
Interest Management in Agent-based Distributed Simulations 

Lihua Wang          Stephen John Turner          Fang Wang    

Parallel & Distributed Computing Centre, School of Computer Engineering 

Nanyang Technological University

Singapore 639798

E-mail: {PG00960276, ASSJTurner, PG01538896}@ntu.edu.sg 

Abstract

Distributed simulation enables participants situated in 

different geographical locations to share a common 

virtual world, which is called a Distributed Virtual 

Environment (DVE). Among the different research topics 

concerned with DVEs, there is a current trend of linking 

Multi-Agent systems and DVEs together. With the 

properties of autonomy, social ability, reactivity and pro-

activeness, agents can be used to represent entities in 

DVEs, where fast and accurate decision making is a 

determining factor of the whole environment.  

This paper provides a description of integrating 

agents into an HLA-based distributed simulation. It 

focuses on how to construct the sensor of an agent with 

different interest management schemes. Using the JADE 

(Java Agent DEvelopment Framework) agent toolkit and 

the High Level Architecture (HLA) in our prototype, a 

minesweeping game, we outline two different 

implementations of this game. Due to the dynamic 

characteristics of agents, a problem of overdue 

information from the environment is discussed, and we 

propose an enlarged subscription region method to solve 

this problem. Moreover, advisories provided by the HLA 

are adopted to reduce the overheads. Conclusions are 

drawn based on the experimental results of these 

implementations.  

1. Introduction 

Agents and multi-agent systems are one of the most 

prominent and attractive technologies in computer science 

at the beginning of this new century. An agent can be 

regarded as an encapsulated computer system that is 

situated in some environment and capable of flexible, 

autonomous action in that environment in order to meet 

its design objectives [1]. Agents may also communicate 

with each other via some form of communication 

language and typically have the ability to engage in 

cooperative problem solving.

The autonomy, social ability, reactivity and pro-

activeness of agents offer great flexibility in various 

situations, thus agents and multi-agent systems are being 

used increasingly in a wide range of application areas, 

including information retrieval, telecommunications, 

business process modeling, education, military 

simulations, social simulations, games etc. Recently, there 

is a trend of using agents in distributed simulations. There 

are various research issues focused on this topic [2]. Most 

commonly, due to the limitations of current development 

tools and methodologies of agent systems, simulation is 

used to help agent system developers learn more about 

agents’ interactive behaviors and investigate the 

implications of alternative architectures and coordination 

strategies. Also some researchers use agents to control 
simulations or provide advanced simulation services. 

The novelty of our project is to use agents in 

distributed simulations, representing some of the entities 

in Distributed Virtual Environments (DVEs). A 

networked virtual environment is a distributed simulation 

of a virtual world in which multiple users interact with 

each other in real-time, even though these users (Avatars)

may be physically located in different geographical places 

[3]. Using agents in the DVEs means some of the avatars 

can automatically update and act according to the latest 

information about the environment they participate in, 

thus no decisions from the outside world need to be made 

for these entities all through the simulation. 

The High Level Architecture (HLA) [4] is a current 

U.S. Department of Defense (DoD) and IEEE standard   

for modeling and simulation. Some of the advantages of 
using the HLA as a multi-agent environment have been 
studied in [5]. HLA provides a standard that can reduce 

the cost and development time of simulation systems and 

increase their capabilities by facilitating the reusability

and interoperability of component simulators. In the 

HLA, a distributed simulation is called a federation, and

each individual simulator is referred to as a federate, with 

one point of attachment to the RTI. A federate can be a 

computer simulation, an instrumented physical device or 

a passive data viewer. The Interface Specification of the 

HLA describes six service classes to support federations: 

federation management, declaration management, object 

management, ownership management, time management 

and data distribution management.

The benefits of the HLA and the JADE (Java Agent 

DEvelopment Framework) agent platform were utilized in 

this project. JADE [6] is a software framework fully 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



implemented in the Java language. It simplifies the 

implementation of multi-agent systems with both a 

middleware that complies with the Foundation for 

Intelligent Physical Agents (FIPA) specifications [7] and 

a set of tools that support debugging and deployment.  

