provided via interfaces to some exter-
nal reality. There are tradeoffs here because the external
reality, while possibly patterned, does not necessarily ex-
hibit the degree of determinism that can lead to repeatable,
controllable experiments. The deep issue for experimenta-
tion and research design is to understand the ramifications
of the loss of realism when an environment is completely
simulated, and to trade these off against the need for re-
peatability and control. This issue has also been raised in
[12, 22, 4]. Again the answer seems to be to provide a variety
of mechanisms to implement a range of policies. Thus, ex-
tending the approach in [22], MACE3J provides flexible and
selective transitions between actual services and simulated
ones without the need for agent reconfiguration, by using
proxies to represent both ActiveObject-to-testbed interac-
tions and testbed-to-environment interactions. In this way,
both the ActiveObjects and the testbed become isolated and
encapsulated with standard interfaces.

This issue also impacts the related issue of whether and
how to migrate ActiveObjects seamlessly from a testbed
environment to real environments. Assuming that the in-
ternal logic of an agent or ActiveObject is consistent with
real-world operation, the proxy approach of MACE makes
flexible transition effective.

3.2.3 Kernd Centralization or Distribution

If testbeds are to be scalable to large agent populations,
they must be designed for multiprocessing environments.
The most prevalent multiprocessor architectures use dis-
tributed memory, and this presents specific challenges for
agent testbeds. Of particular interest is the experimental
overhead associated with programming, starting and man-
aging a collection of resources that are both distributed and
concurrent. The first MACE testbed [6] was designed for
distributed memory environments and used a collection of
distributed kernels. This meant that programmers had to
manage loads, experiment startups, and more. (This is one
reason we were led to and “agentified” testbed system in the
earlier MACE, so that agents could manage large parts of
this burden—necessity being the mother of invention.) Mod-
ern environments for multicomputing however, are begin-
ning to exploit the technology of Single System Image (SSI)
clusters, and the Java Virtual Machine (JVM) is no excep-
tion. (See [13] for pointers to this literature, including the
c¢JVM, Jessica, and Hyperion projects.) Since MACE3J’s
design is targeted for large-grain ActiveObjects, and running

749

many of them within the same JVM can build very large
JVM images very quickly. This has both processing locality
effects and very strong performance effects when real mem-
ory limits are reached. Maintaining a SSI testbed with the
JVM is much easier because the JVM and the underlying
cluster software manage process mapping, load balancing,
inter-processor communication, thread startup, etc. Also,
startup of an SSI image is likely to be more reliable due to
easily centralized control over interactions. However, multi-
ple JVMs have the advantage of being individually smaller
and potentially available on a wider array of machines. At
present, MACE3J relies upon the SSI approach, in part be-
cause we are interested to explore the limits of large-grain
SSI clustering for MAS.

3.2.4 Agent Granularity

There is an obvious tradeoff between the number of Ac-
tiveObjects that can be run realistically with a given set of
resources, and the grain size of the ActiveObjects. This
tradeoff also manifests itself in a number of less-obvious
ways, including the control behavior of synchronization and
speed optimization. An testbed that provides its own round-
robin activation loop for agents (such as RePast) can min-
imize context-switching overhead, but can never scale to
large numbers of large-grain agents. The process creation
and management overhead of a distributed concurrent envi-
ronment is only worthwhile when the benefits of concurrency
outweigh the costs of this overhead, and this is only the case
when the overhead is small relative to the execution time of
the ActiveObjects. This is exactly the case for large-grain
ActiveObjects. Nonetheless to address this tradeoff in a va-
riety of environments for a variety of ActiveObject types,
the MACE3J’s architecture implements several types of en-
actment ranging from a (randomized) round robin process-
ing loop in a single timesliced thread (for large collections of
smaller agents running on a uniprocessor), to individual con-
current processes in separate threads (for large grain agents
in a SSI/multiprocessing environment).

4. ARCHITECTURE

To address these tradeoffs, we have designed a flexible,
lightweight architecture that we view as an extension to the
Java Virtual Machine.

MACE3J has two central organizing ideas—one concern-
ing the nature of collectives whose members act in relation
to one another, and the other concerning the nature of in-
dividual members of those collectives. The foundation for
collectives in MACE3J is a concept (and implemented class)
called the ActivationGroup. The MACE3J concept for rep-
resenting a members of such a collective is “ActiveObject”,
which is not a class, but instead is a family of implemented
interfaces® that define interactions with batch of services
with progressively greater sophistication.

