MODELING MOBILE AGENT'S

Adelinde M. Uhrmacher, Petra Tyschler, Dirk Tyschler
Department of Computer Science, University of Ulm
D-89069 Ulm, Germany
http://www.informatik.uni-ulm.de/ki/personen /au.html
e-mail: lin@informatik.uni-ulm.de

KEYWORDS: Variable Structure Models, Mobile
Agents, Distributed, Parallel, Discrete Event Simula-
tion, Java

ABSTRACT

Agent-oriented software implies the realization of
software components, which are mobile, autonomous,
and solve problems by creating new software compo-
nents during run-time, moving between locations, ini-
tiating or joining groups of other software components.
Modeling and simulating those multiagent systems re-
quires specific mechanisms for variable structure mod-
eling.

JAMES, a Java-Based Agent Modeling Environ-
ment for Simulation, realizes variable structure models
including mobility from the perspective of single au-
tonomous agents. JAMES itself is based on parallel
DEVS and adopts its abstract simulator model. Sim-
ulation takes place as a sending of messages between
concurrently active and distributed entities which re-
flect the model’s current structure. Thus, modeling
and simulation are coined equally by an agent-based
perspective.

INTRODUCTION

The definition of agents subsumes a multitude
of different facets (Wooldridge and Jennings 1995).
Agents are reactive, deliberative or combine reactive
with deliberative capabilities. Their activities are
called autonomous, as they do not require a frequent
interaction with humans (Shoham 1993). In the con-
text of software design, agents are defined as software
components, which are mobile, autonomous, and solve
problems by creating new software components during
run-time, moving between locations, initiating or join-

ing groups of other software components (Genesereth
and Ketchpel 1994).

JAMES, a Java-Based Agent Modeling Environ-
ment for Simulation, constitutes a tutorial test bed
which is aimed at supporting experiments with Ar-
tificial Intelligence programs as agents. Conceptual-
ized with a layered architecture, its simulation layer
provides the means for the description and a dis-
tributed parallel execution of variable structure mod-
els, including multiple mobile agents. For that pur-
pose, JAMES reuses and combines concepts of dis-
tributed systems and parallel DEVS (Zeigler 1990;
Chow 1996) with ideas of endomorphy and variable
structure modeling (Uhrmacher and Zeigler 1996).

In many domains the systems’ dynamics exhibits
structural changes (Uhrmacher 1996). But there
seems hardly to be a domain, where the phenomenon
of structural changes, i.e. the appearance, disappear-
ance, and movement of entities is so salient a feature
as in the area of multiple agents interoperating on
the Internet (White 1997). This is reflected in recent
developments in programming paradigms (Lubomir
et al. 1996), specifications (Milner et al. 1992;
Asperti and Busi 1996), and frameworks (Lange and
Chang 1996), all of which support the design of soft-
ware systems as systems consisting of agents which
interact among each other, and whose configuration
and neighborhood is continually changing.

In this paper we will explore the simulation layer
of JAMES and how the realized approach can be em-
ployed to simulate multiple mobile agents.

BASICS

On the simulation level, the model design in
JAMES resembles those of parallel DEVS (Zeigler
1990; Chow 1996).

JAMES distinguishes between atomic and coupled
models. An atomic model is described by a set of

input events, a state set, a set of output events, an
internal, respectively external, transition function dic-
tating state transitions due to internal events, respec-
tively external input which is defined as bags over si-
multaneously arriving input events, an output func-
tion which generates bags of events as outputs, and
a time advance function to determine the time of the
next internal event. The communication of each model
with the external ”"world” is determined by its input
and output events. Its state is described by a set of
variables. The state space of an atomic model might
be structured to reflect aspects of deliberative agents,
e.g desires, intentions, and beliefs. In the context of
modeling mobility only the ”beliefs” obtain some rel-
evance. As in AgedDEVS (Uhrmacher and Arnold
1994), "beliefs” about itself and the world around it
affect a model’s behavior and determine its possibility
to initiate structural changes.

