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SUMMARY

We develop a framework for sequential optimality of an autonomous agent interacting with other agents

within a common, and possibly uncertain, environment. We use the normative paradigm of decision-theoretic

planning under uncertainty as formalized by partially observable Markov decision processes (POMDPs) as a

foundation. The new framework called interactive POMDP (I-POMDP) generalizes a POMDP to multiagent

settings. I-POMDPs are applicable to autonomous self-interested agents who locally compute what actions

they should execute to optimize their preferences given what they believe while interacting with others with

possibly conflicting objectives. I-POMDPs ascribe models that are similar to types as used in Bayesian

games, to other agents. Some of these models describe other agents in terms of their beliefs, capabilities,

and preferences. Consequently, I-POMDPs replace the ”flat” beliefs of POMDPs with nested hierarchical

belief systems. Our approach of using a decision-theoretic framework and solution concept complements

the equilibrium approach of analyzing interactions, as used in classical game theory. Specifically, we avoid

the difficulties of non-uniqueness and incompleteness of the traditional Nash equilibrium approach, and offer

solutions which are likely to be better than the solutions obtained from applying traditional POMDPs to

multiagent settings. But these advantages come at the cost of processing and maintaining possibly infinitely

nested interactive beliefs. We define a class of finitely nested I-POMDPs to form a basis for computable

approximations to the infinitely nested ones. We show that a number of properties that facilitate solutions of

POMDPs carry over to finitely nested I-POMDPs.

Analogous to POMDPs, optimal solutions to I-POMDPs are difficult to compute due to two sources of

intractability: First is the complexity of the belief representation, sometimes called the curse of dimensional-

ity, and the second is the complexity of the space of policies, also called the curse of history. The curse of

dimensionality is especially acute for I-POMDPs because the beliefs may include beliefs about the physical

environment, and possibly the agent’s beliefs about other agents’ beliefs, their beliefs about others, and so

on. To address the curse of dimensionality, we resort to sampling methods which are typically immune to

the high dimensionality of the underlying space. We adapt the particle filter, specifically, the bootstrap filter,

to the multiagent setting, resulting in the interactive particle filter (I-PF). Mirroring the hierarchical char-

acter of interactive beliefs, the I-PF involves nested sampling and propagation at each of the hierarchical

levels of beliefs. Our approximation method is applicable to agents that start with a prior belief and optimize
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over finite horizons, and therefore finds applications for online plan computation. We derive error bounds

of our approach, and empirically demonstrate its performance on simple test problems. In order to mitigate

the curse of history, we present a complementary method based on sampling observations while building the

look ahead reachability tree during value iteration.

Finally, we theoretically analyze the interactions taking place between agents participating in the infinite

horizon partially observable stochastic game as formalized within the I-POMDP framework. Under the as-

sumption of compatibility of agents’ prior beliefs about future observations with the true distribution induced

by the actual strategies of all agents, we show that the behavior of agents converges to the subjective equi-

librium. Subjective equilibrium is stable with respect to learning and optimization. In trying to empirically

validate the existence of subjective equilibrium, we run into obstacles. The difficulties arise because we are

unable to guarantee the satisfiability of the truth compatibility condition, in practice. We believe that the

practical difficulty for I-POMDPs to reach the subjective equilibrium also signifies a serious impediment to

adopting equilibrium as a solution concept for multiagent planning.

Keywords: multiagent planning, interactive POMDPs, interactive belief systems, types, approximation

methods, interactive particle filters, absolute continuity, subjective equilibrium
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Chapter 1

INTRODUCTION

PLANNING in complex environments is receiving significant and sustained attention by the research com-

munity. One reason for the continuous focus is its myriad applications. The applications of planning

are pervasive and affect all sections of the human society:

• Security: Planning may be used to coordinate troop movements in battlefields, anti-air missile defense

units (Noh & Gmytrasiewicz, 2001), and search and rescue missions.

• Health: Planning algorithms may be used to formulate the course of a long-term treatment in an

interacting multi-treatment therapy (Hauskrecht, 1997).

• Sociology: Planning frameworks may serve as computational models of mechanisms that generate

anthropomorphic social behaviors such as trust and follow the leader, rebellion, and cultural traditions.

• Economics: Planning may be used to study the long term consequences of market reforms, gener-

ate strategies for entry-level companies in established markets, and establish long-term profit-making

market prices for merchandise.

The aforementioned applications reveal several characteristics of environments, which planning algo-

rithms must handle. While coordinating troop movements in battlefields, the exact ”ground situation” is

seldom known. Additionally, actions of adversaries are usually only partially perceivable. Rescue bots will

1
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be equipped with sensors and actuators that typically exhibit noisy readings or fail completely. In multi-

treatment therapies, we hardly ever know all the side effects of any treatment. In order to handle such traits,

we are motivated to develop planning algorithms that model and reason with uncertainty.

Mathematicians, economists, and other researchers have often taken recourse to probability theory to

model and reason with uncertainty. Probability theory, founded on Kolmogorov’s axioms of probability, has

also become the de-facto tool for artificial intelligence researchers to tackle the uncertainty inherent in the

real world. In many situations, we are confronted with several feasible candidate plans from which we must

choose. Choice is usually governed by our preferences or rewards. We model the preferences using Von

Neumann and Morgenstern utilities as governed by the axioms of utility theory. For the sake of simplicity,

probability and utility theories have been unified into a single field called decision theory. The main focus of

this thesis is on decision-theoretic planning.

1.1 Design of Planning Agents

We adopt a working model of the desicion-theoretic planning problem, illustrated in Fig. 1.1, that consists

of two primary components:

• Environment

• Agent(s) – computational device(s) that act, perceive, and reason.

Agent(s) interact with the environment in a sequential manner – agent(s)’ actions cause changes in the

state of the problem. The state of the planning problem encompasses all information relevant to the agent(s)’

decision making process. For e.g. in a maze problem, where a robot must navigate a maze filled with pits,

the location of the robot and the pits constitute the state of the problem. As part of the agent(s)’ interaction

with the environment, the agent(s) also observes events that inform it of the state of the problem – possibly

unreliably – and perhaps, even the actions of the other agent(s). In Fig. 1.1, we illustrate the model of the

planning problem.

The task of the planning agent(s) is to choose actions that optimize its preferences over the long term,

thereby producing a plan that achieves the agent(s)’ goals in an optimal manner. In doing so, the agent(s)

must appropriately address the action outcome uncertainty and the state uncertainty (also known as the

partial observability) problems that were mentioned before.
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State

actions

observations

Environment Agent(s)

Preferences

Figure 1.1: Model of the planning problem. Agent(s) interact with the environment through a series of actions
and observations. The task for the agent is to select actions that are optimal over the long term with respect
to its preferences.

For the sake of our arguments, we assume that the agent(s) has access to sufficient time and memory re-

sources. Where appropriate, the computational time and memory requirements will be mentioned. Of course,

realistically, agents may have limited resources at their disposal. In this regard, approximation techniques that

trade-off computations with quality of the plans play a key role and also form the subject of this dissertation.

1.2 Planning in Uncertain Single Agent Settings

In order to plan in a single agent setting, we represent the planning problem computationally as a Markov

decision process (MDP) (Puterman, 1994; Russell & Norvig, 2003). An MDP is a tuple consisting of four

parameters:

Definition 1.1 (Markov decision process (MDP)). A Markov decision process for an agent, say i, is

MDPi = 〈S,Ai, Ti, Ri〉

where:

• S is the set of states of the planning problem

• Ai is the set of agent i’s actions
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• Ti : S × Ai × S → [0, 1] is the transition function that captures the dynamics of the environment. It

describes the possibly uncertain effects of i’s actions on the states of the planning problem. Note that

the transition function also encodes the Markovian assumption: The next state of the problem depends

only on the current state and the agent’s actions (and not on the history of previous states)

• Ri : S ×Ai → R is the agent’s reward function that expresses its preferences 1.

As we mentioned before, the agent’s plan must optimize over its preferences. There are three types of

optimality criteria that may be followed:

1. A finite horizon criterion according to which the agent maximizes the expected sum of the next H

rewards – E(
∑H

t=0 ri,t).

2. An infinite horizon with discounting criterion according to which the agent maximizes the expected

discounted sum of infinite rewards – E(
∑∞

t=0 γtri), where 0 < γ < 1.

3. Finally, an infinite horizon with averaging criterion according to which the agent maximizes the ex-

pected average of infinite rewards – lim
h→∞

E( 1
h

∑h
t=0 ri,t).

Of these criteria, we will focus on the finite horizon and infinite horizon with discounting, but our arguments

can immediately be extended to the infinite horizon with averaging criterion, if required.

In order to solve MDPs and generate the optimal plan(s), we assume that the state is fully and reliably

observable by the agent. There are three standard methods for solving MDPs: The method most commonly

employed is dynamic programming using a technique called value iteration. MDPs can also be solved by

solving a system of simultaneous linear equations using a technique called policy iteration, and through

linear programming. Below we briefly describe value iteration, and refer the reader to (Russell & Norvig,

2003) for policy iteration, and (Littman, Dean, & Kaelbling, 1995b) for linear programming.

We associate with each state a payoff that reflects the maximum long term expected reward that the agent

can accumulate beginning in that state. We call the function that associates the payoff a value function, and

denote it as: U : S → R. The value function for the infinite horizon with discounting criterion satisfies the

following:

1For some problems, the rewards may also depend on the resulting state. In this case, the reward function may be defined as,
Ri : S × Ai × S → R
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U(s) = max
a∈Ai

{
Ri(s, a) + γ

∑

s′∈S

Ti(s, a, s′)U(s′)

}
(1.1)

Equation 1.1 often called the Bellman update, embodies Bellman’s Principle of Optimality – sub-solutions

of a globally optimal solution are themselves globally optimal. Value iteration proceeds by initializing the

value function with arbitrary values, and then repeatedly executing Eq. 1.1, until the change in the value

assigned to each state is negligibly small. Note that the value function is guaranteed to converge to a fixed

point, U∗ after repeated iterations (Russell & Norvig, 2003). Once the value function converges, or the

required number of iterations have been performed, the optimal action, a∗
i , for a state is an element of the set

of optimal actions for that state, OPT (s):

OPT (s) = argmax
a∈Ai

{
Ri(s, a) + γ

∑

s′∈S

Ti(s, a, s′)U∗(s′)

}

We now turn our attention to planning problems where the current state of the situation cannot be reliably

observed. A well known extension of the MDP framework to such partially observable settings is called

the partially observable Markov decision process (POMDP) (Smallwood & Sondik, 1973; Cassandra, Kael-

bling, & Littman, 1994; Hauskrecht, 1997). POMDPs address both, the action outcome uncertainty as well

as the state uncertainty problems that were mentioned in Section 1.1. Similar to MDPs, the action outcome

uncertainty is captured in the transition function; the state uncertainty is addressed through the use of in-

formation structures called beliefs. Beliefs are probability distributions over the states of the problem, and

represent the agent’s uncertainty about its true state. Beliefs also exhibit a very useful result: When updated

in a Bayesian manner, they summarize an agent’s entire observation history. 2 Because POMDPs constitute

important background material for the topic of this thesis, they are described in detail in the next chapter.

1.3 Planning in Uncertain Multiagent Settings

In addition to its own action outcome uncertainty and state uncertainty, an agent in a multiagent setting

must also contend with uncertainty over the other agents’ actions. The dynamics as well as the payoffs in a

problem are usually influenced by actions of all the agents, therefore optimal behavior of each agent depends

2This is the reason why POMDPs are sometimes referred to as belief-based MDPs.



CHAPTER 1. INTRODUCTION 6

on the behaviors of the other agents. Realistically, others’ actions are not perfectly observable, therefore we

base the agent’s behavior on its expectation of others’ actions.

The analysis of multiagent interactions has long been the center of attention of game theorists and

economists. Starting with single play games, attention has shifted to the same game played repeatedly infinite

number of times – infinitely repeated games – and repeated games with state transitions – stochastic games.

In all these frameworks, Nash equilibrium has been and remains the solution concept of choice. However,

Nash equilibrium as a solution paradigm suffers from two limitations:

• Non-uniqueness: In several decision-making problems, multiple Nash equilibria exist. This necessi-

tates the utilization of an external synchronizing mechanism to ensure that the same Nash equilibrium

is followed or reached by all agents.

• Incomplete: Nash equilibria do not specify an action when the agent believes that others may not act

according to equilibria.

Additionally, as pointed out by Binmore (1990), researchers have an inadequate understanding of the in-

termediate stages of a game before Nash equilibrium is reached. Finally, in order to use Nash equilibrium as

a solution, we must assume common knowledge of agent payoffs and beliefs. 3 Because of these limitations,

the inadequacy of Nash equilibrium as a solution concept for planning is gradually seeping into mainstream

thinking (Shoham, Powers, & Grenager, 2003; Russell & Norvig, 2003). To illustrate this viewpoint, we

quote Russell and Norvig (2003) ad verbatim,

”. . . game theory has been used primarily to analyze environments that are at equilibrium, rather than to

control agents within an environment.”

The limitations of Nash equilibrium suggest the need for a different solution paradigm for planning in

multiagent settings. We adopt the agent’s best response to its state of knowledge as a solution concept. The

agent’s knowledge includes its knowledge about the current physical state of the problem as well as the

expected actions of the other agents. This approach is also called the decision-theoretic approach to game

theory (Kadane & Larkey, 1982). Our solution concept is complete – if the agent believes that others will act

according to some Nash equilibrium, then it too will act out its part of the equilibrium, but if others choose to
3In some cases, mutual knowledge suffices to adopt a Nash equilibrium (see Aumann & Brandenburger, 1995).
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diverge from their equilibrium behaviors, then the agent will perform its best response. The solution is also

unique upto plans of equal expected utility, from which any one can be picked.

To predict others’ actions, the agent utilizes models of other agents’ behaviors. These models range

from being naive - static probability distributions over actions - to sophisticated ones that ascribe to the other

agent beliefs and rationality in action selection. When the sophisticated models are used to represent other

agents, the agent’s belief is a hierarchical or nested belief system. Such belief systems have been studied

before in game theory and in theoretical computer science (Mertens & Zamir, 1985; Brandenburger & Dekel,

1993; Fagin, Halpern, Moses, & Vardi, 1995; Heifetz & Samet, 1998; Aumann, 1999) but never employed

for sequential decision making. There are also models that lie between the naive and sophisticated ones

mentioned above. These models are mappings from an agent’s observation history to a distribution over its

actions. An example of such a model is a finite state controllers. In this thesis, we focus on the sophisticated

and sub-sophisticated models, demonstrate the usefulness of sophisticated models in comparison to the naive

models, and utilize the hierarchical beliefs for sequential decision making. Furthermore, in contrast to Nash

equilibrium, our approach does not require common knowledge of the true agent models or of beliefs.

