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Abstract

Swarm is a multi-agent software platform for the simulation of complex adaptive

systems. In the Swarm system the basic unit of simulation is the swarm, a collec-

tion of agents executing a schedule of actions. Swarm supports hierarchical model-

ing approaches whereby agents can be composed of swarms of other agents in nested

structures. Swarm provides object oriented libraries of reusable components for build-

ing models and analyzing, displaying, and controlling experiments on those models.

Swarm is currently available as a beta version in full, free source code form. It requires

the GNU C Compiler, Unix, and X Windows. More information about Swarm can be

obtained from our web pages, http://www.santafe.edu/projects/swarm/.1
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1 Computational Approaches to Complex Systems

In the sciences, especially in the study of complex systems, computer programs have come

to play an important role as scienti�c equipment. Computer simulations | experimental

devices built in software | have taken a place as a companion to physical experimental

devices. Computer models provide many advantages over traditional experimental methods,

but also have several problems. In particular, the actual process of writing software is a

complicated technical task with much room for error.

Early in the development of a scienti�c �eld scientists typically construct their own ex-

perimental equipment: grinding their own lenses, wiring-up their own particle detectors,

even building their own computers. Researchers in new �elds have to be adept engineers,

machinists, and electricians in addition to being scientists. Once a �eld begins to mature,

collaborations between scientists and engineers lead to the development of standardized, re-

liable equipment (e.g., commercially produced microscopes or centrifuges), thereby allowing

scientists to focus on research rather than on tool building. The use of standardized scien-

ti�c apparatus is not only a convenience: it allows one to \divide through" by the common

equipment, thereby aiding the production of repeatable, comparable research results.

In complexity research, at the Santa Fe Institute and elsewhere, we rely heavily on

computers in the course of our investigations. We spend a lot of time constructing our

own experimental apparatus in software, the computational equivalent to blowing our own

glassware. Unfortunately, computer modeling frequently turns good scientists into bad pro-

grammers. Most scientists are not trained as software engineers. As a consequence, many

home-grown computational experimental tools are (from a software engineering perspective)

poorly designed. The results gained from the use of such tools can be di�cult to compare

with other research data and di�cult for others to reproduce because of the quirks and

unknown design decisions in the speci�c software apparatus. Furthermore, writing software

is typically not a good use of a highly specialized scientist's time. In many cases, the same

functional capacities are being rebuilt time and time again by di�erent research groups, a

tremendous duplication of e�ort.

A subtler problem with custom-built computer models is that the �nal software tends to

be very speci�c, a dense tangle of code that is understandable only to the people who wrote

it. Typical simulation software contains a large number of implicit assumptions, accidents

of the way the particular code was written that have nothing to do with the actual model.

And with only low-level source code it is very di�cult to understand the high-level design

and essential components of the model itself. Such software is useful to the people who built

it, but makes it di�cult for other scientists to evaluate and reproduce results.

In order for computer modeling to mature there is a need for a standardized set of well-

engineered software tools usable on a wide variety of systems. The Swarm project aims

to produce such tools through a collaboration between scientists and software engineers.

Swarm is an e�cient, reliable, reusable software apparatus for experimentation. If successful,

Swarm will help scientists focus on research rather than on tool building by giving them a

standardized suite of software tools that provide a well equipped software laboratory.
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2 Multi-agent Discrete Event Simulation

The modeling formalism that Swarm adopts is a collection of independent agents interacting

via discrete events. Within that framework, Swarm makes no assumptions about the par-

ticular sort of model being implemented. There are no domain speci�c requirements such

as particular spatial environments, physical phenomena, agent representations, or interac-

tion patterns. Swarm simulations have been written for such diverse areas as chemistry,

economics, physics, anthropology, ecology, and political science.