4.1 ActivationGroupsand their Services

2This subsection assumes familiarity with the Java
interface concept. Basically any class that implements an
interface provides the set of methods with specific argument
types that the interface specifies. By doing this, the class’s
type also becomes that of the implemented interface, and
other objects know how to call it in conformance with the
interface definition.

In MACE3J a defined set of ActiveObjects needs access to
some commonly organized services. These services should be
organized in common because of a) the nature of coordina-
tion relationships among objects that are ActivationGroup
members and b) the desire for certain types of control over
interactions among ActiveObjects. The common MACE3J
services for an ActivationGroup are implemented as objects,
as follows:

Registrar is an object that manages membership in the
ActivationGroup and provides the proxies for ActiveOb-
jects to other MACE3J services.

Scheduler is an object that decides what ActivationGroup
member objects to enact in what order. The Scheduler
accepts enactment requests and may randomize object
execution, object failure, etc..

TimeManager is an object that decides when and how to
advance a clock that is global to the ActivationGroup.

MessageSystem is an object that provides message transfer
services for registered ActiveObjects. The Message-
System may randomize message delivery order, mes-
sage failure, noise in message content, etc.

Enactor is an object that provides enactment services, that
is, simulated invocations, MACE3J-allocated threads,
or signals to act (“pulses” in [22]) for objects that have
their own autonomous threads.

Environment is an object that serves as a gateway to a
user-defined MACE3J environment model.

ControlStructure is an object that describes the flow of
control among MACE3J services at a metalevel. For
example, the standard MACE3J ControlStructure
deterministically implements a conservative synchro-
nization regime using a fork-join concurrency model.
The TimeManager only advances when it has deter-
mined that no ActiveObject will receive any events
(e.g. messages) from the past. A more flexible Con-
trolStructure might “agentify” MACE3J services and
interleave their execution in a message-driven manner.

Randomizer is an object that provides (pseudo) random
numbers, probability distributions, and randomization
services based on them.

To support MACE3J’s aim of flexible transfer between
simulated and real environments, agents interact with many
of these services through registered proxies, and the services
interact with their own “real” back-end services with prox-
ies as well. Thus, the Enactor object never knows whether
the agent it is enacting actually has its own autonomous
process thread, possibly on another machine, or is being
run under a MACE3J thread, and never knows whether
its startup method takes place through a procedure call or
via a message sent to a remote location; the proxy hides
this. Agents, too, may not know whether the services such
as Enactor, MessageSystem, or Environment are being pro-
vided by MACE3J itself through simulation, or are passed
through to a”’real” back-end service. In this way, MACE3J’s
design shifts the burden of transparency to the system it-
self, instead of requiring a change in agent code to shift to
the “real world” as a substrate (as in JAF [22]). As long

750

as MACE3J services use the proxies of ActiveObjects and
back-end services, it doesn’t matter if the services are real
or part of a simulation.

4.2 Defining Agents

A critical design goal of MACE3J is to support a very
wide variety of user-built agent types without undue pro-
gramming or code reconfiguration overhead. Unlike many
other testbeds, (but like the original MACE system) the
MACE3J kernel makes virtually no commitment to the in-
ternal architecture of the ActiveObjects that run atop it.
The root interface of the ActiveObject family is the the
Registerable interface. Any Java object can implement
Registerable and then register with an ActivationGroup
instance of MACE3J. A Registerable ActiveObject need
not have a thread of control, and may be executed via a
call from some other Java object. If it desires to receive en-
actment services from MACE3J, it implements an extension
to Registerable called the Enactable interface and makes
at least one enactment request of the ActivationGroup with
which it is registered. ActiveObjects running under MACE3J
need not be time-synchronized (or time-constrained to use
the HLA term [14]), but they may avail themselves of their
ActivationGroup’s time management services by implement-
ing an interface extension to Enactable called TimeSynchro-
nized. Next, MACE3J ActiveObjects need not communi-
cate via messages, but they may do so by implementing
an interface extension to Registerable called Messageable,
which gets them access to their ActivationGroup’s Mes-
sageSystem. Additional interfaces in the ActiveObject fam-
ily include: Sensate, describing agents with “perceptual”
access to a MACE3J environmental model; Effectual, de-
scribing agents that can actuate environmental effectors;
Viewable, describing agents that output and present infor-
mation through a variety of media; and Controllable, de-
scribing agents that can be controlled by other agents or
users. Typically, skeleton implementations of these inter-
faces are also given as abstract classes that a user can easily
extend. Using elements of this family of interfaces, a wide
variety of ActiveObject types can be implemented using
MACE3J services. For example, it is easy to define an Ac-
tiveObject that sends messages using its ActivationGroup’s
MessageSystem, but is neither TimeSynchronized nor En-
actable by MACE3J, running under its own control thread.
Or, one can create a completely simulated ActiveObject that
sends no messages (ala [2]).