Using various interest management schemes to 

construct the sensor of an agent is the main focus of this 

paper. An agent uses its sensor to perceive the 

environment it is embedded in. Modeling agents within 

federates in the federation, the necessary data transmitted 

are the data useful for each sensor of a specific agent. As 

interest management in large scale distributed simulations 

is used to alleviate the network traffic by reducing or 

eliminating unnecessary data transferred during the 

simulation, it can be used to meet the demands of this 

kind of agent-based distributed simulation.   

In the rest of this paper, section 2 gives a brief 

introduction to interest management. Our approach to 

integrate agents into the HLA simulation is illustrated in 
section 3. A minesweeping game as a prototype system 
and its different implementations using various interest 

management schemes are described in section 4. Section 
5 gives discussions and suggestions for improvement of 

these implementations. Benchmarking results and 

comparisons are presented in section 6. Finally, section 7 
concludes the paper together with future work. 

2. Interest Management

Interest management (IM) is used in distributed 

simulations to reduce communication requirements. IM 

ensures the simulated entities only receive information 

they need during the simulation execution. To use IM, 

entities have to declare their preferences of specific data 

first, then the infrastructure will match their interests and 

the needed data will be finally transmitted between 

matching entities. Various IM schemes have been devised 

over the years, utilizing different communication models 

and filtering methods [8]. In many existing systems, IM is 

realized via the use of IP multicast addressing, where data 

is sent to a selected subnet of all potential receivers.

The IM services specified for the HLA are the latest in 

a succession of mechanisms for large scale distributed 

simulations. The HLA supports two types of filtering:

• Class-based filtering. This uses Declaration 

Management (DM) services. DM services allow a 

federate to update and receive updates to object 

attributes based solely on object class. 

• Value-based filtering. This uses Data Distribution 

Management (DDM) services. DDM services extend 

DM services using routing spaces and regions. 

The fundamental concept used in HLA to support 

value-based DDM is the routing space. A routing space is 

a normalised multidimensional coordinate system, where 

federates indicate interest in receiving or providing 

updates via subscription regions or update regions. By 

calculating the intersection of update and subscription 

regions, the Run-Time Infrastructure (RTI) establishes 

connectivity and thus provides efficient data transfer in 

the federation. The DMSO RTI version 1.3 statically 

breaks up a routing space into grid cells, and assigns a 

channel to each cell [4]. The update and subscription 

regions are mapped into the grid cells. An update is sent 

out on all channels corresponding to cells that overlap the 

update region. Entities subscribe to the channels matching 

the cells that overlap the subscription region. As entities 

change interests, they change channels correspondingly.  

3. Overall Architecture

There are different approaches to constructing the 
overall architecture for integrating agents into an HLA 
simulation. A fundamental concern is to construct a 
feasible middleware between the agents and the RTI. 

One approach is to develop object models for agent 
federates and for the whole federation when developing 
agents. In [5], a KQML-layer is added to every federate 
which hosts an agent, in order to let the agents 
communicate with each other successfully. Other 
functionality is needed to keep track of remote agents' 
capabilities in their architecture. The authors concluded 
that if the HLA/RTI were extended with an agent specific 
services middleware, it would provide a suitable 
environment for intelligent agents. In their model, non-
agent federates access the RTI directly, while agent 
federates do so indirectly via the agent middleware. 

We have advanced this proposal in an alternative way 
and obtained a flexible architecture in our prototype 
system. In our model, a gateway federate is developed to 
take charge of agents. Agent containers where agents 
reside are constructed upon it and the gateway federate 
can still access the RTI directly. Moreover, JADE has 
been selected to provide the agent-specific services, and 
there can be more than one agent residing in the same 
JADE platform. Figure 1 shows the overall architecture of 
our approach, the middleware shown is composed of 
JADE and the gateway federate.  

In the simulation, the gateway federate is in the same 
JVM (Java Virtual Machine) as the agent and its 
platform.  Using the object-to-agent communication 

channel provided by the JADE toolkit, a gateway federate 

can communicate with its agent by sending the sensor and 

effector objects alternately. This avoids the use of Java 
RMI which would be necessary if the JADE platform and 
gateway federate are executed in different JVMs. Details

of the implementation of the agent side of this prototype 

can be found in our previous paper [9].  