The basic unit of a Swarm simulation is the agent. An agent is any actor in a system,

any entity that can generate events that a�ect itself and other agents. Simulations consist

of groups of many interacting agents. For example, an ecosystem simulation could consist of

agents representing coyotes, rabbits, and carrots. In an economic simulation, agents could

be companies, stockbrokers, shareholders, and a central bank. Simulation of discrete inter-

actions between agents stands in contrast to continuous system simulations, where simulated

phenomena are quantities in a system of coupled equations.

Agents de�ne the basic objects in the Swarm system, the simulated components. A

schedule of discrete events on these objects de�nes a process occurring over time. In Swarm,

individual actions take place at some speci�c time; time advances only by events scheduled

at successive times. A schedule is a data structure that combines actions in the speci�c order

in which they should execute. For example, the coyote/rabbit simulation could have three

actions: \rabbits eat carrots," \rabbits hide from coyotes," and \coyotes eat rabbits". Each

action is one discrete event: the schedule combines the three in a speci�c order, e.g. \each

day, have the rabbits eat carrots, then they hide from the coyotes, then the coyotes try to

eat the rabbits". The passage of time is modeled by the execution of the events in some

sequence.

3 Swarms

The fundamental component that organizes the agents of a Swarm model is an object called

a \swarm." A swarm is a collection of agents with a schedule of events over those agents.

For example, a swarm could be a collection of 15 coyotes, 50 rabbits, a garden with carrots,

and a simple schedule: the rabbits eating the carrots and hiding and the coyotes eating the

rabbits (Figure 1). The swarm represents an entire model: it contains the agents as well as

the representation of time.

In addition to being containers for agents, swarms can themselves be agents. A typical

agent is modeled as a set of rules, responses to stimuli. But an agent can also itself be a

swarm: a collection of objects and a schedule of actions. In this case, the agent's behavior

is de�ned by the emergent phenomena of the agents inside its swarm. Hierarchical models

can be built by nesting multiple swarms. For example, one could build a model of a pond

inhabited by single celled animals. At the highest level, a swarm is created that contains

agents: the swarm represents the pond, and each agent represents one animal. The behavior

of cells could be de�ned simply as some algorithm, but a cell is itself a collection of organelles:
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eat hide

Figure 1: A Swarm of Rabbits and Coyotes

a nucleus, mitochondria, endoplasmic reticulum. Another way to represent a cell is as a

swarm of agents, the organelles. Two models are being combined: the pond as a swarm of

cells and the cell as a swarm of organelles.

The ability to build models at various levels can be very powerful. Swarm allows users to

explicitly build and test multi-level models. A swarm can explicitly represent an emergent

structure, a group of agents behaving cohesively as a single agent. Because swarms can

be created and destroyed as the simulation executes, Swarm can be used to model systems

where multiple levels of description dynamically emerge.

Another use of multiple swarms is to support the modeling of agents that themselves build

models of their world. As noted in Hogeweg's MIRROR system [4], in some simulations,

especially those where the agents have a cognitive component, an important factor in the

system dynamics is an agent's own beliefs about its world. In Swarm, agents can themselves

own swarms, models that an agent builds for itself to understand its own world. For example,

in an economic simulation of a swarm of companies the researcher might be interested in the

theory each company has of its competitors' actions. To model this in the Swarm system,

the model builder would give each company-agent its own swarm: these private swarms

implement each company's model of the world.

The formalism of the swarm is a natural way of encapsulating a simulation: a swarm

simply represents a group of agents and their schedule of activity. The modularity and

composability of swarms allows for a exible modeling system. Swarms can be nested to

directly represent multi-level simulations, and they can be used by the agents themselves as

models of their own world.
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Figure 2: Hierarchical Swarms: Rabbits, Rabbit Parts, Individual Cells

4 Object Oriented Technology

The logical structure of swarms of agents interacting through discrete events is implemented

in a straightforward way in Objective C, an object oriented (OO) language. In OO pro-

gramming software consists of the de�nitions of various classes of objects. An object is a

combination of instance variables for the object's state and methods that implement the

object's behavior [7]. In Swarm an agent is modeled directly as an object. Types of agents

(generic coyotes) are classes, and speci�c agents (a particular coyote) are objects, instances

of the Coyote class. Each object carries with it its own state variables, but the generic

de�nition of its behavior is provided by the class.