For simplicity, MACE3J defines extended interfaces called
Agent and TimeSynchronizedAgent as follows:

public interface Agent
extends Enactable, Messageable

public interface TimeSynchronizedAgent
extends TimeSynchronized, Agent

These two interfaces are accompanied by abstract classes
called AgentImpl and TimeSynchronizedAgentImpl that pro-
vide skeleton implementations. Thus any class that extends
AgentImpl or TimeSynchronizedAgentImpl and implements
the core execute method can register, be executed, be syn-
chronized with others, and/or send/receive messages.

5. EXPERIMENTSAND EVALUATION

Wa have performed three types of experiments and eval-
uations using MACE3J. Each of these is a domain-level ex-
perimental framework that runs under MACE3J and has
been tested in several hardware/software environments in-
cluding both sequential uniprocessor, cluster, and scalable
multiprocessor machines.

TaskModel: TaskModel is a general, parameterizable
agent-based distributed workflow framework, designed for
organization modeling in general, and more specifically for
research into the distributed compositional dynamics of or-
ganization, following [10]. A TaskModel workflow comprises
a set of atomic tasks arranged in a directed graph of arbi-
trary topology. Each task is a specification of an activity
that consumes a specifiable, asynchronously-arriving collec-
tion of task-specific input resource types and transforms
them in a task-specific way to produce a related collection
of task-specific output resource types. The output resource
types are conditionally directed to other tasks as their inputs
(the task-interdependency network may have choice points).
A TaskModel thus specifies conditional relationships among
types of activities, input resources, and output resources.

Agents are the primary loci of action in TaskModel. Each
task is mapped to some agent using a task-to-agent-mapping-
process; at any given time, an agent may handle zero or
more tasks, and task allocation is potentially flexible and
dynamic (cf. [10]. In execution, problem instances (PIs) are
introduced into the TaskModel network, possibly in an asyn-
chronous way, as input resources. Interpreting messages and
processing task instances consumes resources; each agent’s
activities are constrained by the relationship between its
resource utilization function (how much of what resource
is required by each action type) and its available resource
base. Agents receive and process messages containing input
resources, executing the task instance corresponding to a
specific PI when a) all of its PI-relevant inputs, and b) ade-
quate resources, are available (a resource-bounded dataflow
model). In this way, components of individual Pls ‘travel’
through the task and agent network. Multiple Pls can easily
traverse the network in asynchronous and overlapping ways.

Agents exchange input and output resources (products)
by sending messages. To support this messaging under dy-
namic task allocation, each agent must contain a database
of knowledge about the task-agent mapping of tasks that
are interdependent with its own, to compute where to send
outputs and to validate inputs. In the spirit of [10] we call
this information organizational knowledge. Viewed globally,
the aggregated organizational knowledge captures the en-
tire organizational topology in a distributed, overlapping,
localized way.

Thus a ‘minimal agent’ in the TaskModel system has a)
message receiving and sending facilities, b) one or more in-
put message types, ¢) one or more output message types,
d) a local task database containing the set of task (type)
specifications currently allocated to the agent, e) a process
and database for tracking asynchronous problem instance
components and matching them to task types, f) a dynamic
resource allocation system, g) a general task scheduling and
execution procedure, and h) an organizational knowledge
base.