A coupled model is a model consisting of different
components and specifying the coupling of its compo-
nents. Its interface to its environment is given by a
set of external input, respectively output events, a set
of component models, that may be atomic or coupled
and the coupling which exists among the components.
Coupled models allow modular and hierarchical mod-
eling. Asin DEVS, coupled models have no behavior,
1.e. transition functions, of their own.

As models are allowed to produce their internal
events in parallel a tie-breaking function is not neces-
sary. However, conflicts between simultaneously exe-
cuting internal and external transition functions might
arise. In JAMES, they are dissolved by invoking the
external after the internal transition function, by de-

fault (Chow 1996).

A SCENARIO

The scenario is motivated by the strategy employed
in Telescript, which aims at supporting the design of
autonomous programs, that are capable of physically
moving through communication networks in order to
perform specific service tasks. Thereby, the mobility
of agents 1s motivated by the desire to utilize efficiently
geographically distributed services. To reduce net-
work communication resulting form client-server in-
teractions, autonomous agents are dispatched to the
remote server site where they perform the necessary
interactions locally. After completing the task they
carry the result back with them to the original client.
Thus, instead of a back and forth of interactive nego-
tiation between client and server, one round trip of an

agent does the job (White 1997).

1nv

e o e [

o
‘ —| CHANNEL {
B REMOTE

: —| CHANNEL |

EoeD:

REMOTE

Figure 1: The example.

We will alter this scenario slightly. The remote site
is represented as the coupled model REMOTE, which
is connected to other models by the atomic model
CHANNEL. The latter represents a frightfully slow
communication channel. REMOTE comprises two
atomic models which offer certain functionalities. In
our example A asks B to solve a task. Both are located
at the same site, The time they need for interaction
can be neglected, i.e. the input and output ports are
directly connected. Entities might function as clients
and servers at the same time as some tasks necessitate
the interaction with other ”servers”, whereas other
tasks do not. In our example, B is server to A and
a client of D and C. We assume that the task A asked
of B necessitates a close interaction with the atomic
models in REMOTE, so B decides to move there (Fig.

).

MOBILITY IN JAMES

In JAMES, the environment whose structure can be
accessed directly by a single model is locally restricted,
thereby constraining conflicts that might arise be-
tween different agents manipulating concurrently their
environment.

Models are able to create new models, to add ex-
isting models, to delete themselves, to remove them-

selves, and to determine their own interaction with
their environment. To initiate structural changes out-
side their own range, they can launch corresponding
requests to models which have direct access to the re-
gion of interest.

Those requests are handled like other messages.
They are created by the output function, put into
the output bags, are sent via the coupling structure,
are collected within the input bags of the correspond-
ing model, and evaluated by its external transition
function. Thus, conflicts can be resolved locally by
the model responsible for the region of interest. This
rather distributed and delegating strategy in realiz-
ing variable structure models presumes certain con-
ventions.

e Atomic models are equipped with default meth-
ods to commit suicide, to remove themselves from
their environment, to create or add other models
within the embedding coupled model and to al-
ter their interaction structure with their environ-
ment.

e They are aware of their names which identify
them uniquely within the universe of models.

e The initiation of structure requires usually knowl-
edge about the surroundings of an agent, e.g. the
creation of a model requires not only information
about the model which is to be created, but also
knowledge about its embedding within the exist-
ing environment. This knowledge is part of the
model, i.e. it belongs to the model’s beliefs, or the
knowledge is communicated together with the re-
quest to initiate structural changes.

e Atomic models are equipped with methods
which evaluate and execute requested structural
changes. However, these default reactions to a
request can be suppressed. The freedom to ”de-
cide” whether to follow a certain request, and the
knowledge, i.e. beliefs, about itself and its envi-
ronment distinguish active agents from more ”re-
active” models in JAMES.

Mobility implies that an agent (Fig. 1, I) disap-
pears in one location and is sent to another (Fig. 1,
IT), where it reappears overall unchanged, with the
same internal state and identity (Fig. 1, III). Mobil-
ity includes the adding and removing of models from
coupled models, the change of interaction structure
and in addition the possibility to send references, i.e.,
names within messages.

