RMIX: A Multiprotocol RMI Framework for Java

Dawid Kurzyniec, Tomasz Wrzosek,
and Vaidy Sunderam
Dept. of Math and Computer Science
Emory University, Atlanta, GA
{dawidk,yrd,vss } @mathcs.emory.edu

Abstract

With the increasing adoption of Java for parallel and
distributed computing, there is a strong motivation for en-
hancing the expressive elegance of the RMI paradigm with
flexible and adaptable communication substrates. Java RMI
is an especially powerful and semantically comprehensive
framework for distributed Java applications — but the de-
fault Java RMI implementation is bound to a concrete wire
protocol, JRMP, that is neither interoperable nor very effi-
cient. To address the first issue, libraries have been pro-
posed that provide RMI semantics over different wire proto-
cols such as SOAP or IIOP, making Java interoperable with
Web Services and CORBA. Similarly, alternative high per-
formance RMI implementations have been developed. How-
ever, none of these solutions are designed to work cooper-
atively, and each imposes specific constraints on develop-
ers. This paper describes RMIX: an RMI framework that
supports a variety of dynamically pluggable wire transports
underlying a common and uniform RMI facade. RMIX fa-
cilitates dynamic protocol negotiation in loosely coupled
parallel and distributed systems, and enables the develop-
ment and deployment of applications that are multiproto-
col by nature. Additionally, RMIX offers some enhance-
ments to RMI semantics that are particularly useful in mul-
tiuser environments. We describe the design and prelimi-
nary implementation of RMIX, present two prototype proto-
col providers based on the JRMP and SOAP protocols, and
outline a transition path from legacy RMI applications to
RMIX.

1. Introduction

Parallel and distributed computing has gained renewed
attention with the advent of grid computing, peer-to-peer,
and Web Services paradigms. Java-based frameworks to
support parallel and distributed systems in particular, are re-
ceiving special attention due to their portability and inter-

Aleksander Stominski
Department of Computer Science
Indiana University
Bloomington, IN
aslom@cs.indiana.edu

operability. Remote Method Invocation (RMI) — an adap-
tation of Remote Procedure Call (RPC) for object-oriented
environments — is undoubtedly one of the most popular pro-
gramming paradigms in Java-based distributed systems, ow-
ing to its expressive elegance and comprehensively defined
semantics. RMI allows clients to seamlessly invoke meth-
ods of objects instantiated within remote servers, with well
understood syntax and semantics that are virtually identi-
cal to local method invocations. In Java RMI the imple-
mentation of this paradigm is based on a communication
protocol stack that defines connection management, mes-
sage formats, and data encoding. The “Standard Edition”
Java Platform contains a standard RMI implementation [17]
based on the Java Remote Method Protocol (JRMP) stack.
While JRMP is full-featured and sophisticated, it assumes
the Java object model on both the client and server sides;
thus its usability is limited to pure Java systems. Alterna-
tives to standard Java RMI do exist — for example, RMI-
IIOP [18] enables connectivity with CORBA, while JAX-
RPC [15] uses SOAP/HTTP [1] and provides interoperabil-
ity with Web Services. Similarly, there are RMI implemen-
tations specifically targeted for high performance comput-
ing and optimized for low-latency networks [9, 11, 12, 22].
These alternatives partially address performance issues of
standard RMI, but usually at the cost of decreased function-
ality and cross platform interoperability.

A common drawback of these alternative communica-
tion libraries is that they are not designed to work coopera-
tively. For instance, they usually bind clients to a particular
wire protocol via stubs that must be generated at compile
time, and they assume that a uniform communication fab-
ric is used among communicating parties. This is appro-
priate for tightly coupled systems, but prevents the devel-
opment of more dynamic and loosely coupled applications
with run-time protocol negotiation. Also, the installation
procedures and programming interfaces of these libraries
are implementation-specific, contributing to a steep learning
curve, and, in many cases, effectively limiting broad adop-
tion.

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

In this project, we attempt to address this situation by
introducing a flexible framework that provides a unified fa-
cade over various RMI implementations, both those that cur-
rently exist and those yet to be developed, enabling the dy-
namic selection of transports as appropriate to a given dis-
tributed computing scenario. The actual transports are sup-
ported by pluggable modules, referred to as protocol service
providers. By unifying the programming API and module
deployment process, the proposed RMIX framework strives
to abstract applications away from the specifics of a com-
munication protocol stack, as shown in Figure 1. It supports
loosely coupled, interoperable systems, as well as applica-
tions that are multiprotocol by nature — e.g. those using ef-
ficient protocols to exchange large amounts of data but re-
lying on SOAP for management and event notification. In
addition, the framework introduces several enhancements to
RMI semantics with a view to better supporting multi-user
environments. In particular, RMIX permits the customiza-
tion of endpoints of exported remote objects for different
clients.