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



Run Time Infrastructure

Agent(s)

JADE

Interface

RTIAmb

FedAmb

Agent(s)

JADE

Gateway

Federate
Interface

RTIAmb

FedAmb

FedAmb

Non-agent

Federate

RTIAmb

FedAmb

Non-agent

Federate

RTIAmb

Agent-specific

middleware

Figure 1. Middleware composed of JADE and the 
gateway federates 

4. Prototype: a Minesweeping Game

In order to investigate and implement new ideas into 

the research, we examined various simulation systems 

used by other research groups. The systems varied from 

battlefield systems, air traffic control systems, stone-

picking robot [10] to maze and other games, e-commerce 

models and simulations of natural ecological phenomena.

Based on the considerations of multi-agent systems and 

distributed simulations, a prototype system named 

minesweeping game was eventually proposed. This 

prototype is intended to be a test bed to provide a 

preliminary exploration of different issues to support the 

distributed simulation of multi-agent systems and their 

environments. It is implemented using the JADE agent 

toolkit version 2.5 and DMSO RTI1.3NG-V6. 

4.1. Description of the game 

The minesweeping game contains a certain number of 

soldiers represented by autonomous agents and an 

environment shared by the soldiers. The soldiers aim to 

make the environment area safe by clearing all the timing 

mines in it before they explode. The environment has an 

n*n grid, where n can be set by the user. There are a 

number of randomly distributed obstacles (borders, trees 

and rivers) and mines in the environment. The obstacles 

are static as they exist through out the simulation and 

cannot be moved by soldiers. The mines are dynamic in 

that they can be picked up and cleared from the 

environment by soldiers. If a mine has not been cleared 

when its life expires, it will explode and the soldiers will 

fail their mission.  The game is over when all the mines in 

the environment have been cleared by the soldiers. 

In this game, each soldier is represented by an agent. 

In order to clear the mines in the environment, a soldier 

has to roam about the environment and detect if there is 

any object within its sensor range: if there are obstacles, it 

will step in another direction to avoid the obstacles, if 

there are mines, it will select a mine to pick up, add the 

mine to its package and then walk purposely towards the 

border of the environment to release the mine. After this, 

it will roam in the area again, trying to find another mine 

until all the mines have been cleared from the 

environment. Currently, it is presumed that when a soldier 

has a mine in hand, it cannot pick up another mine until it 

releases the mine in its hands at the border. So when a 

soldier detects a mine while its hands are full, it can only 

inform other soldiers nearby to come and pick it up.  

Every soldier agent has a limited knowledge of the 

environment; they get the information via their own 

sensors, do deliberations and then act upon the 

environment using their effectors. This process is 

illustrated in Figure 2.  

Environment

Agent

Control Algorithm

Perception Action

Sensors Effectors

State

Figure 2. Soldier agent architecture of the 
prototype system 

According to this architecture, the simulation cycle of 

a soldier agent in this prototype system is divided into 

three logical phases: Sensing, Deliberation and Action. In 

the first phase of sensing, the agent gets data from the 

environment, then it will decide its corresponding actions 

according to the rules in the deliberation phase, and 

finally in the third phase, the agent will perform actions. 

4.2. Implementations 

In order to simplify the system, two federates are 

initially used in this prototype: the environment federate 

and the soldier agent federate, representing the 

minesweeping environment and the soldier agent 

respectively. Furthermore, currently there is only one 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



soldier agent residing in the JADE platform. A more 

complex system with more agents will be investigated in 

the near future. 

The main problem of this prototype is how to 

construct the sensor of an agent. What an agent can get 

from the environment wholly depends on the 

configuration of its sensors. Sensors of agents can have 

different ranges, which allow the agent to sense objects 

and other agents within a certain area centered on its 

current position. In this prototype, one sensor is used by 

an agent, and it can detect information about the nine 

cells centered on the agent’s current cell in the 

environment. Figure 3 depicts the sensor range of the 

agent. The agent can choose to move into one of the eight 

cells around it if there is no obstacle around. 

S

Figure 3. Sensor range 

Therefore in the HLA federation, what a soldier agent 

federate needs is just the information of the eight grid 

cells around its current position instead of all the objects 

in the environment. This requires some mechanisms to 

filter out all the unnecessary information to reduce the 

network load and improve the efficiency of the system.  