1.4 Claims and Contributions

In the previous sections, we introduced the background and the foundational concepts relevant for this

thesis. In this section, we present the primary claims and contributions of this work towards advancing the

subject. This dissertation contributes significantly to existing pertinent literature in the fields of Artificial

Intelligence and Economics. We group our contributions into three categories:

1.4.1 Framework

We present a new framework, called interactive POMDPs (Gmytrasiewicz & Doshi, 2005, 2004, 2004),

for sequential rationality of autonomous agents interacting with other agents within a common, possibly

uncertain, environment. We use the normative paradigm of decision-theoretic planning under uncertainty

as a point of departure, and infuse it with notions from game theory to construct a framework for optimal

multiagent planning. Our formalism is applicable to autonomous self-interested agents who locally compute

what actions they should execute to optimize their preferences given what they believe while interacting with

others with possibly conflicting objectives. We list the main contributions of this framework below:
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• Interactive POMDPs generalize POMDPs to multiagent settings. When there is only a single planning

agent, they reduce to the traditional POMDP planning framework.

• Interactive POMDPs adopt a solution paradigm centered on optimality and best response to anticipated

actions of other agents. This solution approach addresses the shortcomings of non-uniqueness and

incompleteness of equilibria-based solutions.

• Interactive POMDPs replace the ”flat” beliefs in traditional decision-theoretic planning frameworks

with interactive hierarchical ones that represent beliefs about others’ beliefs and their beliefs about

others’. This construction unifies long-term as well as strategic planning into a single framework.

• In contrast to other multiagent planning frameworks, interactive POMDPs are applicable to both coop-

erative and non-cooperative settings between agents.

• Interactive POMDPs are applicable to problems that are populated by both, sophisticated rational

agents and ”dumb” – possibly irrational – agents.

1.4.2 Algorithms and Analysis

The advantages of interactive POMDPs over traditional approaches come at a cost of processing and

maintaining a possibly infinitely nested interactive belief system. We define a class of finitely nested interac-

tive POMDPs to form a basis for computable approximations to the infinitely nested ones. Pertaining to this

class of interactive POMDPs, we report the following contributions:

• We demonstrate that interactive POMDPs generate plans that are atleast as good, and typically better in

value as compared to plans generated by applying the traditional POMDPs to multiagent settings (Gmy-

trasiewicz & Doshi, 2005).

• We illustrate solutions for several different non-cooperative and cooperative versions of the multiagent

tiger problem modeled within the finitely nested interactive POMDP framework.

• We develop an online anytime approximation algorithm to address the prohibitive computational com-

plexity of solving interactive POMDPs. Our algorithm addresses the curse of dimensionality by using

the interactive particle filter (Doshi & Gmytrasiewicz, 2005b, 2005a) – a generalization of the tradi-

tional particle filter to the multiagent setting. The interactive particle filter reduces to the traditional
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particle filter in single agent settings. We bound the error introduced by the approximation technique,

and report on the computational savings.

• We develop a complementary approximation technique based on sampling the look ahead reachability

tree that is constructed during value iteration. When combined with the previously mentioned approx-

imation method, our approach reduces the impact of both the curses of dimensionality and history. We

analyze the empirical performance of the approximation technique using the multiagent tiger and the

multiagent machine maintenance problems.

• We theoretically analyze the infinite horizon play of agents in the interactive POMDP framework, and

show that the play eventually converges to a subjective equilibrium that is stable with respect to learning

and optimization. We point out some computational obstacles in empirically validating the equilibrium

result.

1.4.3 Applications

As we mentioned before, the applications of multiagent planning are vast, and pervade all sections of

the human society. In this thesis, we concentrate on the emerging area of human and social dynamics, for

applications. We use interactive POMDPs to perform agent based simulation of anthropomorphic social

behaviors. By successfully demonstrating through application of the framework, occurrence of human social

behaviors or patterns, we achieve multiple objectives: We establish that the commonly observed behaviors are

rational in regards to their respective settings. Our results serve to validate the framework as an important tool

for explaining rational interactions in uncertain multiagent dynamic settings. Finally, and of key importance,

the application will pave the way for deployment of the framework to new settings where rational social

behavior has neither been established nor observed.

1.5 Structure of the Thesis

Our framework unites many concepts from game theory and decision theory to enable multiagent plan-

ning. Therefore, naturally, this dissertation surveys vast literatures addressing both game-theoretic decision-

making and decision-theoretic planning frameworks, in addition to presenting the new framework for plan-

ning in multiagent settings. This document is structured so that we first present the background and related
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work in the early chapters, and then introduce the new framework, exact and approximate algorithms in the

subsequent chapters. Below, we briefly summarize rest of the chapters in this document.

In Chapter 2, we first present the well-known single agent decision-theoretic planning framework called

partially observable Markov decision process (POMDP). Next, an exact method for solving POMDPs, that

will be extended to a multiagent setting later, is presented. In the final section of the chapter, we briefly survey

approximation techniques that reduce the computational complexity of solving POMDPs at the expense of

solution quality. These techniques include approaches that exploit the structure of the problem, as well as

approaches that address bottlenecks and bound the error introduced because of the approximation.

In Chapter 3, we succinctly survey the game- theoretic frameworks that address multiagent decision-

making. We cover single play games involving complete and incomplete information, repeated games with

incomplete information, and stochastic games. We review the learning algorithms that converge to Nash

equilibrium in repeated and stochastic games, and discuss their shortcomings.

The new framework for planning in uncertain multiagent settings, interactive POMDP, is introduced in

Chapter 4. We present the definition, properties, and value iteration for solving interactive POMDPs. Proofs

of the properties are presented in Appendix A. Using the example of the multiagent tiger problem, we illustrate

the concepts involved in the interactive POMDP framework, and present example solutions for cooperative

and non-cooperative versions of the game.

In Chapter 5, we present solutions for several versions of the multiagent tiger problem. We group the

different versions into two categories: the non-cooperative setting and the cooperative setting. We give value

functions and policy trees for these settings, and also uncover simple behavioral insights.

Analogous to POMDPs, interactive POMDPs are also computationally prohibitive. Therefore, in Chap-

ter 6 we present an anytime method to compute approximately optimal plans while consuming less time and

space. Our method approximates the interactive POMDP state estimation by extending the well-known tech-

nique of particle filtering to a multiagent setting. The reduction in quality of the solution as introduced by

our approximation technique is bounded. The performance of the approximation method on two examples

, the multiagent tiger and the multiagent machine maintenance problem (see Appendix B), is demonstrated.

We also complement the interactive particle filter with a method that mitigates the policy space complexity.

In Chapter 7, we prove that agents’ behaviors within the interactive POMDP framework converge to an
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equilibrium. This equilibrium, called a subjective equilibrium, is the subjective counterpart of the objec-

tive Nash equilibrium, and is a natural consequence of the convergence of Bayesian learning in interactive

POMDPs. We also point out computational limitations in achieving this equilibrium.

Finally, we conclude this thesis in Chapter 8 with a brief summary of the important contributions of this

work. We also lay out avenues of future work, which include supplementing the existing suite of algorithms

for solving interactive POMDPs, and exploring multiagent planning when the agents are boundedly rational.



Chapter 2

BACKGROUND: SINGLE AGENT

DECISION-THEORETIC PLANNING

MARKOV decision processes, briefly introduced in Section 1.2 of Chapter 1, are planning frameworks

for single agent settings in which the physical state of the problem is always fully known to the

agent. Because of this reason, they are sometimes also called fully observable Markov decision processes

(FOMDPs). However, real-world sensors are typically noisy, thereby precluding complete observability of

the state. An extension of the MDP, which addresses the state uncertainty problem also exists and is called

the partially observable Markov decision process (POMDP) (Smallwood & Sondik, 1973; Cassandra et al.,

1994; Hauskrecht, 1997).

POMDPs incorporate a new element into the definition of MDPs. They require the knowledge of a

signaling function, called the observation function, that gives partial information about the state to the agent

via the signals that an agent receives. POMDPs combine expected utility maximization with a psycho-

cognitive process called the belief update. Because POMDPs form an important foundation on which our

multiagent planning framework is based, we explore them in some detail. In Section 2.1, we formally define

POMDPs, and present important properties of the framework. In Section 2.2, we briefly survey the principal

exact methods of solving them, and present one such method (that we will use later) in detail. A simple

toy problem called the single agent tiger problem is cast as a POMDP, and its solutions are shown. We also

survey the approximation techniques for POMDPs in Section 2.3.

12



CHAPTER 2. BACKGROUND: SINGLE AGENT DECISION-THEORETIC PLANNING 13

2.1 Partially Observable Markov Decision Processes (POMDPs)

POMDPs are one of the most general computational frameworks available for planning in uncertain single

agent problem settings. They take into consideration the action outcome uncertainty as well as the state

uncertainty problems that were mentioned in the previous chapter. However, their generality comes at a price

– the computational cost of solving POMDPs is enormous, precluding their applications to all but the simplest

settings.

2.1.1 Definition

A POMDP is typically defined as a six parameter tuple. The six parameters together capture all aspects

of the decision making situation.

Definition 2.1 (POMDP). A partially observable Markov decision process for an agent, say i, is:

POMDPi = 〈S,Ai,Ωi, Ti, Oi, Ri〉

where:

• S is the set of physical states of the environment

• Ai is the set of possible actions of i

• Ωi is the set of possible observations of i

• Ti : S × Ai × S → [0, 1] is the transition function (similar to the one in MDPs), and represents the

dynamics of the problem

• Oi : S × Ai × Ωi → [0, 1] is the observation function. Oi gives the probability distribution over the

possible observations for each state-action pair

• Ri : S ×Ai → R represents the agent’s preferences or rewards.

The optimality criteria used for planning are the same as those used for the MDPs. In order to plan when

the exact physical state of the environment is unknown, an agent maintains a belief. Beliefs – psychologi-

cal constructs – are mathematically formalized as probability distributions over the physical states. Beliefs,
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[1,0]

[0,1]
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[0,0,1]

Belief simplex

(i) (ii)

Figure 2.1: We show the belief simplices for (i) two states, and (ii) three states. Note that the belief simplices
are geometric shapes of dimensions one less than the number of states. The coordinates of each point within
the belief simplex sum to 1.

sometimes also called information states (Hauskrecht, 1997) or partitions (Aumann, 1999), give the likeli-

hood with which the agent thinks that it’s in a particular state of the environment. The space of beliefs is

called a belief simplex; we illustrate the belief simplices for two and three states in Fig. 2.1. Computing a

plan in the POMDP framework involves two steps:

1. Belief Update: Beliefs compactly represent all information available to the agent at the time of

selection of the optimal action. Specifically, the belief succinctly represents the entire history of actions

and observations as perceived by the agent. Formally:

bt
i(s

t) = Pr(st|ot
i, a

t−1
i , ot−1

i , . . . , o1
i , a

0
i )

In order to plan optimally, the agent must continuously update its belief conditioned on the action

it performs, at−1
i , and the observation, ot

i, it perceives. The new belief, bt
i, is computed using the

Bayesian updating process abbreviated as SE(bt−1
i , at−1

i , ot
i):

bt
i(s

t) = Pr(st|ot
i, a

t−1
i , bt−1

i )

=
Oi(s

t,at−1
i

,ot
i)

∑
st−1∈S

Ti(s
t−1,at−1

i
,st)bt−1

i
(s)

Pr(ot
i
|at−1

i
,bt−1

i
)

= βOi(s
t, at−1

i , ot
i)

∑
st−1∈S Ti(s

t−1, at−1
i , st)bt−1

i (st−1)

(2.1)
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st-1 st

ai
t-1

oi
t

Ti(st-1,ai
t-1,st)

Oi(st,ai
t-1,oi

t)

Figure 2.2: A 2-time slice DBN that graphically illustrates the belief update in POMDPs. The posterior belief
is a distribution over the shaded random variable. The dotted lines enclose the functions that form CPTs for
the respective random variables.

where β is a normalizing factor. A dynamic Bayesian network (DBN) (see Section 15.5 in Chapter 15

of Russell & Norvig, 2003, for information on DBNs) that graphically captures the updating process is

given in Fig. 2.2.

2. Policy Computation: The solution of a POMDP produces a policy – conditional plan – that is a

mapping from any belief state to the optimal distribution over the actions that must be performed in

that belief state: π∗ : Bi → ∆(Ai), where Bi is the agent’s belief simplex (space of all beliefs), and

∆(·) is the space of all probability distributions. Because a belief state compactly represents an agent’s

observation history, the policy may also be seen as a mapping from the agent’s observation history to a

distribution over its actions: π∗ : Hi → ∆(Ai), where Hi is the agent’s observation history. In order

to produce the policy, analogously to MDPs, we construct a value function that associates with each

belief, a payoff that reflects the maximum long term reward that the agent can gain starting from that

belief state. The value function is defined as: U : Bi → R. In a manner analogous to MDPs, we

will use value iteration to derive the value function, and thereafter the optimal policy. The Bellman

equation for the discounted infinite horizon optimality criterion is shown:

U(bt
i) = max

a∈Ai

{
ρi(b

t
i, a) + γ

∫

bt+1
i

∈Bi

Pr(bt+1
i |bt

i, a)U(bt+1
i )dbt+1

i

}
(2.2)

where ρi(b
t
i, a) =

∑
s∈S Ri(s, a

t
i)b

t
i(s).
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Value iteration works because, as we show in the next subsection, the sequence of value functions,

{Un}, where n is the horizon, converges to a unique fixed point, i.e. lim
n→∞

Un = U∗. Observing that

there are only as many next belief states as there are observations (|Ωi|) for a particular action, allows

us to write Eq. 2.2 more compactly. We can rewrite it by summing over all observations in the second

term:

U(bt
i) = max

a∈Ai

{
ρi(b

t
i, a) + γ

∑

ot+1
i

∈Ωi

Pr(ot+1
i |bt

i, a)U(SE(bt
i, a, ot

i))

}
(2.3)

The set of all optimal actions, OPT , for a particular belief state using the infinite horizon with dis-

counting criterion, is then calculated as:

OPT (bt
i) = argmax

a∈Ai

{
ρi(b

t
i, a) + γ

∑

ot+1
i

∈Ωi

Pr(ot+1
i |bt

i, a)U∗(SE(bt
i, a, ot

i))

}

2.1.2 Properties

The value function exhibits several well-known properties that are central to solving POMDPs. We will

first show that value iteration converges to a unique fixed point, and then prove that the value function is

always piecewise linear and convex. These properties form the basis for solving POMDPs exactly, and

generating and representing the optimal policies. Later on, we will extend these properties to the multiagent

planning framework.