<<Java>>
App

‘ RMIX ‘

RMIX || RMIX || RMIX
JRMPX| [XSOAP|| IIOP

Java = Web Services A CORBA

SOAP clients

Figure 1. RMIX Interoperability

This work was motivated by, and provides a foundation
for, the H20 project [19], a distributed computing platform
supporting resource sharing among independent, geograph-
ically dispersed, heterogeneous peers in multiple adminis-
trative domains. In H2O, resources are represented by re-
mote objects that offer services via remote method invo-
cation. The H20 model assumes loose coupling between
service providers and service clients, but it also strives to
provide maximum communication performance. To achieve
this goal, H20 uses SOAP as a first-contact protocol, with
subsequent negotiation between the client and server for
more efficient, specialized protocols to link actual applica-
tion modules. Although RMIX was designed to address ex-
actly this need, we believe that it will be applicable and use-
ful in any situation where dynamic selection of transports
within a unified RMI framework is needed.

This paper describes the design and architecture of the

RMIX framework. In a companion paper [10], we present
a complementary perspective related to the application of
RMIX in heterogeneous systems. The remainder of this pa-
per is organized as follows. In section 2, we discuss related
work, and in section 3, we present the design and proto-
type implementation of the RMIX framework. In section
4, we describe two transport protocol service providers that
are currently available as part of our framework: the JRMPX
service provider based on standard Java RMI/JRMP, and the
XSOAP service provider based on standalone XSOAP soft-
ware [13] that uses SOAP as the underlying protocol. Sec-
tion 5 discusses the transition path from legacy RMI appli-
cations to RMIX. Finally, section 6 concludes the paper with
some discussion of ideas for future work.

2. Related work

The RMIX project aims to unify RMI API and seman-
tics, and is designed to embrace various RMI implemen-
tations within a common framework. Such an approach
can leverage the strengths of (multiple) existing RMI sys-
tems/libraries and provide users with the ability to ex-
ploit the best features of each. In particular, dynamic
(re)selection of the best suited underlying RMI runtime is
provided, thus enabling flexibility and efficiency without re-
quiring additional programming, staging of stub and skele-
ton classes, or additional daemons.

The issues of universal connectivity and scenarios of dy-
namic protocol negotiation have previously been discussed
in the context of the SoapRMI system [5], but to the best
of our knowledge, a completely designed and implemented
multiprotocol Java RMI system does not currently exist. In
the research community, typical efforts to improve RMI be-
gin with an analysis and investigation of RMI limitations
and propose new, improved RMI frameworks [12, 9, 11].
KaRMI [12] is one such system that focuses on improv-
ing performance and offers some interesting capabilities.
KaRMI is a drop-in replacement for standard Java RMI,
written in pure Java and exploiting optimized serializa-
tion. KaRMI supports non-TCP/IP communication net-
works, e.g. Myrinet, to provide a very efficient tool for
cluster-wide RMI computations. However, KaRMI is not
interoperable with ordinary RMI applications and services.
KaRMI is a mature system that has now evolved into a dis-
tributed framework called JavaParty [6].

There are also other approaches like Manta [22], that sac-
rifices Java portability and uses native code to achieve the
best possible performance. Manta is a native Java com-
piler that compiles Java source code to Intel x86 executa-
bles. Manta focuses on achieving source level compati-
bility (instead of typical bytecode compatibility) with Java
codes. Because of this, code using Manta is no longer easily
portable and requires additional modifications to execute in

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

new environments. Our proposed RMIX system is imple-
mented in standard Java, therefore, although it minimally
sacrifices performance, the full complement of Java porta-
bility features is retained.

Web Services [23] represent a general trend to simplify
the integration and access of heterogeneous services on the
Internet. One example of a commercial Web Service toolkit
and hosting environment is Systinet WASP (Web Applica-
tions and Services Platform) [20]. WASP is a commercial
product that supports all popular Web Service technologies
including SOAP, WSDL and UDDI. Although WASP has a
customizable protocol stack and can leverage multiple pro-
tocols, it assumes that these protocols are XML-based —
which precludes its use in high performance applications.