Currently, we have developed two different versions 

of this game. Version 1 is a simplified version, which was 

built at the initial stage of our research to test the 

feasibility of the prototype system. This version just uses 

the object updates and interactions provided by the RTI to 

avoid information broadcast of the environment, it is 

quite like a request and reply system. Instead, in version 2, 

advanced RTI services such as data distribution 

management (DDM) and ownership management (OM) 

are used to do data exchange and filtering. Currently, 

these two versions are both time-stepped simulations, and 

the agent will make one action within one simulation 

cycle. As a conservatively synchronized simulation, both 

the two federates are time-constrained and time-

regulating, so their advances of logical time regulate the 

other and at the same time, are constrained by the other.

4.2.1. Version 1. In this version, the Soldier object 

represents the agent and has attributes for its position and 

the altered grid cells around it. Mine and Obstacle classes 

are not considered in the FOM (Federation Object 

Model), as the information about the mines and obstacles 

are passed from the environment federate to the soldier 

federate using interactions instead of objects. The 

Simulation cycle of this version is illustrated in Figure 4. 

TAR denotes a Time Advance Request, t is the time step 

interval and the lookahead is also set to t. The logical 

time corresponding to each TAR is the time each TAR 

requests.

When the simulation starts up, the environment 

federate initializes the obstacles and mines in it, such as 

the position and the life time for the mines as they are set 

as dynamic objects. After the initialization period 

finishes, the environment waits for any information that 

comes from the soldier agent federate. When the soldier 

federate code is activated, it will first launch a JADE 

agent platform and initialize a new agent object instance. 

When the detailed initialization for a new agent is 

completed in the pure agent code, the soldier federate will 

resume and initialize its own federate.  

In each simulation cycle, when the environment 

federate get the reflected attribute values of the soldier 

agent (step 1), it will do some work on the position to 

match what is around the agent in the environment (step 

2), and then send out that information via an interaction 

(step 3). The soldier federate receives the interaction, 

directly uses the information to construct the sensor (step 

4) and then sends both the sensor and effector to the agent 

using the object-to-agent communication channel 

provided by the JADE toolkit (step 5).  After the agent 

gets the new sensor, it will resume and deliberate its 

corresponding action using its rules and make a move 

(step 6), this information will be written to the effector. 

After this move, the agent will wait again for the next 

sensor sent by the soldier federate. The soldier federate 

gets the new position of the soldier from the effector (step 

7), updates this position to the environment federate (step 

8) and then the next simulation cycle will begin. 

The success of this version verified the feasibility of 

the proposed architecture. However, a drawback of this 

version is that there are actually two time steps in one 

simulation cycle, one for the soldier federate to update its 

new position to environment federate, the other one for 

the soldier federate to receive the related information via 

interactions from the environment federate. This can incur 

low efficiency of federation execution as the RTI will 

spend time in synchronization between federates for each 

time step. Moreover when more agents join the 

federation, this version does not scale well, because the 

environment federate has to calculate the match for the 

position of every agent, and send out the corresponding 

interaction to every agent.

Based on those considerations, we reinvestigated this 

system and developed our version 2. Ownership 

management and data distribution management provided 

by the RTI are used, which can greatly increase the 

efficiency of performance and reduce the network load. 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



Soldier Agent Federate Environment Federate

receive interaction

write sensor

send sensor and effector to agent

pure agent writes effector

read effector

update agent position

receive reflected position

calculate, match
send interaction

1

2

3

4

5

6

7

8

pure agent deliberates

TAR

TAR

TAR

Time

A

simula

-tion

cycle

T

T+2t

T+t

Figure 4. The simulation cycle of version 1

4.2.2. Version 2. This version treats obstacles and mines 

as objects in the federation, and it uses ownership transfer 

for management of dynamic mines. Once a mine has been 

picked up by a soldier agent, the ownership of that mine 

will be transferred from the environment to this agent, 

thus the agent is responsible for updating the new 

position of that mine, or even deleting this mine from the 

federation. DDM services are used to transfer information 

about the sensor and control the unnecessary data placed 

on the network.  The routing space is statically partitioned 

into cells, with exactly the same size as the grid cells of 

environment. No interactions are used in this version. 