Beyond this structure, the computational granularity of
TaskModel tasks is arbitrary; more complex tasks and denser
task-agent mapping make for larger-grain agents. Varying

751

these two parameters provides a simple way of exploring
MACE3J performance over a wide variety of agent gran-
ularity. Similarly, the number, type, frequency, etc. of
tasks, agents, resources, and Pls can also be varied to exper-
iment with changing performance demands, organizational
reconfiguration, load response, etc. Finally, the TaskModel
framework can be viewed as a multilevel organization model,
with the task-interdependency network comprising one or-
ganization level, and the task-to-agent mapping and inter-
agent message flows comprising a second, higher level. In
this view, individual tasks may be declared to be ActiveOb-
jects having them implement members of the MACE3J in-
terface family discussed above, and agents may then become
composites of lower-level active tasks. This illustrates the
potential for MACE3J to flexibly support multi-level com-
positional frameworks (also a goal of [2]) using a range of
implementations.

As a rough illustration of performance, we have run the
TaskModel environment under MACE3J in experiments with
10,000 tasks mapped to 5,000 agents, and 10 million total
messages exchanged, in under 4 minutes on a 900MhZ/500MB
Athlon uniprocessor, Windows 2000, Sun JVM configura-
tion. We’ve also run TaskModel/MACE3J in multiprocess-
ing mode on the NCSA SGI Origin, but have not yet com-
pleted scaling or performance tests in this environment (fu-
ture work).

Dynamic Information Quality Simulation System
(DIQSS) The MACE3J/DIQSS experiment was designed
to explore the ability of MACE3J to support a legacy agent
application, and to exercise MACE3J’s MVC and user-inter-
face agent facilities. “Information quality dynamics” (IQD)
theories attempt to explain how the overall quality profile of
a large information base (such as a search engine’s web in-
dex or a document repository) evolves as a result of accesses
and interventions by a collection of agents over time [8]. Our
original DIQSS was written in in Visual J4++ in 1999 as a
custom stand-alone simulation, with a hard-coded interface.
It included a parameterized information-base model, several
accessor and intervention agents, and several graphical dis-
plays of evolving IQ parameters. Not having worked with
the DIQSS code in over two years, we ported it to MACE3J
in under 3 hours with identical external functionality, includ-
ing recreating the DIQSS user interfaces as asynchronously-
running MACE3J agents.

Large-Grain Concurrency Model (LGCM) LGCM
is a very simple multi-agent model designed solely to exper-
iment with and validate the multiprocessor scaling behavior
of MACE3J. LGCM creates a parameterizable number of
large-grain agents with parameterizable complexity (>3 sec-
onds cpu time per agent execution). We have run LGCM on
the 1000-processor NCSA SGI Origin multicomputer in con-
figurations of from one to 48 processors with one large-grain
agent per process, and have demonstrated a) complete pro-
cessor utilization and b) almost linear speedup for relatively
independent (few messages) agents. We've duplicated this
result in a 4-processor Sun cluster and on a dual-processor
linux configuration at the GSLIS ISRL.

Overall, MACE3J has proven to be an effective and scal-
able testbed for a variety of implemented multi-agent sys-
tems. It addresses a number of important tradeoffs, and
usefully extends the family of community-sharable tools for
scientific research in MAS.

6. ACKNOWLEDGMENTS

This work was partially supported under NSF grant 99-
81797, by a grant of time on the SGI Origin multiprocessor
from the National Center for Supercomputer Applications
(NCSA) at the University of Illinois, and by the Informa-
tion Systems Research Lab (ISRL) of the Graduate School
of Library and Information Science. We also thank Larry
Jackson and Brynnen Owen for help with the Sun and Linux
cluster experiments, Jeremy Nelson and Eric Rankin for dis-
cussions, help researching related systems, and early speci-
fication of some MACE3J interface components, Walt Scac-
chi for helpful discussions, and the referees for their helpful
comments.

7. REFERENCES

[1] John Batali. Computational Simulations of the
Emergence of Grammar. Chapter 24 in James R.
Hurford, Michael Studdert- Kennedy, and Chris Knight,
Approaches to the Evolution of Language: Social and
Cognitive Bases, Cambridge University Press, 1998.
Nick Collier. RePast: the REcursive Porous Agent
Simulation Toolkit. http://repast.sourceforge.net
(6/2001)

James H. Cowie. Scalable Simulation Framework API

Reference Manual, Version 1.0 Technical Report,

Dartmouth SSF project and SSFNet, March, 1999.

Keith Decker “Task Environment Centered Simulation”

in [17].

Thomas Eiter and Viviana Mascardi. Comparing

Environments for Developing Software Agents.