When compared to the RMI model, Web Services present
the user with a much lower level of abstraction for dis-
tributed computing. However, nothing prevents one from
creating an RMI layer on top of Web Services, as exempli-
fied by XSOAP [13], and as is further explored within the
RMIX framework (see Section 4.2). Via such an approach,
a simple and elegant RMI API can be provided for accessing
heterogeneous resources over the Web.

3. RMIX Design and Implementation

The RMIX project strives to encompass various RMI
protocol service providers within a single, unified frame-
work. Such a problem definition leads to the major research
question of how the framework’s interface contract should
be defined, i.e. common RMI semantics that providers are
required to adhere to and clients can depend on. On the one
hand, such semantics must be simple enough: (1) to be sup-
portable even by non-sophisticated wire protocols; and (2)
so that existing implementations may be ported to RMIX
with small modifications. On the other hand, they must be
powerful enough to allow clients to exploit the framework
as seamlessly as possible, i.e. with minimal dependencies
on actual provider implementations.

3.1. Invocation Model

To our advantage, most existing Java RMI implementa-
tions have adopted the base model and semantics defined
by the native Java RMI specification [17]. Remote access
is realized through client-side stubs of exported remote ob-
jects. Stubs implement remote interfaces that are identical to
their target objects, and they forward invocations of remote
methods to their target objects. Remote interfaces must ex-
tend java.rmi.Remote, and all of their methods must
be declared to throw java.rmi.RemoteException to
reflect potential communication failures. Due to the lack
of shared address space, parameters of remote methods are
passed by value, except for remote object references that

are substituted on the wire by their stubs, being effectively
passed by reference. In RMIX, these semantics must be ful-
filled by all provider implementations.

3.2. Serialization

Different RMI implementations vary significantly with
respect to serialization of parameters passed to remote meth-
ods. At one extreme, standard Java RMI/JRMP, based on the
Java platform serialization, is able to handle any serializable
Java object whose state may be otherwise inaccessible from
outside. At the other extreme, some useful RMI implemen-
tations may depend on restricted encodings (like XDR [8])
imposing significant limitations on serialization. For max-
imum flexibility, RMIX mandates only that the following
to be serializable by all protocol providers: primitive types,
strings, arrays of primitive types, arrays of strings, remote
references, and final classes with all fields being primitives
or strings that additionally have getfer and setter methods
(conforming to the Java bean design pattern [16]) for all of
these fields that are not public. In particular, providers are
not required to support polymorphism and object graphs, al-
though many of them will.

However, providers are required to support serializable
remote references, including alien references, i.e. stubs cre-
ated by other providers. This feature is essential for dynamic
protocol switching: for instance, it is necessary to support
the transmission of JRMP references over SOAP, and vice-
versa. To aid in fulfilling this requirement without intro-
ducing explicit inter-provider dependencies, RMIX defines
a unified remote reference format, that serves as a protocol
switching lingua franca.

3.3. Registry

During the lifetime of a distributed application, remote
references can be directly exchanged between a client and a
server. However, a bootstrap mechanism is usually needed
to establish first contact. The exact means of this mecha-
nism varies. In the original RMI, it takes the form of the
rmiregistry utility. Similarly, the notion of a naming
service is used in CORBA environments. Web Services
introduce a more versatile registration and lookup mecha-
nism in terms of WSDL service descriptors [3], and WS-
Inspection [7] documents grouping them along with addi-
tional metadata, UDDI registries [21], and more. In fact,
even some out-of-band mechanisms (like e-mail, or voice
telephony) may be used. Considering this variety, we be-
lieve that the choice of an appropriate strategy should be
left to the application. Therefore, RMIX does not man-
date any particular type of discovery mechanism. How-
ever, for backward compatibility and to provide some com-
mon ground, compliance with rmiregistry is provided,

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

i.e. application may store any RMIX remote reference in the
rmiregistry. This feature exploits the aforementioned
unified remote reference format, so it does not require any
additional support from the providers.

3.4. Enhancements of Export Semantics

In standard Java RMI, a remote object has a single end-
point that exposes its complete functionality, i.e. it permits
the invocation of any of the object’s remote methods. In
RMIX, remote objects may have multiple endpoints. Some
of these endpoints may be independently supported by dif-
ferent RMI protocol providers.