The output function is responsible for creating
events, an agent’s action respectively reaction to its

void outputFunction(State state) {
if (state.phase == "move") {

chargePort ("outChannel",
(new AddMessage
(tolLocation,
myName,
withCoupling)));

Figure 2: Sending the request - an extract of the out-
put function of B

environment. Events are encoded as messages which
the name of the proposed addressee might be part of.
Based on this information, recipients of the message
decide whether the message concerns them or not. It
is not used for actually sending the message to another
model - to which models the message is sent depends
on the coupling structure only. After a message is put
into an output bag, a model has no control where the
message is actually sent to. Whether models forward
messages which are not addressed to them depends
on the modeling as forwarding happens not automat-
ically.

The movement starts with B creating a message
where 1t asks C to add it to the coupled model. The
message specifies the desired coupling in the new lo-
cation as well (Fig. 2). The message is sent via the
output function. Within the internal transition the
model changes its state and removes itself (Fig. 3). In
JAMES, as in other DEVS derivates, output function
and internal transition function are intrinsically con-
nected. The output function is invoked just before the
internal transition function, which serves our purpose
just fine. In the moment the internal transition func-
tion is completed, the model B ceases to exist within
the former coupled model and can be added to an-
other coupled model. At any time it is ensured that a
model is component of one coupled model, only.

The time the movement will take to complete de-
pends on the CHANNEL which in our simplified
model processes one message after the other with ran-

domized delay (Fig. 1(IT)).

The addressee C is responsible for adding B now in
the context of the coupled model REMOTE (Fig. 4,
Fig. 1(IIT)). C has only to include the class method
for the external transition function. A default method

State internalTransition(State state) {

if (state.phase == "move") {
state.phase = "aftermove";
beliefs.revise
(new AddFact("Moved",
toLocation,
myName,
withCoupling));
beliefs.revise
(new AddFact("Removed",
oldCoupled,
myName,
oldCoupling));

remove();

}

return state;

Figure 3: Updating the internal state and removing
from the coupled model - the internal transition func-
tion of B

is triggered automatically through the arrival of mes-
sages, searching the input bags for requests, execut-
ing the required structural changes, and cleaning the
input bags (Fig. 4). Structural changes are only exe-
cuted if all information necessary is available either as
part of a model’s beliefs or as part of the received mes-
sage. After B’s job is completed B will migrate back,
then A will be the addressee to which the request ”to
add B” will be sent (Fig. 1 (IV)).

SIMULATION

The purpose of JAMES is to support experiments
with multiagent systems, which might be composed
of several concurrently deliberating, e.g. planning or
learning, agents. Therefore, models in JAMES are
executed in parallel and in a distributed environment.

The simulation adopts the abstract simulator con-
cept for parallel simulation developed by Zeigler and
Chow (Zeigler 1990; Chow 1996). Following the DEVS
tradition, active simulator objects are associated with
model objects, 1.e. simulators with atomic models and
coordinators with coupled models. The simulation 1s
realized as a communication between distributed con-
current simulator objects. The employed algorithm

class MyAtomicModel extends AtomicModel {

State externalTransition
(State state, double elapsedTime) {
// use default handling for
// structural changes:
super();

return state;
}
}

class AtomicModel extends Model {

State externalTransition
(State state, double elapsedTime) {
if structureChangeRequest() {
changeStructure();
// remove requests from input:
cleanUpInput();
}
return state;
}
}

Figure 4: Methods of atomic models in JAMES (ex-
tracts)

realizes a conservative strategy in parallel simulation,
transitions do only take place when all necessary infor-
mation has arrived. The realization of an optimistic
strategy would require to define anti-messages that
undo the effects of previous messages which might in-
clude also structural changes. Thus, the costs would
likely exceed the gains of employing an optimistic
strategy.