Technical Report INFSYS RR-1843-01-02 Knowledge

Based Systems Group - E184/3, Institute of

Information Systems Computer Science Department,

Vienna University of Technology, Favoritenstrasse 11,

A-1040 Vienna, Austria/Europe, March 2001.

[6] Les Gasser, Carl Braganza, and Nava Herman, “MACE:
A Flexible Testbed for Distributed AI Research,” in
Michael N. Huhns, ed., Distributed Artificial
Intelligence, Pitman Publishers, 1987, 119-152.

[7] Les Gasser and Jean-Pierre Briot. Object-Based
Concurrent Computation and DAI in N.M. Avouris
and L. Gasser, eds., Distributed Artificial Intelligence:
Theory and Praxis, Kluwer Academic Publishers, 1992.

[8] Les Gasser and Besiki Stvilia “A New Theory of
Information Quality”, GSLIS Technical Report ISRN
UIUCLIS-2001/1+AMAS, 2001.

[9] Les Gasser. MAS Infrastructure Definitions, Needs,
Prospects. in T. Wagner and O Rana, (eds.), /em
Infrastructure for Scalable Multi-agent Systems,
Lecture Notes in Computer Science, Springer, 2001.

[10] Les Gasser and Toru Ishida. A Dynamic
Organizational Architecture for Adaptive Problem
Solving. Proceedings of the 1991 National Conference
on Artificial Intelligence, 1991

[11] O. Gutknecht and J. Ferber. “MadKit: Organizing
heterogeneity with groups in a platform for multiple
multi-agent systems” Research Report LIRMM 97188,
Laboratoire d’informatique, de Robotique, et de
Microelectronique de Montpellier, December 1997.

[12] Steven Hanks, Martha Pollack, and Paul R. Cohen.
Benchmarks, Testbeds, Controlled Experimentation,

2

3

[4

5

and the Design of Agent Architectures. Al Magazine,
14(4) pp 17-42, Winter, 1993.

[13] T. Kielmann, P. Hatcher, L. Bouge, H.E. Bal.
“Enabling Java for High-Performance Computing:
Exploiting Distributed Shared Memory and Remote
Method Invocation.” CACM, 44(10) October, 2001.

[14] Frederick Kuhl, Richard Weatherly, and Judith
Dahmann. Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. Prentice
Hall, 1999.

[15] Brian Logan and Georgos Theodoropoulos. The
Distributed Simulation of Multi-Agent Systems.
Proceedings of the IEEE, Vol 89, No 2, February 2001,
pp 174-185.

[16] Divine Ndumu, Hyacinth Nwana, Lyndon Lee and
Haydn Haynes. Visualisation of Distributed
Multi-Agent Systems in Applied Artifical Intelligence,
Vol 13 (1), 1999, p187-208.

[17] M. Prietula, K. Carley, and L. Gasser. Simulating
Organizations: Computational Models of Institutions
and Groups. AAAI Press/MIT Press, 1998.

[18] Ramzi Suleiman, Nigel Gilbert, and Klaus G.
Troitzsch. Tools and Techniques for Social Science
Simulation. Physica 2000, Berlin, ISBN 3-7908-1265-X,
2000.

[19] Song Choi and Walt Scacchi. Modeling and
Simulating Software Acquisition Process Architectures
Journal of Systems and Software, 59(3) 343-354, 2001.

[20] Milind Tambe. Personal communication concerning
implementation experiences using HLA/.RTI, 2001.

[21] P.E. Trapa and M.A. Nowak. Nash equilibria for an
evolutionary language game. Journal of Mathematical
Biology, 41(2):172-188, 2000.

[22] Regis Vincent, Bryan Horling, and Victor Lesser. An
Agent Infrastructure to Build and Evaluate
Multi-Agent Systems: The Java Agent Framework and
Multi-Agent System Simulator. in T. Wagner and O
Rana, (eds.), /em Infrastructure for Scalable
Multi-agent Systems, Lecture Notes in Computer
Science, Springer, 2001.

APPENDIX
A. MACES3J SYSTEM REQUIREMENTS

Unix or Windows machine with internet connection (for
downloads), Java 1.3 (Sun JDK preferred), a fast proces-
sor (>600Mhz preferred) and significant memory (256 MB or
more). Information on MACE3J availability can be found
at http://www.isrl.uiuc.edu/amag/ (2002).