The instance variables for an object directly represent the state of the agent. For example,

a particular rabbit's mass could be stored as an integer variable in the class Rabbit. The

methods of an object implement the behavior of the agent. Rabbits hide: this is implemented

by having a \hide" method de�ned on class Rabbit. The schedule of activity for a model

is then simply a partially ordered series of such actions to be performed on objects. Each

action speci�es a method to be executed on a target object.

The Swarm system itself is an object framework: a set of class libraries that are designed

to work together. There are seven core libraries in Swarm: defobj, collections, random,

tkobjc, activity, swarmobject, and simtools. The �rst four libraries are support libraries

with potential use outside of Swarm; the last three are Swarm-speci�c. There are also

currently three domain-speci�c libraries available for Swarm model builders: space, ga, and

neuro. The details of each library is discussed below.

In addition to being a natural way to implement multiagent simulations, OO program-

ming is also a convenient technology for building libraries of reusable software. Users can
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Figure 3: Coyote with a Model for Hunting

start to build models by directly instantiating useful classes from the Swarm libraries. If

there is no particular class that has the precisely needed behavior, one can take a preexisting

class and specialize it, adding new variables and methods via inheritance. Inheritance and

OO encapsulation make writing reusable code easier than traditional procedural program-

ming. This in turn makes it easier for people to share Swarm modeling software they have

written, facilitating the exchange of ideas and techniques within simulation communities.

One addition to standard OO programming that Swarm implements is the \probe" facil-

ity. In most computer programs, it is enough that the program does what you want | that

Windows doesn't lose your �les, that your word processor can print out your papers. But in

simulation it is important that all aspects of the computation be observable, that it be easy

for the researcher to measure data from a running model. The Swarm system de�nes the

ability for any object to be probed. Probes allow any object's state to be read or set and

any method to be called in a generic fashion, without requiring extra user code. Probes are

used to make data analysis tools work in a general way and are also the basis of graphical

tools to inspect objects in a running system.

5 Structure of a Swarm Simulation

The core of a Swarm simulation is the modeled world itself. In the simplest case, a model

consists of one swarm inhabited by a group of agents and a schedule of activity for those

agents. The agents themselves are implemented as objects. Agents are created by taking a

class from the Swarm libraries, specializing it for the particular modeling domain, and then

instantiating it, one object per agent. For example, an agent that is a neural network could
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start by taking a general purpose neural network class from the neuro library, adding extra

methods needed for the speci�c type of network, and then creating an instance of it to be

the actual neural network.

In modeling it is common (but not universal) to speak of agents as living in an environ-

ment. Many simulation platforms �x the environment as a particular type; two dimensional

grids are common. A distinguishing feature of Swarm is that there is no design requirement

for a particular kind of environment. For instance, a coyote/rabbit model might have the

rabbits living in the environment of a garden. In Swarm, this environment is itself just

another agent. The garden is simply an instance of a user-de�ned garden agent, perhaps

based on a cellular automata to simulate growth of carrots. The garden agent might have a

special status in the model, but in the underlying software it is treated no di�erently than

any other agent. In the general case, the environment for the agents is the agents themselves:

some agents might have a larger inuence than others, but in Swarm they are considered

fundamentally equivalent.

Once a user has de�ned the agents and established their relationships, the last step in

building the model itself is to put the agents together into a swarm. The user writes a

schedule of activity for the agents, de�ning how time is simulated in the system by creating

a set of actions in a speci�ed ordering. Schedules are built by creating instances of data

structures from the activity library, �lling them in with ordered object/message pairs.

Once the schedule is completed the model swarm is ready to be executed.

A model running by itself is not very interesting: data collection tools are needed to

observe the model and record what is happening. In Swarm measurement happens by the

actions of observer agents, special objects whose purpose it is to observe other objects via the

probe interface (Figure 4). For example, one observer agent might be watching the number

of rabbits and producing a time series graph of population dynamics. Another observer agent

could track the spatial distribution of the coyotes, storing data to a �le for later analysis.