Based on the previous object classes, in this FOM, 

Obstacle and Mine classes are added together with their 

own attributes. Mines are set as dynamic objects in the 

game, when the time expires, the mine will explode and 

clear itself from the environment.  

Using DDM services, the environment federate will 

update all the objects within it for every simulation cycle, 

while the soldier federate will only discover1 the objects 

within its current subscription region. Table 1 depicts the 

update regions and subscription regions for each federate 

in this version. The simulation cycle of version 2 is 

shown in Figure 5. It is a little different from the first 

version. Thus we describe it based on each federate.

When the simulation starts up, the environment 

federate initializes the obstacle objects and mine objects 

in it, and sets update regions and a subscription region. 

Using the ownership push scheme, all mine objects will 

also express their wish for possible ownership transfer. 

1
Here, discover has the general meaning of “being known or visible”, 

instead of the term discover used in the HLA. 

Table 1. The DDM regions of version 2 

Soldier Agent 

Federate

Environment

Federate

Subscription

Regions 

Nine cells 

centered on 

agent’s position 

All cells in 

environment 

Update

Regions 

Single cell 

containing Agent 

Single cell 

containing 

Obstacle/Mine

In each simulation cycle, the environment federate 

will see if it receives new positions of agents (E step 1), if 

so, it will place these agents in its grid cells (E step 2) and 

unconditionally updates all the objects in the environment 

(E step 3). Otherwise, the federate will only update all the 

objects (E step 4). In both conditions, the federate will 

then wait for the next time step.  

For the soldier agent federate, it will launch a JADE 

agent platform and initialize a new agent instance. When 

the detailed initialization for a new agent is completed in 

the pure agent code, the soldier federate will resume and 

initialize its own federate. The soldier federate gets the 

initial position of the soldier from the effector, sets the 

subscription/update regions and updates this position to 

the environment federate. In each simulation cycle, if 

there are discovered objects (S step 1), which means these 

objects are within the subscription region of the soldier, 

the soldier federate will process this information and 

construct a sensor (S step 2). Using the object-to-agent 

communication channel, the federate will send both 

sensor and effector to the agent (S step 3). When the pure 

agent gets the new sensor, it will resume and deliberate its 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



Soldier Agent Federate Environment Federate
Time

A

simula

-tion

cycle

TAR

T+t

T+2t

receive objects within region update attribute values

calculate, construct sensor

send sensor and effector to agent

pure agent deliberates

pure agent writes effector

read effector

ask for ownership if necessary

modify subscription/update region

update agent position

outdated reflected objects

TAR

TAR

1

9

2

3

4

5

6

7

8

4

update attribute values

receive reflected position

place the agent

1

2

3

T

Figure 5. The simulation cycle of version 2 

corresponding action using its rules and make a move (S 

step 4). Furthermore, if the agent decides to pick up a 

mine, the position of that mine will be also specified. This 

information will be written to the effector and read by the 

soldier federate (S step 5). If the federate gets the position 

of a mine, it will request ownership of that mine from the 

environment federate (S step 6). After that, the federate 

will immediately modify the subscription/update regions 

according to the new position of the soldier agent (S step 

7), and update this position (S step 8). However, one 

problem with this version is that when the next time step 

begins, the federate will receive outdated objects, which 

will be discarded (S step 9).  

Version 2 therefore still has two time steps in one 

simulation cycle. These problems and possible solutions 

will be presented in detail in the next section. 

5. Dynamic Regions: Problems and Solutions

We have indicated that although version 2 uses DDM, 

it still has two time steps in each simulation cycle. This 

reduces the efficiency of the federation as the RTI will 

spend time in synchronization among federates for every 

time step. In the description of this game, every time a 

soldier agent stands on a specific position in the 

environment, it needs the sensor to do deliberation before 

moving to another position. Because the soldier agent can 

move every cycle, its fast changing subscription/update 

regions make the connectivity established by DDM 

change dynamically too. This results in the possibility 

that information provided by the connectivity is outdated 

for an agent, therefore the agent will make wrong 

decisions based on the stale information. 

For example in version 2 (see figure 5), after 

deliberation, at a logical time T+t, the soldier decides to 

move from (X0,Y0) to position (X1,Y1) and immediately 

changes its subscription/update regions according to this 

new position. It is supposed to discover the objects 

around (X1,Y1) when it advances its logical time to T+2t,

so that at the next time step, it can construct a new sensor 

based on these objects, and the agent can thus deliberate 

according to the new sensor and make another move. 