<<XSOAP/C++>> %
Stub

Manager

Access Manage

T

Service Client
Access [SOAP]

<<JAX-RPC>>
Access, Manage [SOAP] Stub

<<JRMPX>>
Stub

Access [JRMPX] Client

Figure 2. Customizable multiple endpoints

target object ‘ %

RMIX interceptor ‘ ‘ stub ‘
provider
ServerRef RemoteRef
transport ‘ ‘ transport ‘
server side client side

Figure 3. RMIX invocation stack

A common application-level usage scenario would be to
publish the information about multiple endpoints within a
registry service (e.g. in the form of a WSDL document)
leaving the choice of a specific remote binding to clients.
Even within a single protocol, RMIX allows the creation of
multiple, customizable endpoints per remote object. Specif-
ically, it is possible to restrict the set of exported remote
interfaces on a per-endpoint (and effectively per-user) basis,
as shown in Figure 2. Further, any endpoint may be asso-
ciated with an application-defined interceptor, guarding re-
mote method invocations on that endpoint, as shown in Fig-
ure 3. Common use of interceptors is to implement dynamic

access control policies, e.g. to allow or deny method invoca-
tions depending on custom, dynamically changing criteria.
Also, provider-specific customization is possible; e.g. dif-
ferent socket factories may be used for different endpoints.
These enhancements (in conjunction with standard Java se-
curity APIs) aid the development of multi-user distributed
applications, as they enable isolating authorization policies
at the level of a remote endpoint, separating them from the
application logic.

3.5. Remote Object Identities

In RMI, any two stubs pointing to the same remote object
are equal in terms of the equals and hashCode methods.
RMIX extends this feature even further, over independent
protocol providers. This is achieved by introducing a com-
mon identification scheme based on globally unique identi-
fiers (GUID) and derived from appropriate mechanics found
in standard RMI. This feature aids in identification of re-
mote aliases and it allows to store remote references in hash
tables.

3.6. Deployment of RMIX Providers

RMIX unifies not only how different protocol providers
are used, but also how they are installed and managed.
Every protocol provider implementation must be bundled
within a JAR file, with appropriate metadata stored in the
manifest. To install a new RMIX provider, it is sufficient
to place a JAR file containing the required provider classes
in the appropriate directory. Depending on that placement
and on the run-time options, this installation may be system-
wide, user-wide, or application-wide. After installation,
providers become visible to applications (including those
currently running) via dynamic discovery.

4. JRMPX and XSOAP Providers
4.1. JRMPX

JRMPX is the RMIX transport protocol provider that
maintains full Java RMI semantics, e.g. compliance with
the Java serialization specification, support for class annota-
tion, dynamic remote class loading, and distributed garbage
collection. Support for these features have been realized
in RMIX by building JRMPX upon the standard Java RMI
(i.e. using it for tunneling remote calls). Such a design ap-
proach has contributed to the simplicity of JRMPX, which
consists of fewer than 20 simple Java classes. The JRMPX
transport does not depend on any non-public APIs, so it will
remain compatible with upcoming releases of standard Java
RMI. Furthermore, JRMPX will reflect any performance

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

improvements, new features, and bug fixes introduced into
future release of Java RMI.

One drawback of this approach is that it introduces some
invocation overhead. In our preliminary performance tests,
this overhead ranges from 0.5% to 43% per invocation as
compared to the standard RMI. Detailed performance re-
sults can be found in the companion paper [10]. However,
it is important to note that JRMPX, similarly to standard
Java RMLI, is not aimed at performance-critical applications,
trading performance for richer semantics [12]. We thus be-
lieve that the JRMPX overhead is acceptable whenever the
standard RMI overhead is acceptable, and that performance-
critical applications require specific, simpler but more effi-
cient communication protocols.

4.2. XSOAP

The XSOAP toolkit (formerly SoapRMI [13]) is an RMI
system implemented in Java and C++ that uses SOAP as
its wire protocol. This toolkit, besides supporting stan-
dard SOAP 1.1 functionality, provides a convenient remote
method invocation abstraction that works both in Java and
C++. This permits the creation of SOAP based Web Ser-
vices as easily as using the UnicastRemoteObject to
export remote objects in Java RMI. In addition to the RMI
API, every client and server in XSOAP has access to a
SOAP-services module. This module encapsulates all the
SOAP services including SOAP serialization and deserial-
ization that any object may need, including access to lower
level information and functions that are not exposed by the
RMI APL

In order to transform XSOAP into an RMIX transport
service provider, several changes had to be made. Specifi-
cally, proprietary counterparts of the Remote interface and
the RemoteException class were replaced with those
from the standard RMI model. Also, XSOAP’s Unicast-
RemoteObject has been modified to subclass from the
RemoteObject class provided by RMIX. Several new
classes were added, and a number of existing files were
modified, in order to provide support for multiple, customiz-
able endpoints, awareness of alien remote stubs, and seman-
tics of stub comparison.