Besides the message types * z, y and done (Zei-
gler 1990), which signalize that the next internal event
shall take place (*), that an input event, respective
output event shall be processed (z, y), or a transi-
tion function has been completed (done), we introduce
an additional message type, struc2do, which signalizes
that and what kind of structural change takes place
within the boundary of the coupled model. Same as
done, struc2do signalizes that the external or inter-
nal transition function of a component has been com-
pleted. It contains the time of its next internal event
and, in addition, a field which specifies the required
change in terms of coupling and refers to components

that should be added to, or removed from the list of
components. The coordinator is responsible for updat-
ing 1ts components and the coupling, and to arrange
the components according to their next internal event.
Only the creation and deletion of models are actually
done by the simulators. After the completion of the
transition function a simulator notifies its coordinator
to enforce the requested structural change.

E.g., the coordinator receives a struc2do which con-
tains a notification that a model with name B shall be
added, and that an interaction with C and D should
be realized. The coordinator responses with updating
its component and coupling list, 1t checks where B is
located, and 1t sends the current time to the associated
simulator of B to receive the time of the next inter-
nal event of the newly added component, and to make
himself known as the simulator’s new coordinator.

Whereas messages of type *, y, z and done are ex-
changed between coupled and atomic models equally,
struc2do 1s only sent from a simulator to its coordina-
tor.

IMPLEMENTATION

Specific JAVA libraries provide the functionality
for modeling and simulation in JAMES. As do other
JAVA-based distributed simulation systems, JAMES
employs the remote method invocation function of
JAVA for a distributed execution of the simulation
(Page et al. 1997). All nodes involved within the sim-
ulation are running the program JAMES. To initialize
the simulation run includes the distribution of models
with their associated simulators respectively coordi-
nators, among the involved nodes. Currently this is
done more or less arbitrarily. Simulators and coordi-
nators which are located on one node are implemented
as parallel threads. Each of the simulators and coordi-
nators is executed sequentially. Simulators and coor-
dinators located on one node communicate by direct
message passing. The communication between simu-
lators and coordinators that are located on different
nodes is realized as synchronous notification-oriented
message passing via the servers which are associated
with each node (Colouris et al. 1994). Within the
abstract simulator concept each coordinator ”knows”
how to reach its components and its ”super” coordina-
tor. Agent name and register services are structured
according to the hierarchical message flow from and to
coupled models. They are kept locally at the coordi-
nators, e.g., a coordinator will typically need only the
addresses of its component and its supercoordinator.
However, in the rare moments of structural change,

e.g. a model moves from one location to another, a
server is known to all coordinators where the names
of models and their addresses are registered.

MOBILITY AND VARIABLE STRUC-
TURES

The problem of describing and analyzing systems
consisting of agents which interact among each other,
and whose configuration or neighborhood is continu-
ally changing is addressed in a variety of approaches.
In the context of discrete event simulation, variable
structure modeling has gained a lot of attention dur-
ing the last years (Barros 1996; Uhrmacher and Zei-
gler 1996). However, the focus has been on the cre-
ation and deletion of models and change of interac-
tion, rather than on mobility. Most approaches sup-
port the initiating of structural changes top down
the compositional hierarchy. The coupled model is
responsible for initiating structural changes which
are kept local to the coupled model (Barros 1996;
Thomas 1996). They are not aimed at supporting the
understanding of systems which emerge by the interac-
tion and activities of autonomous and mobile agents.
AgedDEVS, the sequential predecessor of JAMES,
used also endomorphic agents, to initiate structural
changes ”bottom up”. Invoked within the internal
transition function, structural changes were only re-
stricted by and directed to an agent’s internal model,
whose changes were immediately reflected in the en-
vironment. As only one agent at a time could initiate
structural changes, a correct and repeatable execution
of the model was guaranteed. In a distributed parallel
setting more than one model might initiate a change
of structure at a time. JAMES avoids conflicts by
dividing the environment into barely overlapping re-
gions which can be accessed by models. To initiate
structural changes outside its boundary, agents have
to turn to communication and negotiation. Conflicts
which might still arise, e.g. one model wishes to delete
its interaction with another model, whereas the other
wishes to change it, are resolved by the coordinators
which, for that purpose, are equipped with a set of
simple conflict resolution rules.

The close relationship between variable structure
models and mobility of agents becomes particularly
visible when the mobility of agents is explored from
an “organizational” rather than a “geographical” per-
spective. The latter raises different questions and chal-

lenges (Saphira 1997).