However, unfortunately when the environment federate 

sends out updates with timestamp T+2t, the soldier agent 

federate has not modified its regions yet. So the 

connectivity in the communication infrastructure used by 

the RTI was the one set up based on the 

subscription/update regions at logical time T. Thus the 

soldier agent federate will discover “old” objects around 

(X0,Y0) when it advances its time to T+2t. The desired 

objects will only be discovered at the next time step. So 

for every action the agent takes, it has to waste an extra 

time step in the federation to ensure the soldier agent 

federate will get the right information to construct its 

sensor and thus move in an appropriate direction.  

5.1. Enlarged Subscription Region 

A new algorithm is proposed to solve the dilemma about 

the causality problems in this prototype. This algorithm 

enlarges the subscription region of the soldier agent, thus 

when the soldier moves to any position at the next time 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



step, this region will still cover the desired objects within 

the agent’s new sensor range.  It is illustrated in Figure 6. 

The soldier agent federate only needs to locally filter the 

objects discovered based on its current sensor range, and 

discard the redundant information. So even if the DDM 

connectivity remains unchanged after the soldier 

federate’s modification of its update/subscription regions, 

we can still make the simulation cycle conform to one 

time step. A successful version, version 2.1, has been 

implemented using this algorithm.  Its simulation cycle is 

depicted in Figure 7.

S

S

subscription

region

sensor

region

S

Figure 6. Enlarged subscription region of the 
soldier federate 

5.2. Using Advisories

Although the enlarged region algorithm reduces the 

simulation cycle to one time step, the environment still 

has to blindly update all the objects in it every time step. 

This increases the overhead and reduces the scalability of 

the whole system. It seems ideal if the environment 

federate can update just the objects the agent needs at 

each time step. This can be realized using the appropriate 

methods and advisories provided by DDM, namely

requestClassAttributeValueUpdateWithRegion( ) and 

enableAttributeScopeAdvisorySwitch( ).   After the soldier 

agent decides to change its position and modify the 

corresponding update/subscription regions, it will notify 

the environment federate of this change by 

requestClassAttributeValueUpdateWithRegion( ). This 

causes the environment federate to receive the callback 

ProvideAttributeValueUpdate() for the desired objects 

whose update regions overlap the soldier federate’s 

subscription region. The environment federate will then 

update only these objects. As the enlarged region 

algorithm is already used here, the problem of outdated 

connectivity in the communication infrastructure is 

avoided.  We developed version 2.2 using both the 

enlarged region algorithm and advisories, this version 

reduces overheads by sending out data only when 

necessary. The simulation cycle of this version is very 

similar to version 2.1. 

6. Experimental results 

Experiments were conducted to evaluate the different 
approaches for the minesweeping game. The platform for 
our experiments is three DELL 2.2GHz Pentium 4 

computers connected via 100MB Ethernet running 

Windows XP. JADE agent toolkit version 2.5, DMSO 

RTI1.3NG-V6 and JAVA jdk1.4.0 are used. In our 

simulation test, each machine runs a federate. To ensure 
better results, one computer is used to run the rtiexec and
fedexec separately and all unnecessary outputs were 
deleted from the source code. The execution time for the

Time

A

simula

-tion

cycle

update attribute values

receive reflected position

place the agent

TAR

receive objects within enlarged region

calculate, construct sensor

send sensor and effector to agent

pure agent deliberates

pure agent writes effector

read effector

ask for ownership if necessary

modify subscription/update region

update agent position

TAR

1

2

3

4

5

6

7

8

1

2

3

T+t

T

Soldier Agent Federate Environment Federate

.

.

.

.

.

.

.

.

.

.

.

.

Figure 7. The simulation cycle of version 2.1

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



agent federate to run 5000 simulation cycles using the 
four different implementations is recorded. The execution 
results of the different versions are shown in Figure 8. 