Our preliminary experiments indicate that the communi-
cation performance of RMIX-XSOAP is very close to the
original XSOAP toolkit, although they are both about an or-
der of magnitude behind standard Java RMI. The poor per-
formance characteristics of SOAP is a well-known issue [2],
intrinsic to its XML ancestry that affects encoding/decoding
time and inflates message sizes. However, because in part
of that very ancestry, SOAP has become increasingly popu-
lar in loosely coupled heterogeneous systems, both in com-
mercial and scientific domains [14, 4, 3]. For that reason,
we consider SOAP to be a crucial component of any multi-
protocol framework. In particular, RMIX-XSOAP enables

Web Service hosting within the “Standard Edition” Java
platform.

5. Migration to RMIX

The main benefit of migrating legacy RMI applications
to RMIX is to enable the use of dynamic stubs and to re-
move dependency on the rmic tool. This may simplify
code maintenance (as the need to distribute and synchro-
nize stub classes between clients vanishes) and/or reduce
startup overhead in applications that would otherwise load
stub classes from the network. Additionally, an application
migrated to RMIX may be able to exploit the best transport
protocol available within a given domain, without a need to
recompile the application itself.

In most cases, the migration only requires mechani-
cal changes to the source files, usually only at the server
side. These include replacement of java.rmi.server.
UnicastRemoteObject with its counterpart from the
RMIX package, and introduction of explicit invocations of
the RMIX API for bootstrap purposes (i.e. within Naming.
bind () calls). Even though RMIX supports multiple, dy-
namically created endpoints per remote object which leads
to slightly modified export semantics, the RMIX version of
UnicastRemoteObject emulates legacy behavior (as-
sociating a remote object with a single, default endpoint),
so that the above substitutions are usually sufficient. Man-
ual corrections may be required in cases when the ap-
plication explicitly depends on the inheritance hierarchy
(e.g. relying on the fact that a given remote object is an
instance of java.rmi.server.RemoteObject), al-
though RMIX tries to mimic the legacy hierarchy to mini-
mize that impact. Also, problems may arise if an application
depends on a new policy (introduced in J2SE 1.3) of send-
ing remote objects by value if they have not been exported.
RMIX always sends remote objects by reference, exporting
them dynamically if required. However, we believe that de-
pending on the new policy (i.e. attempting to send remote
objects by value) is at best questionable practice anyway.

6. Conclusions and Future Work

In this paper, the new communication framework for
Java has been described. The framework, called RMIX, is
an incarnation of the Remote Method Invocation paradigm
that enhances capabilities of standard Java RMI. In partic-
ular, RMIX enables simultaneous use of multiple method
invocation protocols, handled independently by pluggable
and dynamically managed service provider modules. It has
been shown how interoperability between different proto-
col providers was achieved, including mandatory support
for rmiregistry, well defined comparison semantics be-
tween remote stubs backed by different protocol providers,

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

and guarantees of remote stub serializability across proto-
cols. Additionally, RMIX introduces enhancements to the
RMI model that enable customization of remote object end-
points. The paper argues that the RMIX framework sim-
plifies development of various kinds of distributed applica-
tions, including those that need to accommodate different
peers over different protocols, if protocol independence is to
be achieved, or if dynamic protocol negotiation features are
desired. The transition path for legacy RMI applications to-
wards RMIX has been described, along with emerging ben-
efits of such transition. Features of two supplied transport
service providers has been outlined.

We are currently working on several improvements to
RMIX. Some aspects related specifically to interoperability
are discussed in the companion paper [10]. In terms of archi-
tectural improvements, the possibilities of further abstract-
ing applications away from protocol provider implementa-
tions are investigated. The proposed solution is to intro-
duce per-provider properties and RMI conformance levels,
enabling description of capabilities in a generalized form.
This would allow applications to select providers based on
application-specific requirements (that may exceed least-
common-denominator guarantees) without introducing ex-
plicit dependencies. Additionally, the ongoing work focuses
on providing support for message-level security via APIs
and implementations realizing message encryption and dig-
ital signing.