We start by defining the value function formally:

Definition 2.2 (Value Function). A value function is defined as the mapping, U : Bi → R where Bi is the

set of all i’s beliefs in the belief simplex. The value function is real-valued and bounded. Let B(Bi) be the

set of bounded real-valued value functions defined on Bi.

Let Un ∈ B(Bi) be the n-horizon value function. The n-horizon value function satisfies the following

equation:

Un(bt
i) = max

a∈Ai

{
ρi(b

t
i, a) + γ

∑

ot+1
i

∈Ωi

Pr(ot+1
i |a, bt

i)U
n−1(SE(bt

i, a, ot+1
i ))

}
∀bt

i ∈ Bi (2.4)
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where U1(bt
i) = max

a∈Ai

ρi(b
t
i, a)

Let,

h(bt
i, a, U) = ρi(b

t
i, a) + γ

∑

ot+1
i

∈Ωi

Pr(ot+1
i |a, bt

i)U(SE(bt
i, a, ot+1

i ))

then define

HaUn−1(bt
i) = h(bt

i, a, Un−1)

and,

HUn−1(bt
i) = max

a∈Ai

HaUn−1(bt
i)

From Eq. 2.4 it follows,

Un = HUn−1

We will label H as the backup operator, H : B(Bi) → B(Bi). Let us get acquainted with the properties of

the backup operator.

Lemma 2.1 (Isotonicity). The backup operator, H, is an isotonic mapping. Formally, let V,U ∈ B(Bi),

then if V (bi) ≤ U(bi) ∀bi ∈ Bi, denoted V ≤ U , then HV ≤ HU .

The next property of H is of importance since it allows us to derive an important property of the value

function. Let us first define the sup (supremum) norm, || · ||∞ on the value function.

||V ||∞ = sup{|V (bi)| : bi ∈ Bi}

and

||V − U ||∞ = sup{|V (bi)− U(bi)| : bi ∈ Bi}

Lemma 2.2 (Contraction). The backup operator, H , forms a contraction mapping. Formally, let V,U ∈

B(Bi), and γ be the discount factor, then

||HV −HU ||∞ ≤ γ||V − U ||∞
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We refer the reader to (Section 3.2.3 of Hauskrecht, 1997) for proofs of Lemmas 2.1 and 2.2. Clearly,

B(Bi) defines a vector space of all bounded real-valued value functions. We will now show that the vector

space B(Bi), with the sup norm is a complete 1 normed space, i.e. (B(Bi), || · ||∞) is a complete normed

vector space. The space is complete w.r.t. the metric induced by the norm || · ||∞. The metric induced by the

norm || · ||∞ is d(V,U) = ||V − U ||∞. Such a complete normed space is called a Banach space (Aliprantis

& Burkinshaw, 1998).

The next lemma establishes that the sequence of value functions in B(Bi) forms a Cauchy sequence.

Since the proof of this lemma is rather straightforward, we will omit it.

Lemma 2.3 (Cauchy sequence). Let {Un} be a sequence of value functions in B(Bi), where n is the horizon.

Then,

||Un+m − Un||∞ =
γn(1− γm)

1− γ
||U1 − U0||∞

For each ε > 0, there exists n0 such that ||Un+m − Un||∞ ≤ ε for all n + m,n > n0. Thus {Un} forms a

Cauchy sequence in B(Bi).

We will now show that the Cauchy sequence {Un} converges in B(Bi), i.e. B(Bi) is complete.

Theorem 2.1 (Banach space). The normed vector space (B(Bi), || · ||∞) is a Banach space.

Proof. While this theorem is a well-known standard result, we include its proof for the sake of completeness.

From Lemma 2.3, we note that {Un} is a Cauchy sequence. Because value functions are real-valued, and R is

a complete space, therefore {Un(bi)} converges in R for each bi ∈ Bi. Now, let U∗(bi) = lim
n→∞

Un(bi) – U∗

is real-valued. It follows from the inequality |Un(bi)−Um(bi)| ≤ ε for all n,m > n0 that |Un(b)−U∗(b)| ≤

ε for all n > n0 and all bi ∈ Bi. The last inequality in turn implies U ∗ is bounded and therefore U∗ ∈ B.

Hence lim
n→∞

||U∗ − Un||∞ = 0, and so B is complete.

Theorem 2.2 (Banach Fixed-point Theorem (Aliprantis & Burkinshaw, 1998)). Let X be a Banach space.

Let F : X → X be a contraction mapping and let {xn} be a sequence with arbitrary initial point x0 ∈ B,

such that xn = Fxn−1. Then:

1. F has a unique fixed point solution x∗ such that x∗ = Fx∗,

2. The sequence {xn} converges to x∗.
1A space X is complete if every Cauchy sequence {xn} of X converges to a point in X.
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Using the Banach fixed-point theorem, we can show that the sequence {Un}with an arbitrary initial point

will always converge to a unique fixed point.

Theorem 2.3 (Convergence). For any POMDP with a discount factor, 0 < γ < 1, the value iteration

starting from any arbitrary value function converges to a unique fixed-point.

Proof. Let X = B(Bi), and F = H . Lemma 2.2 establishes the contraction property of H . Then using the

Banach fixed-point theorem, the sequence {Un} converges in B(Bi) to U∗ ∈ B(Bi) and U∗ is unique and

fixed.

Computing the value of each belief, as required by value iteration, is computationally impossible because

the space of all beliefs is a continuum. To address this problem, Smallwood and Sondik (1973) showed

that the value function can be decomposed into a set of linear vectors, and dynamic programming can be

carried out on these vectors. Formally, the value function for every horizon is piecewise linear and convex. In

Theorem 2.4, we state this property, and restate the proof that first appeared in (Smallwood & Sondik, 1973),

in a more intuitive way.

We start by defining an inner product:

Definition 2.3 (Inner Product). Define the inner product, 〈·, ·〉 : ∆(S)×B(S)→ R, by

〈bi, α〉 =
∑

s

bi(s)α(s)

where α ∈ B(S) is a bounded and real-valued value function defined on S, which we will refer to as the

alpha vector.

The next lemma establishes the bilinearity of the inner product defined above.

Lemma 2.4 (Bilinearity). For any s, t ∈ R, f, g ∈ B(S), and b, λ ∈ ∆(S) the following equalities hold:

〈sf + tg, b〉 = s〈f, b〉+ t〈g, b〉

〈f, sb + tλ〉 = s〈f, b〉+ t〈f, λ〉
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Theorem 2.4 (PWLC). The value function in a POMDP, Un, is always piecewise linear and convex (PWLC).

Mathematically:

Un(bi) = max
αn∈Γn

∑

s∈S

bi(s)α
n(s)

where Γn is a finite set of n-horizon alpha vectors.

Proof. The proof follows by induction.

Basis Case: The horizon 1 value function is:

U1(bi) = max
a∈Ai

ρ(bi, a) = max
a∈Ai

∑
s∈S bi(s)Ri(s, a)

= max
a∈Ai

〈bi, R
a
i 〉

The horizon 1 value function is an inner product. From Lemma 2.4, the value function is linear in bi, and

maximizing over a set of linear vectors makes the function piecewise linear and convex.1

Inductive Hypothesis: Assume Un−1(bi) is PWLC. In other words,

Un−1(bi) = max
αn−1∈Γn−1

∑

sεS

bi(s)α
n−1(s)

Inductive proof: We need to show that Un is PWLC i.e. to show that it can be written in the form, Un(bi) =

max
αn∈Γn

∑
sεS bi(s)α

n(s).

We know that

Un(bi) = max
a∈Ai

{ ∑

s∈S

bi(s)Ri(s, a) + γ
∑

oi∈Ωi

Pr(oi|a, bi)U
n−1(SE(bi, a, oi))

}
.

Replace Un−1 from the inductive hypothesis step:

Un(bi) = max
a∈Ai

{ ∑

s∈S

bi(s)Ri(s, a) + γ
∑

oi∈Ωi

Pr(oi|a, bi) max
αn−1∈Γn−1

∑

s′∈S

SE(bi, a, oi)(s
′)αn−1(s′)

}

1If |S| = 2, then the value function is composed of a set of lines, otherwise it is composed of a set of hyperplanes.
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Let l(bi, a, oi) be the index of the alpha vector that maximizes Un−1 at the updated belief SE(bi, a, oi).

Then

Un(bi) = max
a∈Ai

{ ∑

s∈S

bi(s)Ri(s, a) + γ
∑

o∈Ωi

Pr(oi|a, bi)
∑

s′

SE(bi, a, oi)(s
′)αn−1

l(bi,a,oi)
(s′)

}

We substitute SE(bi, a, oi) with the belief update shown in Eq. 2.1:

Un(bi) = max
a∈Ai

{ ∑
s∈S bi(s)Ri(s, a) + γ

∑
oi∈Ωi

Pr(oi|a, bi)
∑

s′∈S
Oi(s

′,a,oi)
∑

s Ti(s,a,s′)bi(s)

Pr(oi|a,bi)

×αn−1
l(bi,a,oi)

(s′)

}

Rearranging the terms of the equation we get:

Un(bi) = max
a∈Ai

{ ∑
s∈S bi(s)Ri(s, a) + γ

∑
oi∈Ωi

∑
s′∈S Oi(s

′, a, oi)
∑

s∈S Ti(s, a, s′)

×bi(s)α
n−1
l(bi,a,oi)

(s′)

}

= max
a∈Ai

{ ∑
s∈S bi(s)

(
Ri(s, a) + γ

∑
oi∈Ωi

∑
s′∈S Oi(s

′, a, oi)Ti(s, a, s′)αn−1
l(bi,a,oi)

(s′)

)}

Let the innermost summand

Ri(s, a) + γ
∑

oi∈Ωi

∑

s′∈S

Oi(s
′, a, oi)Ti(s, a, s′)αn−1

l(bi,a,oi)
(s′) = αn(s), (2.5)

and the set of all αn be Γn. Note that Γn is a finite set for a finite number of actions and observations.

We can rewrite the equation as:

Un(bi) = max
αn∈Γn

∑

s∈S

bi(s)α
n(s) = max

αn∈Γn
〈bi, α

n〉 (2.6)

Eq. 2.6 is an inner product, and using Lemma 2.4, Un is linear in bi. Futhermore, maximizing over a set

of linear alpha vectors produces the piecewise linear and convex value function.
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2.2 Algorithms for Solving POMDPs

A wide spectrum of exact and approximate solution techniques that compute the optimal and approxi-

mately optimal policy, respectively, for a POMDP exist. Approximate solution techniques trade off quality of

the solution with computation time. They are critically required, since POMDPs suffer from a high computa-

tional complexity. Specifically, the task of computing a finite horizon policy for a POMDP is PSPACE-hard

in general, and PSPACE-Complete for the case where the number of horizons is less than or equal to the num-

ber of states of the POMDP (Papadimitriou & Tsitsiklis, 1987a). For the infinite horizon case, the decision

of whether a policy of some given value can be computed is undecidable (Madani, Hanks, & Condon, 2003).

In this section, we will briefly survey the exact algorithms, and present one such algorithm in detail. In the

next section, we will survey the approximation techniques.

All exact algorithms derive the nth horizon policy from the (n− 1)th horizon one, by computing the nth

horizon alpha vectors from the (n − 1)th horizon ones. They differ in the method by which this derivation

takes place. The earliest and the least sophisticated of all exact algorithms, the enumeration algorithm (Mon-

ahan, 1982), performs a ”brute force” combinatorial approach. Specifically, it derives every possible nth

horizon policy tree from the previous horizon ones. The policy trees that are not optimal at any belief are

rejected (pruned) using a linear program. The witness algorithm (Cassandra et al., 1994), on the other hand,

incrementally generates the correct set of policy trees, thereby taking less time, in practice. The incremen-

tal pruning algorithm (Cassandra, Littman, & Zhang, 1997) exploits an important insight – several linear

programs with less constraints are computationally less expensive than a single linear program with a large

number of constraints. Consequently, the incremental pruning algorithm, interleaves pruning with generation

of new policy trees, as opposed to first generating all possible policy trees, and then pruning them. Because

we extend the incremental pruning algorithm to multiagent settings later on, we explain it in detail in the next

section.

The previously mentioned algorithms iterate over the value function space and converge to the optimal

value function. The policy graph, is then derived from the value function. A contrasting approach (Hansen,

1998) is to directly iterate over the policy space. Specifically, the policy iteration algorithm represents a

policy as a finite state machine, and attempts to incrementally improve this policy.

One method to speed up the exact computation of solutions, is to utilize the structure of the problem

domain. Such structure, is usually, captured using factored (feature-based) state representations such as
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DBNs and decision trees. In (Boutilier & Poole, 1996), Boutilier et al. present an algorithm that represents

each alpha vector as a decision tree, where the decision nodes are the factored state variables, and performs a

dynamic programming update of these decision trees. A slightly different approach is to perform incremental

pruning on the factored state representations, as shown in (Hansen & Feng, 2000).

2.2.1 An Exact Method for Solving POMDPs

The incremental pruning algorithm (Cassandra et al., 1997) improves on other exact algorithms by inter-

leaving the generation of new alpha vectors with pruning. The algorithm utilizes a dynamic programming

approach by initializing the set of alpha vectors with horizon 1 vectors, and using the Bellman update, as

given in Eq. 2.5, to generate new vectors of succeeding horizons. Each iteration of the algorithm can be

decomposed into three steps:

Step 1: We first generate intermediate sets Γn
a,∗, and Γn

a,o, ∀a ∈ Ai, ∀o ∈ Ωi,

Γ1
a,∗

∪
← α1

a,∗ = Ri(s, a)

Γn
a,oi

∪
← αn

a,oi
= γ

∑

s′∈S

Ti(s, a, s′)Oi(s, a, oi)α
n−1(s′) ∀αn−1 ∈ Γn−1

p

where Γn−1
p is the set of horizon n− 1 optimal alpha vectors.

Step 2: Next, we generate Γn
a ∀a ∈ Ai, by taking the cross-sum over all possible observations,

Γn
a = Γ1

a,∗ ⊕ Γn
a,o1

i
⊕ Γn

a,o2
i
⊕ . . .⊕ Γn

a,o
|Ωi|

i

where Γ1 ⊕ Γ2 = {α1 + α2|α1 ∈ Γ1, α2 ∈ Γ2}

Step 3: Normally, we would take the union of all vector sets generated so far:

Γn = ∪
a∈Ai

Γn
a

Many of the vectors in the final set may be completely dominated by others. A vector is dominated by

another if at all belief states, the value of the latter is greater than the value of the former. The domination
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test can be carried out using linear programming (LP). Hence, as a final step, we would apply the domination

test on the vector set, and retain a parsimonious set of vectors.