0

50

100

150

200

250

300

350

400

V1 V2 V2.1 V2.2

Each Version

E
x
e
c
u

ti
o

n
 T

im
e

(s
e
c
)

Figure 8. Execution time of different versions

Comparison of the simulation results shows that the 
proposed enlarged subscription region algorithm,
although it increases the network load slightly and 

introduces some latency in processing the unnecessary 

information, is still more efficient when the execution 

time is concerned. Furthermore, the results show version 

2.2, which uses both the enlarged subscription region 

algorithm and the advisories, not only reduces the 

overhead, but also decreases the federate execution time. 

Thus it is the most efficient implementation. 

7. Conclusions and Future Work

This paper has discussed how to integrate JADE 

agents into an HLA-based distributed simulation with the 

focus on interest management. A minesweeping game has 

been set up to verify the feasibility of combining these 

two technologies together, and different implementations 

of this prototype have been discussed. As agents are 

dynamic in the environment, we also proposed an 

algorithm for this game to circumvent the problem 

resulting from the synchronization of services in logical 

time. Moreover, advisories provided by DDM are used to 

improve the performance of these implementations. The 

experimental results show that our efforts to reduce the 

simulation execution time are successful. 

There are other solutions to the problem mentioned in 

section 5, for example modifying the RTI to maintain a 

log of messages as discussed in [11].  As our research 

goes on, a more general algorithm to synchronize services 

between agents and the environment will be required. 

This may be realized using time stamps for some 

currently unsynchronized RTI services and/or exploring a 

middleware between the RTI and federates. Furthermore, 

when more than one agent participates in the 

environment, the game scenario will be more 

complicated. This will result in numerous issues both in 

agent technology and distributed simulation. Suppose two 

agents try to step to the same place without knowing the 

existence of each other in their previous sensor, or two 

agents try to pick up the same mine. Mutual exclusion 

mechanisms are required to solve these kinds of problem. 

Specifically, as agents are collaborative in nature, they are 

different from previous work in DVEs where entities 

seldom have concurrent interactions. Concurrent 

interactions [12] are everywhere in the real world. If we 

want to emulate the real world more precisely, managing 

concurrent interactions in DVEs is a demanding need.  

References

[1] N.R. Jennings, “On agent-based software engineering”, 

Artificial Intelligence 117, Elsevier, 2000, pp. 277-296. 

[2] A.M. Uhrmacher, P.A. Fishwick and B.P. Zeigler (eds), 

“Special issue on agents in modeling and simulation: exploiting 

the metaphor”, Proceedings of the IEEE, 89 (2), February 2001. 

[3] R.M. Fujimoto, Parallel and Distributed Simulation 

Systems, Wiley Interscience, 2000. 

[4] Defense Modeling and Simulation Office, High Level 

Architecture RTI Interface Specification, Version 1.3, 1998.

[5] J. Andersson and S. Löf. “HLA as Conceptual Basis for a 

Multi-Agent Environment”, Technical Report 8TH-CGF-033,

Pitch Kunskapsutveckling AB, 1999. 

[6] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - A FIPA-

compliant agent framework”, Proceedings of PAAM'99, April 

1999, pp. 97-108. 

[7] FIPA Agent Management Specification. Technical Report 

SC00023J, http://www.fipa.org/, December 2002. 

[8] K. L. Morse, “Interest management in large scale distributed 

simulations”, Tech. Rep. 96-27, Department of Information and 

Computer Science, University of California, Irvine, 1996. 

[9] F. Wang, S.J. Turner and L. Wang, “Integrating Agents into 

HLA-Based Distributed Virtual Environments”, Proceedings of 

the 4th Workshop on Agent-Based Simulation, Montpellier, 

France, April 2003, pp. 9-14.

[10] F. Chantemargue and B. Hirsbrunner, “A collective 

robotics application based on emergence and self-organization”, 

Technical report, PAI group, Fribourg, Switzerland, 1999.

[11] I. Tacic and R.M. Fujimoto, "Synchronized Data 

Distribution Management in Distributed Simulations", 

Proceedings of the 12th Workshop on Parallel and Distributed 

Simulation (PADS '98), May 1998, pp. 108-115.  

[12] A. Natrajan, P.F. Reynolds, Jr. “Resolving Concurrent 

Interactions”, Proceedings of 3rd International Workshop on 

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 



Distributed Interactive Simulation and Real Time Applications,

October 1999, pp. 85-92.

Proceedings of the Seventh IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’03) 

1530-1990/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