The observer agents themselves are a swarm, a group of agents and a schedule of activity.

By combining this swarm with a model swarm running as a subswarm of the observer, a full

experimental apparatus is created. By using hierarchical swarms to separate data collection

from the model, the model itself remains pure and self-contained, a simulated world under

glass. Di�erent observer swarms can be used to implement di�erent data collection and

experimental control protocols, but the model itself remains unchanged.

6 Swarm Libraries

Swarm libraries serve two major functions. The libraries are a set of classes that model

builders can use by direct instantiation. For many objects, especially highly technical ones

such as schedule data structures, it's likely that all a user will ever do is use the classes as

provided. But in addition, one can use Swarm libraries by subclassing them, specializing

particular classes for particular modeling needs. Both modes of using the Swarm libraries

are important; Swarm is designed to facilitate both as appropriate.
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Figure 4: A Swarm of Observer Agents Measuring a Model

6.1 Simulation Libraries

The main novelty in the Swarm system is the design of the simulation-speci�c libraries

themselves. The swarmobject, activity, and simtools libraries are the center of the

Swarm modeling paradigm; their use is essential to all Swarm models.

The swarmobject library contains the core classes upon which agents in Swarm mod-

els are based. At the center of this library are two classes: SwarmObject and Swarm.

SwarmObject is the root class for all simulated agents: all agent classes inherit behavior

from it. SwarmObject de�nes the basic interface for memory management as well as the

support for probes. In addition, the Swarm class is in the swarmobject library. Model

swarms and observer swarms are written by using code inherited from this base class.

The activity library contains the heart of the simulation mechanism, the scheduling

data structures and execution support. The underlying structure of the activity structures

are partial orders, time dependencies between two events. A common special case of partial

orders is a time-ordered schedule, a clock with speci�c events at particular times. These

schedules are implemented in activity as a collection of actions sorted by timestamp.

Ambiguity can occur in partial orders and time-based schedules as a result of two or

more actions scheduled at the same time or in the same relative order. Swarm resolves

such ambiguity by de�ning a \concurrent group type," an explicit indication of how to

execute a group of actions that are de�ned at the same time. Options include running the

group in an arbitrary, �xed order; running the group in a random order every time; or

actually running each action concurrently, for future implementation on parallel machines.

The explicit notation of a concurrent group type helps to expose and remove any hidden

assumptions in the time structure of a model.

8



The �nal Swarm library speci�cally for simulation is the simtools library, a miscellaneous

collection of classes needed to build simulations. simtools contains classes to control the

execution of the entire simulation apparatus. Two modes of operation are supported: a

fully graphical mode for interactive exploration and a batch mode for o�ine data collection.

simtools also contains the data analysis and display support. The library contains classes

that can generate summaries of statistical data, draw time series graphs, etc. Data analysis

objects are completely generic in their application; users specify the particular data to collect

by creating probes on the observed objects.

6.2 Software Support Libraries

In addition to simulation support libraries, Swarm also contains libraries that were writ-

ten to support modeling but could also have applications beyond simulation. Whereas the

simulation-speci�c libraries are used to de�ne and execute the Swarm style of simulation, the

defobj, collections, random, and tkobjc libraries do the more prosaic job of encapsulating

the basic engineering tasks that are needed to write e�ective software.

defobj and collections are a set of general-purpose tools for building OO programs.

collections implements the container classes used to track objects in a system: maps,

lists, sets, etc. defobj de�nes the infrastructure for the Swarm object model. It augments

the basic Objective C runtime to support tunable implementations, a split between object

interface and implementation that provides highly optimized speci�c solutions to customiz-

able forms of abstract object designs. This framework is used by the collections library to

provide a group of classes that are simple to use but have complicated machinery underneath

to e�ciently handle a wide variety of object tracking needs.