Γn
p = prune(Γn)

Rather than pruning the vector set after all cross-sums have been computed (Step 2), the incremental

pruning algorithm interleaves pruning with cross-sum computations:

prune(A⊕B ⊕ C) = prune(prune(A⊕B)⊕ C) (2.7)

Using Equation 2.7, Step 2 of the algorithm can be rewritten:

Γn
a = Γ1

a,∗ ⊕ Γn
a,o1

i

⊕ Γn
a,o2

i

⊕ . . .⊕ Γn

a,o
|Ωi|

i

= prune(. . . prune(prune(Γ1
a,∗ ⊕ Γn

a,o1
i

)⊕ Γn
a,o2

i

)⊕ . . .⊕ Γn

a,o
|Ω|
i

)

To understand the time complexity of this algorithm, let us ascertain the maximum number of vectors

generated in each step prior to the pruning step. In Step 1 we generate |Ai||Ωi||Γ
n−1
p | vectors. The original

Step 2 generates |Ai||Γ
n−1
p ||Ωi| vectors. Hence, set Γn will contain a maximum of |Ai||Γ

n−1
p ||Ωi| vectors

in time |S|2|Ai||Γ
n−1
p ||Ωi|, and occupy maximum space, |S||Ai||Γ

n−1
p ||Ωi|. The worst case time complexity

is exponential in the number of observations and doubly exponential in the number of horizons making

the problem of computing exact solutions intractable. However, the complexity of incremental pruning is

Θ(|Γn
a ||Γ

n−1
p ||Ωi|) LPs, and O(|Γn

a |
2|Γn−1

p ||Ω|) total number of constraints. Though, in the worst case,

these bounds are identical to those of the original algorithm, there are POMDPs for which the best-case total

number of constraints is asymptotically better than for the original algorithm.

2.2.2 Example: The Single Agent Tiger Problem

In order to see what solutions to POMDPs – policies – look like, we use the single agent tiger problem

for illustration. Our purpose is to build on the insights that POMDP solutions provide in this simple case to

illustrate solutions to interactive versions of this problem later.

Definition 2.4 (Single Agent Tiger Problem). The traditional tiger problem resembles a game-show situa-

tion in which the decision maker has to choose to open one of two doors behind which lies either a valuable
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prize or a dangerous tiger. Apart from actions that open doors, the subject has the option of listening for the

tiger’s growl coming from the left, or the right, door. However, the subject’s hearing is imperfect, with given

percentages (say, 15%) of false positive and false negative occurrences. Following (Kaelbling, Littman, &

Cassandra, 1998), we assume that the value of the prize is 10, that the pain associated with encountering the

tiger can be quantified as -100, and that the cost of listening is -1. See Fig. 2.3 for an illustration.

?OR

L

OL

GR

GL

Figure 2.3: An illustration of the tiger problem. At each step, agent i must make a decision: open the left
door (OL), listen (L), or open the right door (OR). To aid its decision, the agent receives observations – the
tiger’s growls from either the left (GL) or right (GR) depending on where the tiger is. However, the agent’s
sensors are noisy.

We represent the single agent tiger problem as a POMDP. The transition, reward, and observation func-

tions that quantify the problem are shown in Table 2.1.

We solve the POMDP representing the single agent tiger problem using the incremental pruning algorithm

described in Section 2.2.1, for finite horizons. Specifically, we solve the game for 1,2 and 3 horizons and show

the corresponding value functions in Figs. 2.4, 2.5, and 2.6. Values of beliefs are based on the best conditional

plan (policy tree) available in that belief state, as specified in Eq. 2.4. Because the tiger problem has only

two physical states, the agent’s belief is completely specified using a single number: 0 ≤ p(TL) ≤ 1. Each

vector is labeled with the conditional plan that it represents. Note that the symmetric nature of the agent’s

POMDP produces symmetric value functions, and that the value function is piecewise linear in belief and

convex.
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Action State TL TR
OL * 0.5 0.5
OR * 0.5 0.5
L TL 1.0 0
L TR 0 1.0

Action TL TR
OR 10 -100
OL -100 10
L -1 -1

Transition function (Ti) for agent i. Reward function (Ri) for agent i.

Action State GL GR
L TL 0.85 0.15
L TR 0.15 0.85

OL * 0.5 0.5
OR * 0.5 0.5

Observation function (Oi) for agent i.

Table 2.1: Transition, reward, and observation functions for agent i playing the tiger problem.
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Figure 2.4: Value function for horizon 1. The agent performs OL when the probability that it assigns to the
tiger being on the left, p(TL) < 0.1. Listens when 0.1 < p(TL) < 0.9, and does OR when p(TL) > 0.9.
At values of p(TL) where two vectors intersect, the conditional plans represented by the intersecting vectors
are followed with equal probabilities.

The value function, in Figure 2.4, shows values of various belief states when the agent’s time horizon is

equal to 1. The state of certainty is most valuable – when the agent knows the location of the tiger it can open

the opposite door and claim the prize which certainly awaits. Thus, when the probability of tiger location is

0 or 1, the value is 10. When the agent is sufficiently uncertain, its best option is to play it safe and listen; the

value is then -1. The agent is indifferent between opening doors and listening when it assigns probabilities of
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0.9 or 0.1 to the location of the tiger. Note that when the time horizon is equal to 1, listening does not provide

any useful information since the game does not continue to allow for the use of this information.
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Figure 2.5: Value function for horizon 2. When p(TL) < 0.02 the agent starts with a OL and then listens no
matter what the observations are, or listens first and then does OL no matter what, with equal probabilities.
For 0.02 < p(TL) < 0.39 a conditional plan that starts by listening and on hearing a GL listen again or OL
on hearing a GR, is followed by the agent. When 0.39 < p(TL) < 0.61, the agent will always listen, and
for 0.61 < p(TL) < 0.98, the agent will start by listening, and OR when it hears a GL or L when it hears a
GR. If 0.98 < p(TL) < 1.0, the agent will execute the two conditional plans of first performing OR and then
listening no matter what, or first listening and then always performing OL, with equal probabilities. Note that
at values of p(TL) where the vectors intersect, the conditional plans represented by the intersecting vectors
will be carried out with equal probabilities.

When the time horizon is 2 (Fig. 2.5), listening and hearing the tiger’s growls does provide useful infor-

mation to the agent. The result is that the agent makes full use of its listening action and the agent’s policy

when it has two steps to go becomes more cautious: It opens doors only when its certainty level is greater

than 0.98.

2.3 Approximation Techniques for POMDPs

There are two distinct but correlated sources of intractability that we encounter while applying POMDPs

to large planning domains. The first one is aptly called the curse of dimensionality – the number of physical

states of the problem which make up the dimensions of the belief simplex, and the second is called the curse

of history – possible beliefs that the agent could have in the future depending on its anticipated actions and
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Figure 2.6: Value function for horizon 3. We avoid describing the policy here because of its complexity.
However, the conditional plan associated with each vector may be obtained from the policy graph in Fig. 2.7.
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[0−−0.003) [0.003−−0.1) [0.1−−0.22) [0.22−−0.78) [0.78−−0.9) [0.9−−0.997) [0.997−−1]

Figure 2.7: One of 16 optimal horizon 3 policies. The belief intervals are over the probability of the tiger
being behind the left door.

observations. The latter bottleneck is same as the complexity of the policy space. As the number of physical

states increase, the dimensionality of the belief simplex grows, which not only affects the time complexity

of the LPs but also adversely affects the naive approaches that solve POMDPs by discretizing the belief

space. The number of possible future beliefs that the agent i may have starting from a particular belief

is proportional to (|Ai||Ωi|)
T−1, which grows exponentially with the horizon T . The two curses are also

correlated: A larger dimensioned belief simplex naturally implies a larger number of possible beliefs that an
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agent may have, thereby contributing to the curse of history. If we extend POMDPs to multiagent settings,

these curses will carry over, and possibly become even more acute. In this regard, it is useful to briefly

survey the vast literature on approximation techniques for POMDPs, with the aim of extending some of the

underlying ideas to multiagent settings. For excellent surveys of approximation techniques see (Hauskrecht,

2000) and (Aberdeen, 2003).

Let us first look at approximations that address the curse of dimensionality. The least sophisticated of

all such approximation techniques treats POMDPs as completely observable MDPs (Littman, Cassandra, &

Kaelbling, 1995a). The algorithm therefore assumes that any uncertainty in the agent’s current belief reduces

to zero after the next action. Since the solution assumes perfect observability, the value function is overly

optimistic, and provides an upper bound on the optimal POMDP value function. Another class of algorithms

prescribe substituting the more complex belief space with a simpler feature space (Bertsekas, 1995; Tsitsiklis

& Roy, 1996). The feature space is usually smaller, and summarizes the important characteristics of the belief

space with regard to control. One such method (Roy & Gordon, 2002) utilizes the technique of principal

component analysis to identify the relevant important features. Another method (Poupart & Boutilier, 2003)

investigates lossless and lossy compressions of the belief space through its impact on decision quality.

Several algorithms also exist that beat back the curse of history. Rather than operating over the entire

belief simplex, these algorithms pick sample beliefs and approximate the value function on the basis of

the selected beliefs. One such set of algorithms (Lovejoy, 1991; Brafman, 1997; Zhou & Hansen, 2001)

approximate the POMDP belief space by superimposing a regular grid on the belief simplex. The grid divides

the belief simplex into a set of equal-sized sub-simplices. The key idea in this technique is to perform value

iteration over the belief states that lie on the intersection of grid lines, and interpolate the value of the non-

grid belief states. Zhou and Hansen (2001) consider a variable-resolution grid. The resolution of the grid

is increased in those sub-simplices where lower error bound is required. Recently, Pineau et. al. (2003b)

suggested performing point-based value iteration, by selecting belief points from the belief simplex and

retaining only the alpha vectors that are optimal over those belief points. This not only reduces the set of alpha

vectors at each time step, but also simplifies the pruning step by eliminating the need for linear programs.

The selected belief points are those which lie on the reachability tree generated from the starting belief points.

They also explored the use of metric trees (Pineau, Gordon, & Thrun, 2003a) (using the supremum norm as

the distance metric between belief points) for making a smarter selection of relevant belief points.
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Recently, a method that tackles both the curses of dimensionality and history was proposed

(Poupart & Boutilier, 2004). The method combines compression of the belief simplex, reducing its dimen-

sionality, with bounded policy iteration to reduce the policy space complexity. The resulting approach is

highly scalable; its application was shown on a network management problem of 33 million states. Hier-

archical approaches that decompose a global task into a set of subtasks, solve the subtasks using smaller

POMDPs, and piece together the resulting sub-policies, have also appeared in the literature (Pineau, Roy, &

Thrun, 2001).

2.4 Summary

POMDPs are general decision-theoretic frameworks for planning in single agent settings that address

both, the action outcome uncertainty and the state uncertainty problems. However, they are computation-

ally very complex; exact solutions have been reported only for very simple problem domains that contain

less than ten states. Therefore, approximate techniques that trade off complexity with the quality of the so-

lution are critically required if POMDPs are to move beyond toy problems. A vast suite of approximation

techniques exist that address both the sources of intractibility in POMDPs: the curse of dimensionality, and

the policy space complexity. Many of these techniques also provide useful error bounds for the approxima-

tions. Though, POMDPs yet do not find mainstream recognition, their applications to ever larger problems is

encouraging.



Chapter 3

BACKGROUND: GAME THEORY

STRATEGIC interaction in multiagent settings has been the central problem of interest for game theorists.

Though we adopt a decision theoretic approach to multiagent planning rather than game theoretic,

we borrow several concepts from game theory which we briefly review in this chapter. From single play

interactions (typically called games) in which agents (players) act only once, attention has shifted to infinitely

repeated games in which the same game is played repeatedly. An assumption that pervades all of game theory

is that all agents are rational – they always maximize their (expected) utility – all agents know that all agents

are rational, all agents know that all know that all are rational, and so on. This assumption is called the

common knowledge of rationality. Under the umbrella of this assumption, the solution concept of choice

when analyzing games has been Nash equilibrium, and continues to remain so. A pair of strategies (actions

for single play games) of two agents is in Nash equilibrium if each is a best response to the other. This circular

definition ensures that if each agent performs its part of the Nash equilibrium, then there is no incentive for

the other to deviate from its part. Therefore, Nash equilibrium is stable. On the other hand, many games have

multiple Nash equilibria necessitating all agents to act out the same Nash equilibrium; this, in the absence of

centralized control, requires some kind of synchronizing mechanism among agents which researchers have

usually shied away from addressing.

Interest in game theory was spurred by Von Neumann and Morgenstern’s foundational book (1953) first

published in 1944. A vast literature has spawned from then onwards until now which cannot be reviewed

in its entirety here due to lack of space. Therefore, we concentrate only on those parts of game theory that

find a direct application elsewhere in this thesis. The remainder of this chapter is structured as follows. We

31
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very briefly review single play games in Section 3.1, using an example game for illustration. We then move

onto repeated games in Section 3.2, and focus on the learning algorithms for incomplete information repeated

games. In Section 3.3 we survey the various algorithms that exist for learning Nash equilibria in stochastic

games. We summarize this chapter in Section 3.4.

3.1 Single Play Games

Games in which each agent can act only once are called single play or single shot games. All agents that

play the game act simultaneously and independently, and their play is usually guided by their payoffs which

is a function of actions of all agents. Single play games are commonly represented in two ways: the matrix

or normal form, and the extensive form. Recently, graphical models such as influence diagrams (Tatman

& Shachter, 1990) have also been extended to represent and solve games (Koller & Milch, 2001; Gal &

Pfeffer, 2003). Graphical models provide a descriptive approach to analyzing games by explicitly capturing

the structure of the game and decision making models of the players. In this chapter, we will utilize the

normal form of games, and refer the reader to (Fudenberg & Tirole, 1991) for an explanation of the extensive

form.

3.1.1 Games of Complete Information

We will first restrict our attention to games in which each player knows its own and others’ payoff func-

tions. Let us summarize the important solution concepts for such games using an example:

Definition 3.1 (Market Niche). Two firms, I and J , are competing for a single market niche. If one firm

completely occupies the niche, then its profit is quantified by 10, while the other firm does not make any profit

or loss. If both the firms occupy the niche, then both suffer losses worth -5 each. However, if both firms

choose to stay out then each breaks even. The payoff (reward) function of each firm is shown in Table 3.1. In

each cell, the first number denotes the payoff to firm I, and the second number denotes the payoff to firm J.

