User’s Guide and Reference Manual
for the Agent Library provided as part of SPADES
Version 0.7

Patrick Riley <pfr+@cs.cmu.edu>

March 27, 2003

1 Introduction

This is the primary documentation for the agent library provided as part of the
System for Parallel Agent Discrete Event Simulation (SPADES). This document
does not cover the functioning of the main SPADES system, which is covered in
other documentation available at the above URL.

The agent library provides a C++ interface to the interaction of an agent with the
communication server. The library provides basic support for sending and receiving
messages in the correct format. The agent library uses a variety of classes from
the main SPADES library, and provides four primary additional classes (and some
subclasses):

AgentCommInterface This class in the main point of interface. All messages are
sent and received through this class.

ToCSMessage This is a virtual base class. Subclasses provide all the messages that
can be sent to the communication server.

FromCSMessage This is a virtual base class. Subclasses provide all the messages
that can be received from the communication server.

AgentLibraryParam This class is a subclass of ParamReader (described in the main
SPADES documentation) which consists of the parameters for controlling the
agent library.

The agent library also provides the action and error logging facilities discussed
in the main SPADES documentation.

<pfr+@cs.cmu.edu>

2 AgentCommInterface

This class is the main point of interface with the agent library. It provides function-
ality to send and receive messages.
The methods are:

Constructor Sets up for reading and writing to the file descriptors specified by the
parameters input_fd and output_fd, but does not send any messages.

Destructor Closes the pipes for communication with the communication server.

tryMessageRead Tries to read a message from the communication server and return
it. This method never blocks and returns NULL if no message is available.

receiveMessage Like tryMessageRead, except it blocks waiting for a message.
Will call select waiting for a message at most num_select_timeouts times,
each time waiting the value specified by wait_sec and wait_usec. Returns NULL
(and sets the shutdown flag) if there is a timeout or an error on the receiving

pipe.

shouldShutdown Returns whether the shutdown flag is set, either by a call to ini-
tiateShutdown, an error reading from the input pipe, or by a timeout.

initiateShutdown Sets the shutdown flag to true.
getLatestTime Returns the latest time stamp on any message received so far.
send Sends a message (of type ToCSMessage to the communication server.

getOutstandingThinks Gets the number of outstanding think messages. Unless
there is an error, this will always be 0 or 1. In other words, if the agent is in
the middle of thinking cycle, this will be 1, and 0 otherwise.

3 ToCSMessage

This is a virtual base class for messages that can be sent to the communication server
from the agent. The methods on the base class are:

Print This prints a text based representation of the message for use with the <<
operator. It is intended primarily for debugging and informational purposes.

getOutstandingThinkMod Returns how this message affects the number of out-
standing thinks (done thinking returns —1, sensations return +1, etc.).

writeTo This writes the message in the format that the SPADES communication
server understands.

There is one subclass of ToCSMessage for each message that the agent can send to
the communication server. Several of these classes use DataArray which is provided
by SPADES and described in the main documentation.

ToCSMessage Act Takes a DataArray as an argument for the act message to send.

ToCSMessage RequestTimeNotify Takes a integer for the simulation time for which
to request the time notify.

ToCSMessage MigrationData Takes a DataArray with the data to pass to the new
instance of this agent.

ToCSMessage DoneThinking The done thinking messages tells the communication
server that this agent has finished the thinking cycle.

ToCSMessage Exit Notifies the communication server that the agent is exiting.

ToCSMessage_InitDone Notifies the communication server that initialization has
completed.

4 FromCSMessage

This is a virtual base class for messages from the communication server to the agent.
The methods on the base class are:

Print This prints a text based representation of the message for use with the <<
operator. It is intended primarily for debugging and informational purposes.

getOutstandingThinkMod Returns how this message affects the number of out-
standing thinks (done thinking returns —1, sensations return +1, etc.).

accept In order to avoid the user of this library form having to use run time type
casts or other painful things, the class here follow the Visitor design pattern.
In order to handle each different message specially, you can subclass from
FromCSMessage: :Visitor or FromCSMessage: :ConstVisitor. There is one

visit method on each of those classes for each subclass of FromCSMessage.
When you get a message to process, you can call the accept method with
an object which has type of your subclass of FromCSMessage: :Visitor or
FromCSMessage: :ConstVisitor. The appropriate visit method of your ob-
ject will be called.

There is one subclass of FromCSMessage for each message that the agent can
receive from the communication server. Several of these classes use the DataArray
which is provided by SPADES and described in that documentation. The subclasses
of FromCSMessage are:

FromCSMessage InitData After every startup, and initialization data message is
sent. If this is not migration then the data will be empty.

FromCSMessage Exit Tells the agent to exit. No more messages will be sent or
received.

FromCSMessage_Sense This is a sensation. It may or may not start a thinking cycle
(use the getThinking method to find out). You can access the data and times
associated with the sensation.

FromCSMessage TimeNotify The time notify that is sent for every request time
notify message. It may or may not start a thinking cycle (use the getThinking
method to find out).

FromCSMessage MigrationRequest Tells the agent to send back a migration data
message since it is about to be migrated.

FromCSMessage Error An error message from the communication server. The error
token is stored as a string. The possible values and their meanings can be found
in the main SPADES documentation.

FromCSMessage ThinkTime Notifies the agent of the amount of thinking time used
for its last thinking cycle.

5 Parameters

The class AgentLibraryParam contains the following parameters. It further provides
facility for parsing parameters on the command line or in files, as described for the
ParamReader class in the main SPADES documentation.

You will probably want to subclass AgentLibraryParam in order to add your own
parameters.

Name Type Default

Description
logfile_dir String Logfiles
The directory in which to put logfiles.
action_log_fn String actions.log

The name of the file for the action log (recording
debugging information). See the main SPADES
documentation for details.

action_log_level Integer 0
The highest action log level to write to the action
log file. See the main SPADES documentation for
details.

random_seed Integer -1
The number to seed the random number generator
with. Any negative value causes a new seed to be
read from /dev/urandom.

wait_sec Integer(> 0) 5
The seconds to wait in each select call inside of
receiveMessage.

walt_usec Integer(> 0) 0

The microseconds to wait in each select call in-
side of receiveMessage.

num_selects_timeout Integer(> 0) 20
The number of select calls without a message
being received before the agent exits.

input_fd Integer(> 3) 3
The file descriptor on which to read messages from
the communication server. This should match the
value given in the agent type database.

output_fd Integer(> 3) 4
The file descriptor on which to send messages to
the communication server. This should match the
value given in the agent type database.

6 Example of Use

The sample agent provides a more complete example of how to use the agent library.
The section provides some psuedo-code describing the steps you probably want to

go through.
Allocate a parameter object (subclass of AgentLibraryParam)
Call getOptions on that object
Logger: :instance () ->setTagFunction(new AgentTagFunction);
Logger: :instance()->setMaxActionLogLevel (
AgentLibraryParam: :instance()->getActionLogLlevel());
spades: :seedRandom(AgentLibraryParam: : instance () ->getRandomSeed()) ;
Allocate pacsi, of type AgentCommInterface
FromCSMessage* m;
while ((m = pacsi->receiveMessage()) != NULL)
Process message m
delete m;

	1 Introduction
	2 AgentCommInterface
	3 ToCSMessage
	4 FromCSMessage
	5 Parameters
	6 Example of Use