The random library gives the user a suite of random number generators. In computer

simulation the quality of random number generators is absolutely essential: it is very easy

to have subtly wrong results because of a generator with biases or correlations. The Swarm

random number library includes several classes of generators drawn from published research.

It includes a bibliography as well as tested implementations. Because the library itself is

object oriented it is simple to have multiple, independent random number streams, a feature

that aids repeatability of experiments.

The �nal library of basic programming support in Swarm is tkobjc, a graphical user

interface library based on Tcl/Tk [6], which in turn is based on X windows. The classes

in tkobjc encapsulate the basic objects needed to make a user interface: buttons, raster

displays, histograms, graphs, forms, etc. The library itself is intended to be very simple

and easy to use, implementing enough for common graphics needs. If a tkobjc class is not

powerful enough, a user can use the lower Tcl/Tk level to write more speci�c code.

6.3 Model-speci�c Libraries

In addition to the support and simulation libraries required for all Swarm applications there

are several optional libraries that can be used for particular modeling domains. Libraries exist
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to support two dimensional spaces, genetic algorithms, and neural networks. Development

e�ort for Swarm so far has concentrated on the required libraries; now that the Swarm

infrastructure is in place, e�ort is shifting towards building more model-speci�c libraries.

There are many opportunities for user-contributed code.

The Swarm distribution comes with a simple space library, a set of classes for two di-

mensional discrete lattices. These sorts of spaces are common in ecosystem simulations.

The base class in space is an two dimensional array that stores objects or integer values

at particular grid points. Several classes inherit from this base to provide dynamics, for in-

stance a cellular automata approximation to di�usion. The current space library is merely

a suggestion of the kinds of environments a model could use: in the future, we plan to have

spaces with continuous values and dynamics de�ned by di�erential equations. Spaces with

other topologies are also crucial: three dimensions, non-discrete coordinates, and arbitrary

graph structures are all needed by applications.

The �nal libraries currently available for Swarm are the ga and neuro libraries. This

code represents Swarm's �rst user-contributed libraries, software written by Juan J. Merelo

while visiting the Santa Fe Institute. ga provides a set of classes for basic genetic algorithms;

neuro implements a variety of neural networks. As Swarm matures, we hope that it will

grow with the contributions of users.

7 User Community

Swarm is a service to the community of researchers building computers simulations. Com-

puter programs have become an important aspect of experimental science and yet few general

purpose tools exist to help people write models. The goal of Swarm is to provide consistent

experimental tools in the form of libraries of carefully designed, implemented and tested

code. Such libraries can also be developed and exchanged within user communities that

organize and maintain the model-building components applicable to their shared needs.

Swarm de�nes a structure for simulations, a framework within which models are built.

The core commitment is to a discrete-event simulation of multiple agents using an object-

oriented representation. To these basic choices Swarm adds the concept of the \swarm," a

collection of agents with a schedule of activity. The swarm is the basic structural element of

a model: it is the basic collection that allows scaling within large models, and also supports

the modeling of complex, multi-level dynamics including agents that model their own world.

In all these choices, the goal of Swarm is to enable a higher level of representation for

simulations, thereby making it easier to understand, implement, repeat, and communicate

computer models.

Since Swarm's �rst limited beta release in October 1995, some thirty groups of users have

installed Swarm and are actively writing models with it. There is already one �nished paper

that presents results accomplished with Swarm [5]; in the coming months we expect a series

of further models developed by Swarm users, with published results following close behind.

In the next few months we will have a �nished, version 1.0 release of Swarm. Our goal is

to create a distribution that is simple, complete, well documented, and bug-free. Our longer

10



term goal is to foster a community of modelers, researchers who use computer software

for experimental science. Swarm is already helping to provide focal point for discussion of

simulation techniques and methodology. Swarm can also facilitate the sharing of modeling

components and libraries within particular research communities, fostering an important

form of intellectual exchange. Finally, a formalized framework for model de�nition establishes

a necessary standard of speci�cation for computer programs used as tools in experimental

science.
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