Let us start our analysis of the symmetric game by defining the strategy for each firm. A strategy πI of

firm I is a probability distribution over I’s actions: πI ∈ ∆(AI), where AI = {Enter, Stay out}. Firm J’s

strategy is defined analogously. If a strategy is a point mass distribution, then it is called a pure strategy1,

1If the space of actions is continuous, then strategies are probability density functions (p.d.f.s), and a pure strategy is a Dirac-delta
p.d.f.
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FIRM J

Enter Stay out
FIRM Enter -5, -5 10, 0

I Stay out 0, 10 0, 0

Table 3.1: The market niche game between two firms in normal form. We show the payoff functions,
RI(ai, aj) and RJ(ai, aj), of each firm. All aspects of the interaction are captured using the payoff functions.

otherwise it is called a mixed (randomized) strategy. Next, we define a firm’s, say I’s, best response strategy

to J’s strategy:

Definition 3.2 (Best Response). A strategy, πI , of firm I with a payoff function RI is a best response to the

strategy πJ if πI ∈ OPT where:

OPT (RI , πJ ) = argmax
πI∈∆(AI)

∑

aI ,aJ

RI(aI , aJ )πI(aI)πJ (aJ ) (3.1)

Firm I’s best response function for a given payoff function and J’s strategy can be computed using a

linear program.2 A solution for the game would be a prescription: the strategy that firm I should perform

and the strategy that firm J should carry out, that will maximize their individual utilities. However, selection

of firm I’s strategy will depend on the strategy selected by firm J , which in turn will depend on the strategy

selected by firm I and so on, resulting in an infinite regress. A solution concept that ”cuts” through this

regress is that of Nash equilibrium. We define Nash equilibrium below:

Definition 3.3 (Nash Equilibrium). A pair of strategies, [πI , πJ ], are in Nash equilibrium if each strategy

of the pair is a best response to the other. Formally,

πI ∈ OPT (RI , πJ ) and πJ ∈ OPT (RJ , πI)

where OPT is defined according to the Definition 3.2.

Nash equilibrium is stable: Because of common knowledge of rationality, there is no incentive for each

firm to deviate from its part of the equilibrium. For the market niche game of Table. 3.1, there are two

2If the game were to be a zero-sum game – RI(aI , aJ ) + RJ (aI , aJ ) = 0 ∀aI , aJ – Eq. 3.1 would be OPT (RI) =
argmax

πI∈∆(AI )
min

πJ∈∆(AJ )

∑
aI ,aJ

RI(aI , aJ )πI(aI)πJ (aJ )
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pure strategy, and one mixed strategy Nash equilibria. The two pure strategy equilibria are
[
〈1,0〉,〈0,1〉

]

and
[
〈0,1〉,〈1,0〉

]
, where 〈x, y〉 indicates a strategy where the firm will choose to enter the market with a

probability of x, and stay out of the market with the probability of y(= 1 − x). The mixed strategy Nash

equilibrium is
[
〈 23 , 1

3 〉, 〈
2
3 , 1

3 〉

]
. At this point, the reader may ask what epistemic conditions are sufficient for

the firms to adopt the Nash equilibrium as a solution. Aumann and Brandenburger (1995) observed that for

games such as the one that we are currently considering, each firm must be rational, know its own payoff

function, and know the strategy selected by the other firm (mutual knowledge of strategy choices). Note that

these conditions are sufficient but not necessary: in the absence of these conditions, the firms may still select

the Nash equilibrium profile accidentally. We note that fulfilling the key epistemic condition of knowing the

other firm’s strategy may be difficult in practice.

The existence of multiple Nash equilibria for the market niche game raises a question. How do the firms

come to expect to play the same Nash equilibrium. This question is significant, because in the absence

of coordination their play need not correspond to any equilibrium at all. One may adopt synchronizing

schemes such as the common selection procedure of Harsanyi and Selten (1988), but such approaches are

also plagued with unresolved issues (see Chapter 1 in Fudenberg & Levine, 1997). Consequently, we view

the non-uniqueness of Nash equilibrium as a significant impediment to its adoption as the solution concept

for planning.

3.1.2 Games of Incomplete Information: Bayesian Games

In the market niche game of Section 3.1.1, each firm was aware of the other’s payoff function, and

subsequently of all the parameters of the game. Realistically, this assumption may not hold, with one or

both firms being unaware of the other’s payoff function (or other parameters). To illustrate this situation, let

us modify the market niche game so that firm I has one of two payoff functions depending on whether its

aggressive or submissive. We illustrate the modified market niche game in Table 3.2.

Such games of (one or two-sided) incomplete information were first addressed by Harsanyi (1967), who

proposed encompassing all of the agent’s private information relevant to its decision making in a attribute
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FIRM J FIRM J

Enter Stay out
FIRM Enter 1.5, -1 3.5, 0

I Stay out 2, 1 3, 0

Enter Stay out
FIRM Enter 0, -1 2, 0

I Stay out 2, 1 3, 0

FIRM I is aggressive FIRM I is submissive

Table 3.2: The modified market niche game. Firm I’s payoff function will depend on whether it’s aggressive
or submissive. Firm J’s payoff function is fixed. Firm J is unaware of which of the two possible payoff
functions is that of I .

vector called the type 3. For our modified market niche game, firm I has two types:

ΘI = {RIaggressive , RIsubmissive}

Additionally, Harsanyi, in the same paper, also suggested – as a special case – using a prior distribution

(provided by nature) over the types that is common knowledge to all agents playing the game. In this way,

the game of incomplete information is turned into a game of imperfect information, and we can now compute

a Bayesian Nash equilibrium for the game. If firm J also has more than one possible payoff function, then

I’s type space would additionally include its beliefs over J’s payoffs. These beliefs would be derived from

the common prior.

Let us solve the modified market niche game as shown in Table 3.2. First note that when firm I is

submissive, choosing to stay out of the market is a dominant strategy no matter what firm J does. Let pI be

the commonly known prior probability that the firm I is aggressive. If x is the probability that firm I will

choose to enter the market when it is aggressive, then firm J will enter if x < 1
2(1−pI) , stay out if x > 1

2(1−pI) ,

and be undecided if x = 1
2(1−pI) . Analogously, the aggressive firm I will enter if firm J chooses to enter with

a probability of less than 0.5. The Bayesian Nash equilibrium for our game would be a pair (πI , πJ ), in which

πI is the optimal response of the aggressive firm I to πJ , and πJ is the optimal response of firm J to firm I’s

response and J’s belief of firm I being aggressive with a probability pI . There are again three Bayesian Nash

equilibria in the modified market niche game. The two pure strategy equilibria are
[
〈0,1〉,〈1,0〉

]
for any pI ,

and
[
〈1,0〉,〈0,1〉

]
iff pI ≤ 0.5. The mixed strategy equilibria is

[
〈 1
2(1−pI) ,

1−2pI

2(1−pI) 〉, 〈
1
2 , 1

2 〉

]
iff pI ≤ 0.5.

3In Harsanyi’s own words: ” . . . we can regard the attribute vector ci as representing certain physical, social, and psychological
attributes of player i himself in that it summarizes some crucial parameters of player i’s own payoff function Ui as well as main
parameters of his beliefs about his social and physical environment . . . ”
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3.2 Learning in Repeated Games

In this section, we turn our attention to a more realistic framework of interaction. In this framework, the

single play games considered in Section 3.1 are played repeatedly for an infinite number of times. Each agent

is able to perfectly observe the previous plays (perfect monitoring) before making its next decision. Therefore,

strategies such as tit-for-tat now become possible. Because each agent observes the history of the game, it

may learn an assessment (belief) of the other agents’ strategies, and use its assessment to generate its own

best response strategy. There are two models of learning that are predominant in game theory: the fictitious

play model (Fudenberg & Levine, 1997) and the rational (Bayesian) learning model (Kalai & Lehrer, 1993a;

Nyarko, 1997). The two models differ in the way each agent learns about the other’s behavior from its past

observation history.

3.2.1 Fictitious play

Fictitious play (Fudenberg & Levine, 1997) is one of the simplest model of learning, but the first to show

the relevance of Nash equilibrium as a predictive solution concept. In this process, each agent thinks that

the other agent(s) behaves according to a stationary, but unknown (possibly mixed) strategy. For illustration,

we will restrict our fictitious play model to two agents, i and j. An agent, say i, in the fictitious play model

maintains a belief at each time t, bt
i ∈ ∆(Aj). The agent updates its belief according to the following rule:

for some action played by j, at−1
j , we add 1 to the action’s frequency count and normalize. The belief update

is shown below:

b̂t
i(aj) = b̂t−1

i (aj) +

{
1 at−1

j = aj

0 at−1
j 6= aj

∀aj ∈ Aj

bt
i(aj) =

b̂t
i(aj)∑

aj∈Aj
b̂t
i(aj)

Once i’s belief over j’s action space is updated, its own play is simply a best response to its belief: πi ∈

OPTi(Ri, b
t
i), where OPTi is as defined in Eq. 3.1, and Ri is i’s stage game payoff function. For traces

of agent behaviors resulting from applying the fictitious play model to common games such as matching

pennies, see (Shoham & Lleyton-Brown, 2002).

The fictitious play model though naive, exhibits some important asymptotic properties. Beliefs of agents

using the fictitious play learning rule will necessarily converge in zero-sum games (though not necessarily
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in other types of games). Additionally, if the belief of each agent converges, when using the fictitious play

model, they will converge to a Nash equilibrium of the stage game. Variations on the fictitious play model

also exist that strengthen the results on convergence (see Fudenberg & Levine, 1997).

3.2.2 Rational Learning

The learning model described in Section 3.2.1 ascribes a stationary mixed strategy to the other agent,

and assumes that the other agent’s actions are sampled i.i.d. from its distribution. Realistically, the agents’

strategy may not be stationary, but instead may change depending on the history of play. Define an agent’s

behavioral strategy as πi : H → ∆(Ai), where H is the set of histories of play consisting of all sequences

of pairs of actions of both agents. The rational learning model (Kalai & Lehrer, 1993a) postulates that each

agent maintains a belief over the possible behavioral strategies of the other agent, bt
i ∈ ∆(Πj), where Πj is

the set of all behavioral strategies of j.

At each stage of the game, after play, the beliefs are updated in a Bayesian fashion using the observed

actions of other players, and each agent optimizes according to its belief. Note that if play reaches a history

which is not accounted by the player’s belief, then the Bayesian update rule becomes undefined. Hence an

important constraint of the learning rule is that an agent’s beliefs should be absolutely continuous 4 w.r.t. the

possible true histories of the game. Once this constraint is satisfied, the beliefs about the strategies of the

other players will converge, though not necessarily to the true strategy of the other agent. The asymptotic

behaviors of the agents participating in this process will converge to a subjective equilibrium that is stable

with respect to learning and optimization. Note that if a profile of strategies is in Nash equilibrium, then it is

also in subjective equilibrium. In (Kalai & Lehrer, 1993a), it is shown that the converse is also true (though

in a weaker sense). Fudenberg and Levine (1993) demonstrate a related equilibrium called a self-confirming

equilibrium by essentially using the same model but relaxing an important assumption that is made in the

rational learning framework of Kalai and Lehrer: other agents’ strategies are assumed independent of each

other. We also discuss this framework in greater detail in Chapter 7.

For the sake of completeness, we note that while the previous algorithms addressed the question of learn-

ing of individual agents, literature in game theory also addresses the question of learning of a population of

agents. A learning model that is well-studied in such a setting is the replicator dynamic, and a particular

4Two probability measures, µ1 and µ2 are absolutely continuous, µ1 � µ2 if for any measurable event A, µ2(A) = 0 ⇒ µ1(A) =
0.
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stability concept inspired by such a setting is that of evolutionary stable strategy. However, such a setting is

not directly relevant to our work, hence we direct the interested reader to (Fudenberg & Levine, 1997).

3.3 Learning in Stochastic Games

Stochastic games (Owen, 1982) may be viewed as a generalization of Markov decision processes and

normal form games. In Fig. 3.1, we illustrate the relation between stochastic games, MDPs, and the normal

form games. Because our work concentrates on partially observable stochastic games – a generalization of

stochastic games to partially observable settings – we briefly review the stochastic game literature. Much of

the work to date has addressed stochastic games in which the state space is perfectly observable, and (similar

to the frameworks in previous sections) assume that actions of other agents are perfectly observable. Our

work relaxes both of these (unrealistic) assumptions.

Normal 
FormGames
Multiple agents

Single state

MDPs
Single agent

Multiple states

Stochastic Games
Multiple agents
Multiple states

Figure 3.1: Stochastic games as a generalization of MDPs and normal form games to situations of multiple
states and multiple agents.

Many algorithms (Littman, 1994; Hu & Wellman, 1998) for learning to play optimally in stochastic

games perform model-free reinforcement learning (Sutton & Barto, 1998), and extend directly, the single-

agent Q-learning algorithm (Watkins, 1989) to the multiagent setting. Recently, Bowling and Veloso (2002),

suggested two properties that every learning algorithm in stochastic games must aspire for. The properties

are: (1) convergence – the algorithm must converge to a stationary policy under suitable assumptions of

play by other agents, (2) rationality – the convergent policy must be the best response to the other agents’s

stationary policies. Learning algorithms that exhibit these two properties will necessarily converge to the
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Nash equilibrium. Note that these two properties are sufficient but not necessary for convergence to Nash

equilibrium.

We will briefly review several algorithms that satisfy one or both the criteria. The minimax Q-learning

algorithm (Littman, 1994), was the first algorithm to directly extend the single-agent Q-learning algorithm

to zero-sum stochastic games. It does so by simply maintaining a Q-value for each combination of the

state and actions of all agents. The learning rule for updating the Q-table computes the expected payoff

to the agent resulting from following the equilibrium mixed strategy, for the single stage zero-sum game

defined for the particular state. The computation of the agent’s payoff is done using the standard minimax

approach (implemented using a linear program). The algorithm converges in self-play in the limit of infinite

exploration, but is not rational.

The above mentioned approach loses its significance for general-sum stochastic games. An important

contribution for such games is the Nash Q-learning (Hu & Wellman, 1998). Nash Q-learning adopts the same

idea of updating Q-values using Nash equilibrium payoffs. However, in order to do so, it must maintain Q-

tables not only for itself, but for all other agents as well. Nash Q-learning suffers from the non-determinism

of multiple Nash equilibria, and is applicable for only a special class of games. However, for this class, Nash

Q-learning is shown to converge to Nash equilibrium in self-play in the limit of infinite exploration. Another

algorithm also applicable to general-sum games, but restricted to cooperative ones, is (Claus & Boutilier,

1997). The algorithm differs from Nash Q-learning by maintaining beliefs about the other agent’s policies,

and updating these beliefs in a fashion similar to fictitious play.