CONCLUSION

Based on parallel DEVS and the concept of en-
domorphy the simulation layer of JAMES provides a
framework for the description and analysis of mobile
agents. Since we decided to realize movements as the
sending of references, i.e. names, models are removed
and added from coupled models, instead of deleted
and created. This facilitates the handling of mobil-
ity from a modeller’s perspective. However, mobility
might result in simulators that belong to the same co-
ordinator but are executed in totally remote sites. As
usually models in a coupled model are supposed to
communicate more frequently, and so will the asso-
ciated simulator objects, one might wish to keep the
simulators which are associated with the components
of a coupled model as closely located as possible. Due
to combining the abstract simulator concept of par-
allel DEVS with variable structures in a distributed
setting, the scenario we choose becomes applicable to
the simulation in JAMES itself. In the moment we will
explore more complex applications which involve not
only but also deliberative agents, the distribution of
simulators has to adapt itself dynamically according to
the work load of the involved processes, according to
the behavior of a model - a multitude of reactive mod-
els will not use as much time as one single planning
agent to process - and according to the frequency of
interaction. Thus, during simulation models and sim-
ulator objects will temporarily be moving through the
network of involved nodes for reasons of efficiency.

REFERENCES

A. Asperti and N. Busi. Mobile petri nets. Technical
Report UBLCS-96-10, University of Bologna, 1996.

F.J. Barros. The dynamic structure discrete event
system specification formalism. Transactions of
the Society for Computer Simulation International,

13(1):35-46, 1996.
A.C. Chow. Parallel devs: A parallel hierarchical,

modular modeling formalism. SCS - Transactions

on Computer Simulation, 13(2):55-67, 1996.

G. Colouris, J. Dollimore, and T. Kindberg. Dis-
tributed Systems Concepts and Design. Addison Wes-
ley, New York, 1994.

M. R. Genesereth and S. P. Ketchpel. Software
agents. Communications of the ACM, 37(7):48-53,
1994.

D.B. Lange and D.T. Chang. Ibm aglets workbench.
White Paper, IBM, Japan, 1996.

B.F. Lubomir, F. Munehiro, and M.B. Dillencourt.
Distributed computing using autonomous objects.

IEEE Computer, 29(8):55-61, 1996.

R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes 1. Information and Computation,

100(1):1-40, 1992.

E.H. Page, B.S. Canova, and J.A. Tufarolo. Web-
based simulation in simjava using remote method in-
vocation. In Winter Simulation Conference, Atlanta,

1997.

International SRI. Saphira Software Manual, Saphira
Version 5.2, 1997.

Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60:51-92, 1993.

C. Thomas. Ein objektorientiertes Konzept zur Mod-
ellierung und Simulation komplerer Systeme. Num-
ber 20 in Fortschrittsberichte. VDI, Dsseldorf, 1996.

A. M. Uhrmacher and R. Arnold. Distributing and
maintaining knowledge - agents in variable structure
environments. In Proc. of the 5th Annual Conference
on Artificial Intelligence, Stmulation and Planning in
High Autonomy Systems, pages 178-184, San Diego,
CA, December 1994. IEEE-Press.

A. M. Uhrmacher and B.P. Zeigler. Variable struc-
ture models in object-oriented simulation. Interna-
tional Journal on General Systems, 24(4):359-375,
1996.

A. M. Uhrmacher. Variable structure modelling - dis-
crete events in simulation. In Proc. of the 6th Annual
Conference on Artificial Intelligence, Simulation and
Planning in High Autonomy Systems, pages 133-140,
San Diego, CA, March 1996.

J.E. White. Mobile agents. In J.M. Bradschaw, ed-
itor, Software Agents. MIT Press, Menlo Park, Ca,
1997.

M. Wooldridge and N. R. Jennings. Intelligent
agents: Theory and practice. Knowledge Engineering

Review, 10(2):115-152, 1995.

B. P. Zeigler. Object-Oriented Sitmulation with Hi-
erarchical, Modular Models - Intelligent Agents and
Endomorphic Systems. Academic Press, San Diego,

1990.