References

[1] D.Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendel-
sohn, H. F. Nielsen, S. Thatte, and D. Winer. Simple Object
Access Protocol (SOAP) 1.1. http://www.w3.org/
TR/SOAP/.

[2] K. Chiu, M. Govindaraju, and R. Bramley. Investigating
the limits of SOAP performance for scientific computing.
In Proceedings of the 11th IEEE International Sympo-
sium on High Performance Distributed Computing, pages
246-254, Edinburgh, Scotland, 2002. Available at http:
//www.extreme.indiana.edu/ “mgovinda/
research/papers/soap-hpdc2002.pdf.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl/.

[4] L Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the Grid: An Open Grid Services Architecture
for distributed systems integration, Jan. 2002. Available
at http://www.globus.org/research/papers/
ogsa.pdf.

[5] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley,
and D. Gannon. Requirements for and Evaluation of RMI
protocols for scientific computing. In Proceedings of the
IEEE/ACM SC2000 Conference, Dallas, Texas, USA, Nov.
2000. Available at http://www.extreme.indiana.
edu/xgws/papers/sc00_paper/.

(6]
(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

[19]

(20]
(21]

(22]

(23]

B. Haumacher and M. Philippsen. JavaParty. http://
www.ipd.uka.de/JavaParty/.

IBM, Microsoft. =~ Web Services Inspection Language
(WS-Inspection). http://www-106.ibm.com/
developerworks/webservices/library/
ws-wsilspec.html?dwzone=webservices.
Internet Engineering Task Force. ONC Remote Procedure
Call. http://www.ietf.org/html.charters/
oncrpc-charter.html.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah,
G. Riley, B. Topol, and M. Ahamad. Efficient implemen-
tations of Java Remote Method Invocation (RMI). In 4th
USENIX Conference on Object-Oriented Technologies and
Systems, pages 19-36, 1998.

D. Kurzyniec, T. Wrzosek, and V. Sunderam. Heterogeneous
access to service-based distributed computing: the RMIX
approach. In 12th International Heterogeneous Computing
Workshop, Nice, France, Apr. 2002.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal,
and A. Plaat. An efficient implementation of Java’s Remote
Method Invocation. In Principles Practice of Parallel Pro-
gramming, pages 173-182, 1999.

C. Nester, M. Philippsen, and B. Haumacher. A more ef-
ficient RMI for Java. In Java Grande, pages 152-159,
1999. Available at http://citeseer.nj.nec.com/
nester99more.html.

A. Slominski, M. Govindaraju, D. Gannon, and R. Bram-
ley. Design of an XML based interoperable RMI sys-
tem: SoapRMI C++/Java. In Proceedings of Paral-
lel and Distributed Processing Techniques and Appli-
cations Conference, Las Vegas, NV, USA, June 2001.
Available at http://www.extreme.indiana.edu/
soap/rmi/design/.

A. Slominski, M. Govindaraju, D. Gannon, and R. Bramley.
SoapRMI events: Design and implementation. Technical Re-
port TR549, Department of Computer Science, Indiana Uni-

versity, May 2001.
Sun Microsystems. Java API for XML-based RPC. http:

//java.sun.com/xml/jaxrpc/.
Sun Microsystems. Java Beans. http://java.sun.

com/products/javabeans/docs/beans.101.

df.
IS)un Microsystems. Java Remote Method Invocation specifi-
cation. http://java.sun.com/products/jdk/1.
2/docs/guide/rmi/spec/rmiTOC.doc.html.
Sun Microsystems. Java RMI over IIOP. http://java.
sun.com/products/rmi-iiop/.
V. Sunderam and D. Kurzyniec. Lightweight self-organizing
frameworks for metacomputing. In The 11th International
Symposium on High Performance Distributed Computing,
pages 113-122, Edinburgh, Scotland, July 2002.
Systinet. WASP (web applications and services platform).
http://www.systinet.com/.
Universal Description, Discovery and Integration (UDDI).
http://www.uddi.org.
R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Effi-
cient load balancing for wide-area divide-and-conquer ap-
plications. ACM SIGPLAN Notices, 36(7):34-43, 2001.
V. Vasudevan. A Web Services primer. http://www.
xml.com/pub/a/2001/04/04/webservices/.

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

	IPDPS 2003
	Return to Main Menu