Recently, the properties of convergence and rationality of learning algorithms have come under criti-

cism (Shoham et al., 2003). These properties are seen as restrictive: they stress on the importance of achiev-

ing Nash equilibria at the expense of more realistic approaches, and most algorithms that conform to these

properties do so under the assumption of self-play. Tesauro (2003) suggested utilizing an algorithm called

Hyper Q-learning which relaxed several assumptions in the previously mentioned algorithms in order to de-

velop a more practical approach. Powers and Shoham (2005) have suggested a new set of criteria on the

rewards accumulated by the agent (as opposed to the criteria on play of the agent) that learning algorithms

should satisfy, and present an algorithm under these criteria.
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3.4 Summary

Traditionally, multiagent interactions have been extensively studied in the subject of game theory. Nash

equilibria has been the central solution concept for most of the work (a notable exception is Kadane & Larkey,

1982). However, recently researchers have begun to question the relevance of Nash equilibrium as a solution

paradigm for controlling agents: In games with multiple Nash equilibria, there is no clear explanation of why

all the agents should come to expect the same equilibrium. Secondly, Nash equilibrium does not prescribe

what the agent should do if others fail to follow their part of the equilibrium. Finally, all of the assumptions

(epistemic and otherwise) under which the games have been analyzed such as common knowledge of ratio-

nality and payoffs, and perfect monitoring are being questioned on whether they are realistic (see Chapter 1

of Fudenberg & Levine, 1997). Having said the above, we utilize several other game theoretic concepts to

develop our multiagent planning framework.



Chapter 4

INTERACTIVE POMDPS: MULTIAGENT

DECISION-THEORETIC PLANNING

WE develop a framework for sequential rationality of autonomous agents interacting with other agents

within a common, and possibly uncertain, environment. We use the normative paradigm of decision-

theoretic planning under uncertainty formalized as partially observable Markov decision processes (POMDPs)

(see Chapter 2) as a point of departure. As we mentioned before, solutions of POMDPs are mappings from

an agent’s belief to actions. While POMDPs can be used in environments populated by other agents, the

drawback is that other agents’ actions have to be represented implicitly as environmental noise within the,

usually static, transition model. Such restricted modeling disregards the fact that the other agents may also

be learning and consequently their behavior may be dynamic. Thus, an agent’s beliefs about the other agent

are not part of solutions to POMDPs.

The main idea behind our formalism, called interactive POMDPs (I-POMDPs) (Gmytrasiewicz &

Doshi, 2005, 2004, 2004), is to allow agents to use more sophisticated constructs to model and predict

behavior of other agents. Thus, we replace the “flat” beliefs about the state space used in POMDPs with

beliefs about the physical environment and about the other agent(s), possibly in terms of their preferences,

capabilities, and beliefs. Such beliefs could include others’ beliefs about others, and thus can be nested to

arbitrary levels. They will be called interactive beliefs. While the space of interactive beliefs is very rich

and updating these beliefs is more complex than updating their “flat” counterparts, we use the value function

plots to show that solutions to I-POMDPs are at least as good as, and in usual cases superior to, comparable

41
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solutions to POMDPs. The reason is intuitive – maintaining sophisticated models of other agents allows more

refined analysis of their behavior and better predictions of their actions.

I-POMDPs are applicable to autonomous self-interested agents who locally compute what actions they

should execute to optimize their preferences given what they believe while interacting with others with pos-

sibly conflicting objectives. The multiagent setting within which we study I-POMDPs extends stochastic

games (Section 3.3) to partially observable environments, and we call it the partially observable stochastic

game (POSG). Our approach of using a decision-theoretic framework and solution concept complements the

equilibrium approach to analyzing interactions as used in classical game theory (see Chapter 3). As we men-

tioned before, the drawback of equilibria is that there could be many of them (non-uniqueness), and that they

describe agent’s optimal actions only if, and when, an equilibrium has been reached (incompleteness). Our

approach, instead, is centered on optimality and best response to anticipated action of other agent(s), rather

then on stability (Binmore, 1990; Kadane & Larkey, 1982). The question of whether, under what circum-

stances, and what kind of equilibria could arise from solutions to I-POMDPs is addressed in Chapter 7.

Our approach avoids the difficulties of non-uniqueness and incompleteness of traditional equilibrium ap-

proach, and offers solutions which are likely to be better than the solutions of traditional POMDPs applied to

multiagent settings. But these advantages come at the cost of processing and maintaining possibly infinitely

nested interactive beliefs. Consequently, only approximate belief updates and approximately optimal solu-

tions to planning problems are computable in general. We define a class of finitely nested I-POMDPs to

form a basis for computable approximations to infinitely nested ones. We show that a number of properties

that facilitate solutions of POMDPs carry over to finitely nested I-POMDPs. In particular, the interactive

beliefs are sufficient statistics for the histories of agent’s observations, the belief update is a generalization of

the update in POMDPs, the value function is piece-wise linear and convex, and the value iteration algorithm

converges at the same rate.

The remainder of this chapter is structured as follows. We start with a brief review of related work in

Section 4.1, and formalize the concept of agent types in Section 4.2. Section 4.3 introduces the I-POMDP

framework and its solution. The finitely nested I-POMDPs, and their key properties are introduced in Sec-

tion 4.4. We continue with an example application of finitely nested I-POMDPs to a multiagent version of the

tiger problem in Section 4.5. There, we show examples of belief updates and value functions. Applications

of I-POMDPs demonstrating the emergence of social behaviors are given in Section 4.6. We conclude with
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a brief summary in Section 4.7, point out the contributions of our work in Section 4.8, and lay out directions

of future work in Section 4.9.

4.1 Related Work

Our work draws from prior research on partially observable Markov decision processes, which recently

gained a lot of attention within the AI community. We explained POMDPs in appropriate detail in Chapter 2.

As we mentioned before, the formalism of Markov decision processes has been extended to multiple

agents giving rise to stochastic games or Markov games (Section 3.3 of Chapter 3). The algorithms for

planning in stochastic games perform model-free reinforcement learning and assume complete observability

of state. In contrast, our approach is model-based, and assumes partial state observability. Traditionally, the

solution concept used for stochastic games is that of Nash equilibria. However, as we mentioned before,

and as has been pointed out by some game theorists (Binmore, 1990; Kadane & Larkey, 1982), while Nash

equilibria are useful for describing a multiagent system when, and if, it has reached a stable state, this solution

concept is not sufficient as a general control paradigm. The main reasons are that there may be multiple

equilibria with no clear way to choose among them (non-uniqueness), and the fact that equilibria do not

specify actions in cases in which agents believe that other agents may not act according to their equilibrium

strategies (incompleteness).

Other extensions of POMDPs to multiple agents appeared in (Bernstein, Givan, Immerman, & Zilberstein,

2002; Nair, Tambe, Yokoo, Pynadath, & Marsella, 2003). They have been called decentralized POMDPs

(DEC-POMDPs), and are related to decentralized control problems (Ooi & G.W.Wornell, 1996). DEC-

POMDP framework assumes that the agents are fully cooperative, i.e., they have common reward function

and form a team. Furthermore, it is assumed that the optimal joint solution is computed centrally and then

distributed among the agents.

From the game-theoretic side, we are motivated by the subjective approach to probability in games (Kadane

& Larkey, 1982), Bayesian games of incomplete information (see Section 3.1.2 of Chapter 3 and and refer-

ences therein), work on interactive belief systems (Harsanyi, 1967; Mertens & Zamir, 1985; Brandenburger

& Dekel, 1993; Fagin et al., 1995; Aumann, 1999; Fagin, Geanakoplos, Halpern, & Vardi, 1999), and in-

sights from research on learning in game theory (Section 3.2 of Chapter 3). We relax assumptions of these

previous works such as perfect monitoring, and perfect observability of state. Our approach, closely related
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to decision-theoretic (Myerson, 1991), and epistemic (Ambruster & Boge, 1979; Battigalli, 1996; Branden-

burger, 2002) approaches to game theory, consists of predicting actions of other agents given all available

information, and then of choosing the agent’s own action (Kadane & Larkey, 1982). Thus, the descriptive

aspect of decision theory is used to predict others’ actions, and its prescriptive aspect is used to select agent’s

own optimal action.

The work presented here also extends previous work on the Recursive Modeling Method (RMM)

(Gmytrasiewicz & Durfee, 2000), but adds elements of sequential update and planning.

4.2 Agent Types and Frames

The POMDP definition includes parameters that permit us to compute an agent’s optimal behavior,1

conditioned on its beliefs. Let us collect these implementation independent factors into a construct we call an

agent i’s type.

Definition 4.1 (Type). A type of an agent i is, θi = 〈bi, Ai,Ωi, Ti, Oi, Ri, OCi〉, where bi is agent i’s state

of belief (an element of ∆(S)), OCi is its optimality criterion, and the rest of the elements are as defined

before in Section 2.1.1 of Chapter 2. Let Θi be the set of agent i’s types.

Given type, θi, and the assumption that the agent is Bayesian-rational, the set of agent’s optimal actions

will be denoted as OPT (θi). In the next section, we generalize the notion of type to situations which in-

clude interactions with other agents; it then coincides with the notion of type used in Bayesian games (see

Section 3.1.2 of Chapter 3).

It is convenient to define the notion of a frame, θ̂i, of agent i:

Definition 4.2 (Frame). A frame of an agent i is, θ̂i = 〈Ai,Ωi, Ti, Oi, Ri, OCi〉. Let Θ̂i be the set of agent

i’s frames.

For brevity one can write a type as consisting of an agent’s belief together with its frame: θi = 〈bi, θ̂i〉.

In the context of the tiger game described previously in Section 2.2.2 of Chapter 2, the agent’s type

describes the agent’s actions and their results, the quality of the agent’s hearing, its payoffs, and its belief

about the tiger location.

1The issue of computability of solutions to POMDPs has been a subject of much research (Papadimitriou & Tsitsiklis, 1987b; Madani
et al., 2003). It is of obvious importance when one uses POMDPs to model agents; we return to this issue later.
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Realistically, apart from the implementation-independent factors grouped in a type, an agent’s behavior

may also depend on implementation-specific parameters, like the processor speed, memory available, etc.

These can be included in the (implementation dependent, or complete) type, increasing the accuracy of pre-

dicted behavior, but at the cost of additional complexity. Definition and use of complete types is a topic of

ongoing work.

4.3 Interactive POMDPs

As we mentioned, our intention is to generalize POMDPs to handle the presence of other agents. We do

this by including descriptions of other agents (their types for example) in the state space. We formally define

the I-POMDP framework below.

4.3.1 Definition

For simplicity of presentation, we again consider an agent i, that is interacting with one other agent, j.

The formalism easily generalizes to larger number of agents.

Definition 4.3 (I-POMDP). An interactive POMDP of agent i, I-POMDPi, is:

I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉 (4.1)

where:

• ISi is a set of interactive states defined as ISi = S ×Mj ,2 interacting with agent i, where S is the

set of states of the physical environment, and Mj is the set of possible models of agent j. Each model,

mj ∈ Mj , is defined as a triple mj = 〈hj , fj , Oj〉, where fj : Hj → ∆(Aj) is agent j’s function,

assumed computable, which maps possible histories of j’s observations to distributions over its actions.

hj is an element of Hj , and Oj is a function specifying the way the environment is supplying the agent

with its input. Sometimes we write model mj as mj = 〈hj , m̂j〉, where m̂j consists of fj and Oj .

It is convenient to subdivide the set of models into two classes. The subintentional models, SMj , are

relatively simple, while the intentional models, IMj , use the notion of rationality to model the other

agent. Thus, Mj = IMj ∪ SMj .

2If there are more agents, say N > 2, then ISi = S ×N−1
j=1 Mj .
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Simple examples of subintentional models include a no-information model and the fictitious play

model, both of which are history independent. A no-information model (Gmytrasiewicz & Durfee,

2000) assumes that each of the agent j’s actions is executed with equal probability. Fictitious play (see

Section 3.2.1 of Chapter 3) assumes that j chooses actions according to a fixed but unknown distri-

bution, and that i’s prior belief over that distribution takes the form of a Dirichlet distribution.3 An

example of a more powerful subintentional model is a finite state machine.

The intentional models are more sophisticated in that they ascribe to the other agent beliefs, prefer-

ences, and rationality in action selection.4 Intentional models are thus j’s types, θj = 〈bj , θ̂j〉, under

the assumption that agent j is Bayesian-rational.5 We introduced types in Section 3.1.2 of Chapter 3

where they encompassed the agent’s reward function only. Here – in the context of partially observable

stochastic games – the agent’s I-POMDP captures all relevant aspects of its decision-making process.

Agent j’s belief is a probability distribution over states of the environment and the models of the agent

i; bj ∈ ∆(S×Mi). In particular, if agents’ beliefs are private information, then their types involve pos-

sibly infinitely nested beliefs over others’ types and their beliefs about others (Mertens & Zamir, 1985;

Brandenburger & Dekel, 1993; Aumann, 1999; Aumann & Heifetz, 2002).6 They are related to the

recursive model structures in (Gmytrasiewicz & Durfee, 2000). The definition of the interactive state

space is consistent with the notion of a completely specified state space put forward by Aumann (1999).

Similar state spaces have been proposed in (Mertens & Zamir, 1985; Brandenburger & Dekel, 1993).

• A = Ai ×Aj is the set of joint moves of all agents

• Ti is the transition model. The usual way to define the transition probabilities in POMDPs is to assume

that the agent’s actions can change any aspect of the state description. In case of I-POMDPs, this

would mean actions modifying any aspect of the interactive states, including other agents’ observation

histories and their functions, or, if they are modeled intentionally, their beliefs and reward functions.

Allowing agents to directly manipulate other agents in such ways, however, violates the notion of

agents’ autonomy. Thus, we make the following simplifying assumption:

3Technically, according to our notation, fictitious play is actually an ensemble of models.
4(Dennett, 1986) advocates ascribing rationality to other agent(s), and calls it ”assuming an intentional stance towards them”.
5Note that the space of types is by far richer than that of computable models. In particular, since the set of computable models is

countable and the set of types is uncountable, many types are not computable models.
6Implicit in the definition of interactive beliefs is the assumption of coherency (Brandenburger & Dekel, 1993).



CHAPTER 4. INTERACTIVE POMDPS: MULTIAGENT DECISION-THEORETIC PLANNING 47

Assumption 4.1 (Model Non-manipulability Assumption (MNM)). Agents’ actions do not change

the other agents’ models directly.

Given this simplification, the transition model can be defined as Ti : S ×A× S → [0, 1]

Autonomy, formalized by the MNM assumption, precludes, for example, direct “mind control”, and

implies that other agents’ belief states can be changed only indirectly, typically by changing the envi-

ronment in a way observable to them. In other words, agents’ beliefs change, like in POMDPs, but as

a result of belief update after an observation, not as a direct result of any of the agents’ actions7

• Ωi is defined as before in the POMDP model

• Oi is an observation function. In defining this function we make the following assumption:

Assumption 4.2 (Model Non-observability (MNO)). Agents cannot observe other’s models directly.

Given this assumption the observation function is defined as Oi : S ×A× Ωi → [0, 1].

The MNO assumption formalizes another aspect of autonomy – agents are autonomous in that their

observations and functions, or beliefs and other properties, say preferences, in intentional models, are

private and the other agents cannot observe them directly8

• Ri is defined as Ri : ISi × A → R. We allow the agent to have preferences over physical states and

models of other agents, but usually only the physical state will matter

As we mentioned, we see interactive POMDPs as a subjective counterpart to an objective external view in

stochastic games (Fudenberg & Tirole, 1991), to approaches in (Boutilier, 1999) and (Koller & Milch, 2001),

and to decentralized POMDPs (Bernstein et al., 2002; Nair et al., 2003). Interactive POMDPs represent an

individual agent’s point of view on the environment and the other agents, and facilitate planning and problem

solving at the agent’s own individual level.

7The possibility that agents can influence the observational capabilities of other agents can be accommodated by including the factors
that can change sensing capabilities in the set S.

8Again, the possibility that agents can observe factors that may influence the observational capabilities of other agents is allowed by
including these factors in S.
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4.3.2 Belief Update in I-POMDPs

We will show that, as in POMDPs, an agent’s beliefs over their interactive states are sufficient statistics,

i.e., they fully summarize the agent’s observation histories. Further, we need to show how beliefs are updated

after the agent’s action and observation, and how solutions are defined.

The new belief state, bt
i, is a function of the previous belief state, bt−1

i , the last action, at−1
i , and the new

observation, ot
i, just as in POMDPs. There are two differences that complicate belief update when compared

to POMDPs. First, since the state of the physical environment depends on the actions performed by both

agents the prediction of how the physical state changes has to be made based on the probabilities of various

actions of the other agent. The probabilities of other’s actions are obtained based on their models. Thus,

unlike in Bayesian and stochastic games, we do not assume that actions are fully observable by other agents.

Rather, agents can attempt to infer what actions other agents have performed by sensing their results on the

environment. Second, changes in the models of other agents have to be included in the update. These reflect

the other’s observations and, if they are modeled intentionally, the update of the other agent’s beliefs. In this

case, the agent has to update its beliefs about the other agent based on what it anticipates the other agent

observes and how it updates. As could be expected, the update of the possibly infinitely nested belief over

other’s types is, in general, only asymptotically computable.

Proposition 4.1. (Sufficiency) In an interactive POMDP of agent i, i’s current belief, i.e., the probability

distribution over the set S ×Mj , is a sufficient statistic for the past history of i’s observations.

The next proposition defines the agent i’s belief update function, bt
i(is

t) = Pr(ist|ot
i, a

t−1
i , bt−1

i ), where

ist ∈ ISi is an interactive state. We use the belief state estimation function, SEθi
, as an abbreviation for

belief updates for individual states so that bt
i = SEθi

(bt−1
i , at−1

i , ot
i). τθi

(bt−1
i , at−1

i , ot
i, b

t
i) will stand for

Pr(bt
i|b

t−1
i , at−1

i , ot
i). Further below we also define the set of type-dependent optimal actions of an agent,

OPT (θi).

Proposition 4.2. (Belief Update) Under the MNM and MNO assumptions, the belief update function for an

interactive POMDP 〈ISi, A, Ti,Ωi, Oi, Ri〉, when mj in ist is intentional, is:
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bt
i(is

t) = β
∑

ist−1:m̂t−1
j

=θ̂t
j

bt−1
i (ist−1)

∑
at−1

j

Pr(at−1
j |θt−1

j )Oi(s
t, at−1, ot

i)

×Ti(s
t−1, at−1, st)

∑
ot

j

τθt
j
(bt−1

j , at−1
j , ot

j , b
t
j)Oj(s

t, at−1, ot
j)

(4.2)

When mj in ist is subintentional the first summation extends over ist−1 : m̂t−1
j = m̂t

j , Pr(at−1
j |θt−1

j )

is replaced with Pr(at−1
j |mt−1

j ), and τθt
j
(bt−1

j , at−1
j , ot

j , b
t
j) is replaced with the Kronecker delta function

δK(APPEND(ht−1
j , ot

j)− ht
j).

Above, bt−1
j and bt

j are the belief elements of θt−1
j and θt

j , respectively, β is a normalizing constant, and

Pr(at−1
j |θt−1

j ) is the probability that at−1
j is Bayesian rational for the agent described by type θt−1

j . This

probability is equal to 1
|OPT (θj)|

if at−1
j ∈ OPT (θj), and it is equal to zero otherwise. We define OPT in

Section 4.3.3.9 For the case of j’s subintentional model, is = (s,mj), ht−1
j and ht

j are the observation histo-

ries which are part of mt−1
j , and mt

j respectively, Oj is the observation function in mt
j , and Pr(at−1

j |mt−1
j )

is the probability assigned by mt−1
j to at−1

j . APPEND returns a string with the second argument appended

to the first. To maintain clarity of the exposition, the proofs of the propositions are presented in Appendix A.

A two time-slice DBN that represents the belief update in I-POMDPs is given in Fig. 4.1.

Proposition 4.2 and Eq. 4.2 have a lot in common with the belief update in POMDPs (Eq. 2.1), as should

be expected. Both depend on agent i’s observation and transition functions. However, since agent i’s obser-

vations also depend on agent j’s actions, the probabilities of various actions of j have to be included (in the

first line of Eq. 4.2.) Further, since the update of agent j’s model depends on what j observes, the proba-

bilities of various observations of j have to be included (in the second line of Eq. 4.2.) The update of j’s

beliefs is represented by the τθj
term. Since the agent i’s beliefs could be infinitely nested, the belief update

in I-POMDPs can, in general, be calculated only asymptotically. The belief update can easily be generalized

to the setting where more than one other agents co-exist with agent i.

9If the agent’s prior belief over ISi is given by a probability density function then the
∑

ist−1 is replaced by an integral. In that
case τθt

j
(bt−1

j , at−1
j , ot

j , bt
j) takes the form of Dirac delta function over argument bt−1

j : δD(SEθt
j
(bt−1

j , at−1
j , ot

j) − bt
j).
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Figure 4.1: A 2-time slice DBN that graphically illustrates the belief update in I-POMDPs. The posterior
belief is a distribution over the shaded random variables. The dashed lines enclose the functions that form the
CPTs for the respective random variables. If mj ∈ Mj under consideration is intentional, then τ forms the
CPT, otherwise δ. The dotted link indicates that the function Oj is the one that is contained in mj . Causal
links within the interactive states have been omitted for clarity.

4.3.3 Value Functions and Solutions to I-POMDPs

Analogously to POMDPs, each belief state in I-POMDP has an associated value reflecting the maximum

payoff the agent can expect in this belief state:

U(θi) = max
ai∈Ai

{∑
is

ERi(is, ai)bi(is) + γ
∑

oi∈Ωi

Pr(oi|ai, bi)U(〈SEθi
(bi, ai, oi), θ̂i〉)

}
(4.3)

where, ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |mj). Eq. 4.3 is a basis for value iteration in I-POMDPs.

Agent i’s optimal action, a∗
i , for the case of infinite horizon criterion with discounting, is an element of

the set of optimal actions for the belief state, OPT (θi), defined as:

OPT (θi) = argmax
ai∈Ai

{∑
is

ERi(is, ai)bi(is) + γ
∑

oi∈Ωi

Pr(oi|ai, bi)U(〈SEθi
(bi, ai, oi), θ̂i〉)

}
(4.4)

As in the case of the belief update, due to possibly infinitely nested beliefs, a step of value iteration and

optimal actions are only asymptotically computable.
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4.4 Finitely Nested I-POMDPs

Possible infinite nesting of agents’ beliefs in intentional models presents an obvious obstacle to computing

the belief updates and optimal solutions. Since the models of agents with infinitely nested beliefs correspond

to agent functions which are not computable, it is natural to consider finite nestings.

4.4.1 Definition

We follow (Aumann, 1999; Brandenburger & Dekel, 1993; Fagin et al., 1999), extend (Gmytrasiewicz &

Durfee, 2000), and construct finitely nested I-POMDPs bottom-up. Assume a set of physical states of the

world S, and two agents i and j. Agent i’s 0th level beliefs, bi,0, are probability distributions over S. Its 0th

level types, Θi,0, contain its 0th level beliefs, and its frames, and analogously for agent j. 0-level types are,

therefore, POMDPs.10 0-level models include 0-level types (i.e., intentional models) and the subintentional

models, SM . An agent’s first level beliefs are probability distributions over physical states and 0-level models

of the other agent. An agent’s first level types consist of its first level beliefs and frames. Its first level models

consist of the types upto level 1 and the subintentional models. Second level beliefs are defined in terms of

first level models and so on. Formally, define spaces:

ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ ∆(ISj,0)}, Mj,0 = Θj,0 ∪ SMj

ISi,1 = S ×Mj,0, Θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ ∆(ISj,1)}, Mj,1 = Θj,1 ∪Mj,0

. .

. .

. .

ISi,l = S ×Mj,l−1, Θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ ∆(ISj,l)}, Mj,l = Θj,l ∪Mj,l−1

Definition 4.4. (Finitely Nested I-POMDP) A finitely nested I-POMDP of agent i, I-POMDPi,l, is:

I-POMDPi,l = 〈ISi,l, A, Ti,Ωi, Oi, Ri〉 (4.5)

The parameter l will be called the strategy level of the finitely nested I-POMDP. The belief update, value

function, and the optimal actions for finitely nested I-POMDPs are computed using Equation 4.2 and Equa-

tion 4.4, but recursion is guaranteed to terminate at the 0th level and subintentional models.

10In 0-level types the other agent’s actions are folded into the T , O and R functions as noise.
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Agents which are more strategic are capable of modeling others at deeper levels (i.e., all levels up to their

own strategy level l), but are always only boundedly optimal. As such, these agents could fail to predict

the strategy of a more sophisticated opponent. The fact that the computability of an agent function implies

that the agent may be suboptimal during interactions has been pointed out by Binmore (1990), and proved

more recently in (Nachbar & Zame, 1996). Intuitively, the difficulty is that an agent’s unbounded optimality

would have to include the capability to model the other agent’s modeling the original agent. This leads to an

impossibility result due to self-reference, which is very similar to Gödel’s incompleteness theorem and the

halting problem (Brandenburger, 2002).

As we mentioned, the 0th level intentional models are POMDPs. They provide probability distributions

over actions of the agent modeled at that level to models with strategy level of 1. Given probability distri-

butions over other agent’s actions, the level 1 models can themselves be solved as POMDPs, and provide

probability distributions to yet higher level models. Assume that the number of intentional models consid-

ered at each level is bound by a number, |Θ|. Solving an I-POMDPi,l in then equivalent to solving O(|Θ|l)

POMDPs. If there are K other agents, then we must solve O((K|Θ|K)l) POMDPs. Hence, the complexity

of solving an I-POMDPi,l is PSPACE-hard for finite time horizons 11, and undecidable for infinite horizons,

just like for POMDPs.

4.4.2 Properties

In this section we establish two important properties, namely convergence of value iteration and piece-

wise linearity and convexity of the value function, for finitely nested I-POMDPs. These properties are

analogous to those of POMDPs (see Section 2.1.2 of Chapter 2), and subsequently their proofs follow the

same approach. All proofs are given in Appendix A.

Convergence of Value Iteration:

For an agent i and its I-POMDPi,l, we can show that the sequence of value functions, {Un}, where n is the

horizon, obtained by value iteration defined in Eq. 4.3, converges to a unique fixed-point, U ∗.

11Usually PSPACE-complete since the number of states in I-POMDPs is likely to be larger than the time horizon (Papadimitriou &
Tsitsiklis, 1987b).
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Let us define a backup operator H : B(Θi) → B(Θi) such that Un = HUn−1, and B(Θi) is the set of

all bounded value functions. In order to prove the convergence result, we first establish some of the properties

of H .

Lemma 4.1 (Isotonicity). For any finitely nested I-POMDPi,l value functions V and U , if V ≤ U , then

HV ≤ HU .

Another important property exhibited by the backup operator is the property of contraction.

Lemma 4.2 (Contraction). For any finitely nested I-POMDPi,l value functions V , U and a discount factor

γ ∈ (0, 1), ||HV −HU || ≤ γ||V − U ||.

The proof of this lemma makes use of Lemma 4.1. || · || is the supremum norm.

Under the contraction property of H , and noting that the space of value functions along with the supre-

mum norm forms a complete normed space (Banach space), we can apply the Banach fixed-point theorem to

show that value iteration for I-POMDPs converges to a unique fixed-point (optimal solution). The following

theorem captures this result.

Theorem 4.1 (Convergence). For any finitely nested I-POMDPi,l, the value iteration algorithm starting

from any arbitrary well-defined value function converges to a unique fixed-point.

The detailed proof of this theorem is included in Appendix A.

As in the case of POMDPs (Russell & Norvig, 2003), the error in the iterative estimates, U n, for finitely

nested I-POMDPs, i.e., ||Un − U∗||, is reduced by the factor of at least γ on each iteration. Hence, the

number of iterations, N , needed to reach an error of at most ε is:

N = dlog(Rmax/ε(1− γ))/ log(1/γ)e (4.6)

where Rmax is the upper bound of the reward function.

Piecewise Linearity and Convexity:

Another property that carries over from POMDPs to finitely nested I-POMDPs is the piecewise linearity and

convexity (PWLC) of the value function. Establishing this property allows us to decompose the I-POMDP

value function into a set of alpha vectors, each of which represents a policy tree. The PWLC property enables
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us to work with sets of alpha vectors rather than perform value iteration over the continuum of agent types.

Theorem 4.2 below states the PWLC property of the I-POMDP value function.

Theorem 4.2 (PWLC). For any finitely nested I-POMDPi,l, Un is piecewise linear and convex.

The complete proof of Theorem 4.2 is included in Appendix A. The proof is similar to the one shown

in Section 2.1.2 for POMDPs and proceeds by induction. The basis case is established by considering the

horizon 1 value function. Showing the PWLC for the inductive step requires substituting the belief update

(Eq. 4.2) into Eq. 4.3, followed by factoring out the belief from both terms of the equation.

4.5 Example: The Multiagent Tiger Problem

To illustrate optimal sequential behavior of agents in multiagent settings we apply our I-POMDP frame-

work to the multiagent tiger problem, a traditional version of which we described before in Section 2.2.2.

4.5.1 Definition

Let us denote the actions of opening doors and listening as OR, OL and L, as before. TL and TR denote

states corresponding to tiger located behind the left and right door, respectively. The transition, reward and

observation functions depend now on the actions of both agents. Again, we assume that the tiger location

is chosen randomly in the next time step if any of the agents opened any doors in the current step. We also

assume that the agent hears the tiger’s growls, GR and GL, with the accuracy of 85%. To make the interaction

more interesting we added an observation of door creaks, which depend on the action executed by the other

agent. Creak right, CR, is likely due to the other agent having opened the right door, and similarly for creak

left, CL. Silence, S, is a good indication that the other agent did not open doors and listened instead. See

Fig. 4.2 for an illustration. We assume that the agent’s payoffs are identical to the single agent versions

described in Section 2.2.2 to make these cases comparable. Note that the result of this assumption is that the

other agent’s actions do not impact the original agent’s payoffs directly, but rather indirectly by resulting in

states that matter to the original agent. Table 4.1 quantifies these factors.

When an agent makes its choice in the multiagent tiger problem, it may find it useful to consider what it

believes about the location of the tiger, as well as whether the other agent will listen or open a door, which

in turn depends on the other agent’s beliefs, reward function, optimality criterion, etc. 12 In particular, if
12We assume an intentional model of the other agent here.
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Figure 4.2: An illustration of the multiagent tiger problem. At each step, each agent must make a decision:
open the left door (OL), listen (L), or open the right door (OR). To aid its decision, the agent receives one
of six observations – a combination of the tiger’s growls and creaks resulting from the other agent opening
doors or listening. Note that the agents’ sensors are noisy.

the other agent were to open any of the doors the tiger’s location in the next time step would be chosen

randomly. Therefore, the information obtained from any previous observations has to be discarded. We will

simplify the situation by considering i’s I-POMDP with a single level of nesting, assuming that all of the

agent j’s properties, except for beliefs, are known to i, and that j’s time horizon is equal to i’s. In other

words, i’s uncertainty pertains only to j’s beliefs and not to its frame. Agent i’s interactive state space is,

ISi,1 = S×Θj,0, where S is the physical state, S={TL, TR}, and Θj,0 is a set of intentional models of agent

j’s, each of which differs only in j’s beliefs over the location of the tiger.

4.5.2 Modeling the Other Agent as Static Noise

We may apply POMDPs directly to multiagent settings by ascribing a stationary behavior to the other

agent j, and folding (marginalizing) the behavior into the agent i’s POMDP definition. This is akin to treating

j as noise in the environment. For illustration, let us assume that i thinks that j listens with a probability of

0.8, opens the left door with a probability of 0.1, and opens the right door with a probability of 0.1. The result

of this noise is that i’s transition function changes: even when i is listening, one of the two doors may open,
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〈ai, aj〉 State TL TR
〈 OL,*〉 * 0.5 0.5
〈 OR,*〉 * 0.5 0.5
〈 *,OL〉 * 0.5 0.5
〈 *,OR〉 * 0.5 0.5
〈 L,L〉 TL 1.0 0
〈 L,L〉 TR 0 1.0

〈ai, aj〉/State TL TR
〈 OR,OR〉 10 -100
〈 OL,OL〉 -100 10
〈 OR,OL〉 10 -100
〈 OL,OR〉 -100 10
〈 L,L〉 -1 -1
〈 L,OR〉 -1 -1
〈 OR,L〉 10 -100
〈 L,OL〉 -1 -1
〈 OL,L〉 -100 10

〈ai, aj〉/State TL TR
〈 OR,OR〉 10 -100
〈 OL,OL〉 -100 10
〈 OR,OL〉 -100 10
〈 OL,OR〉 10 -100
〈 L,L〉 -1 -1
〈 L,OR〉 10 -100
〈 OR,L〉 -1 -1
〈 L,OL〉 -100 10
〈 OL,L〉 -1 -1

Transition function: Ti = Tj Reward functions of agents i and j

〈ai, aj〉 State 〈 GL, CL 〉 〈 GL, CR 〉 〈 GL, S 〉 〈 GR, CL 〉 〈 GR, CR 〉 〈 GR, S 〉

〈L,L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9
〈L,L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9
〈L,OL〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05
〈L,OL〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05
〈L,OR〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05
〈L,OR〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05
〈OL,*〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈OR,*〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

〈ai, aj〉 State 〈 GL, CL 〉 〈 GL, CR 〉 〈 GL, S 〉 〈 GR, CL 〉 〈 GR, CR 〉 〈 GR, S 〉

〈L,L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9
〈L,L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9
〈OL,L〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05
〈OL,L〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05
〈OR,L〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05
〈OR,L〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05
〈*,OL〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈*,OR〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

Observation functions of agents i and j.

Table 4.1: Transition, reward, and observation functions for the multiagent tiger problem.

and the tiger may change its location with a probability of 0.1. We compare the value functions obtained from

the original POMDP (see Section 2.2.2), with those obtained by solving the POMDP with the noise factor.

The value function of the POMDP with noise coincides with that of the original POMDP for horizon

1 as shown in Fig. 4.3. Because this is horizon 1, listening does not provide any useful information since

the problem does not continue to allow for the use of this information. Therefore, the effect of noise in the

listening action is not visible.

In Fig. 4.4 we present a comparison of value functions for horizon of length 2 for the original agent,

and for the agent facing the noisy environment. Consequences of folding noise are two-fold. First, the

effectiveness of the agent’s optimal policies declines since the value of hearing growls diminishes over many
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Figure 4.3: The value functions for the POMDP with the noise factor and the POMDP for the single agent
tiger problem, with time horizon of length 1. Actions are: open right door - OR, open left door - OL, and
listen - L. For this value of the time horizon the value function for a POMDP with noise factor is identical to
the single agent POMDP.
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Figure 4.4: The value function for the single agent tiger problem compared to an agent facing a noise factor,
for horizon of length 2. Policies corresponding to value lines are conditional plans. Actions, L, OR or OL, are
conditioned on observational sequences in parenthesis. For example L\();L\(GL),OL\(GR) denotes a plan
to perform the listening action, L, at the beginning (list of observations is empty), and then another L if the
observation is growl from the left (GL), and open the left door, OL, if the observation is GR. ∗ is a wildcard
with the usual interpretation.
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Figure 4.5: The value function for single agent tiger problem compared to an agent facing a noise factor, for
horizon of length 3. The “?” in the description of a policy stands for any of the perceptual sequences not yet
listed in the description of the policy.

time steps. Fig. 4.5 depicts a comparison of value functions for horizon of length 3. Here, for example, two

consecutive growls in a noisy environment are not as valuable as when the agent knows it is acting alone

since the noise may have perturbed the state of the system between the growls.
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GR GL
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Figure 4.6: The policy graph corresponding to the horizon 3 value function of POMDP with noise depicted
in Fig. 4.5.
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Second, since the presence of another agent is implicit in the static transition model, agent i cannot update

its model of j’s actions during repeated interactions, i.e. i cannot model the learning process of j. This effect

becomes more important as time horizon increases. Our approach addresses this issue by allowing explicit

modeling of the other agent(s). This results in policies of superior quality, as we show later.

Figure 4.6 shows a policy for an agent facing a noisy environment for time horizon of 3. We compare it to

the corresponding I-POMDP policy in Section 4.5.4. Note that it is slightly different than the policy without

noise in (Kaelbling et al., 1998) due to differences in value functions.

4.5.3 Examples of the I-POMDP Belief Update

In Section 4.3.2, we presented the belief update equation for I-POMDPs (Eq. 4.2). Here we consider

examples of level 1 beliefs, bi,1, of agent i, which are probability distributions over S ×Θj,0. Each 0th level

type of agent j, θj,0 ∈ Θj,0, contains a “flat” belief as to the location of the tiger, which can be represented

by a single probability assignment – bj,0 = Prj(TL).
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Figure 4.7: Three examples of singly nested belief states of agent i. In each case i has no information about
the tiger’s location. In (i) agent i knows that j does not know the location of the tiger; the single point
(star) denotes a Dirac delta function which integrates to the height of the point, here 0.5. In (ii) agent i is
uninformed about j’s beliefs about tiger’s location. In (iii) agent i believes that j is likely informed about
the location of the tiger; for this case we used beta density functions, β(a, b), for the beliefs.
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In Fig. 4.7 we show some examples of level 1 beliefs of agent i. In each case i does not know the location

of the tiger so that the marginals in the top and bottom sections of the figure sum up to 0.5 for probabilities

of TL and TR each. In Fig. 4.7(i), i knows that j assigns 0.5 probability to tiger being behind the left door.

This is represented using a Dirac delta function. In Fig. 4.7(ii), agent i is uninformed about j’s beliefs. This

is represented as a uniform probability density over all values of the probability j could assign to state TL.

Fig. 4.7(iii) represents i’s belief that j is informed about the location of the tiger. We use the beta density

function to represent this belief. Modifying the values of the beta parameters, a and b, allows us to represent

a wide variety of i’s beliefs about j’s beliefs. 13

To make the presentation of the belief update more transparent we decompose the Eq. 4.2 into two steps:

• Prediction: When agent i performs an action at−1
i , and given that agent j performs at−1

j , the predicted

belief state is:

b̂t
i(is

t) = Pr(ist|at−1
i , at−1

j , bt−1
i ) =

∑
ist−1:m̂t−1

j
=θ̂t

j

bt−1
i (ist−1)Pr(at−1

j |θt−1
j )Ti(s

t−1, at−1, st)

×
∑
ot

j

Oj(s
t, at−1, ot

j)τθt
j
(bt−1

j , at−1
j , ot

j , b
t
j)

(4.7)

• Correction: When agent i perceives an observation, ot
i, the predicted belief states,

Pr(·|at−1
i , at−1

j , bt−1
i ), are combined according to:

bt
i(is

t) = Pr(ist|ot
i, a

t−1
i , bt−1

i ) = β
∑

at−1
j

Oi(s
t, at−1, ot

i)Pr(ist|at−1
i , at−1

j , bt−1
i ) (4.8)

where β is the normalizing constant.

In Fig. 4.8, we display an example trace through the update of a singly nested belief. In the first column of

Fig. 4.8, labeled (a), is an example of agent i’s prior belief we introduced before, according to which i knows

that j is uninformed of the location of the tiger.14 Let us assume that i listens and hears a growl from the left

and no creaks, 〈GL,S〉. The second column of Fig. 4.8, (b), displays the predicted belief after i performs the

listen action (Eq. 4.7). As part of the prediction step, agent i must solve j’s model to obtain j’s optimal action

when its belief is 0.5 (term Pr(at−1
j |θt−1

j ) in Eq. 4.7). Given the value function in Fig. 4.4, this evaluates

13However, beta density functions cannot be used to represent all possible beliefs that i could have about j’s beliefs. For e.g., beta
cannot be used to represent multi-modal beliefs (i.e. belief shapes with more than one peak). In Chapter 6, we adopt a polynomial based
representation for the nested beliefs which is more general.

14The points in Fig. 4.8 and in Fig. 4.9 again denote Dirac delta functions which integrate to the value equal to the points’ height.
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Figure 4.8: A trace of the belief update of agent i. (a) depicts the level 1 prior. (b) is the result of prediction
given i’s listening action, L, and a pair denoting j’s action and observation. i knows that j will listen and
could hear tiger’s growl on the right or the left, and that the probabilities j would assign to TL are 0.15
or 0.85, respectively. (c) is the result of correction after i observes tiger’s growl on the left and no creaks,
〈GL,S〉. The probability i assigns to TL is now greater than TR. (d) depicts the results of another update
(both prediction and correction) after another listen action of i and the same observation, 〈GL,S〉.

to probability of 1 for listen action, and zero for opening of any of the doors. i also updates j’s belief given

that j listens and hears the tiger growling from either the left, GL, or right, GR, (term τθt
j
(bt−1

j , at−1
j , ot

j , b
t
j)

in Eq. 4.7). Agent j’s updated probabilities for tiger being on the left are 0.85 and 0.15, for j’s hearing GL

and GR, respectively. If the tiger is on the left (top of Fig. 4.8 (b)) j’s observation GL is more likely, and

consequently j’s assigning the probability of 0.85 to state TL is more likely (i assigns a probability of 0.425

to this state.) When the tiger is on the right j is more likely to hear GR and i assigns the lower probability,

0.075, to j’s assigning a probability 0.85 to tiger being on the left. The third column, (c), of Fig. 4.8 shows

the posterior belief after the correction step. The belief in column (b) is updated to account for i’s hearing a

growl from the left and no creaks, 〈GL,S〉. The resulting marginalised probability of the tiger being on the

left is higher (0.85) than that of the tiger being on the right. If we assume that in the next time step i again

listens and hears the tiger growling from the left and no creaks, the belief state depicted in the fourth column

of Fig. 4.8 results.

In Fig. 4.9 we show the belief update starting from the prior in Fig. 4.7 (ii), according to which agent i

initially has no information about what j believes about the tiger’s location.

The traces of belief updates in Fig. 4.8 and Fig. 4.9 illustrate the changing state of information agent i has
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Figure 4.9: Another trace of the belief update of agent i. (a) depicts the prior according to which i is
uninformed about j’s beliefs. (b) is the result of the prediction step after i’s listening action (L). The top half
of (b) shows i’s belief after it has listened and given that j also listened. The two observations j can make,
GL and GR, each with probability dependent on the tiger’s location, give rise to flat portions representing
what i knows about j’s belief in each case. The increased probability i assigns to j’s belief between 0.472
and 0.528 is due to j’s updates after it hears GL and after it hears GR resulting in the same values in this
interval. The bottom half of (b) shows i’s belief after i has listened and j has opened the left or right door
(plots are identical for each action and only one of them is shown). i knows that j has no information about
the tiger’s location in this case. (c) is the result of correction after i observes tiger’s growl on the left and no
creaks 〈GL,S〉. The plots in (c) are obtained by performing a weighted summation of the plots in (b). The
probability i assigns to TL is now greater than TR, and information about j’s beliefs allows i to refine its
prediction of j’s action in the next time step.
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Figure 4.10: For time horizon of 1 the value functions obtained from solving a singly nested I-POMDP and
a POMDP with noise factor overlap.

about the other agent’s beliefs. The benefit of representing these updates explicitly is that, at each stage, i’s

optimal behavior depends on its estimate of probabilities of j’s actions. The more informative these estimates

are the more value agent i can expect out of the interaction. In the next section, we show the increase in the

value function for I-POMDPs compared to POMDPs with the noise factor.

4.5.4 Examples of Value Functions

This section compares value functions obtained from solving a POMDP with a static noise factor, ac-

counting for the presence of another agent,15 to value functions of level-1 I-POMDP. We use incremental

pruning (see Section 2.2.1 of Chapter 2) appropriately extended for the I-POMDP framework, to compute

the solutions. The advantage of more refined modeling and update in I-POMDPs is due to two factors. First

is the ability to keep track of the other agent’s state of beliefs to better predict its future actions. The sec-

ond is the ability to adjust the other agent’s time horizon as the number of steps to go during the interaction

decreases. Neither of these is possible within the classical POMDP formalism.

We continue with the simple example of I-POMDPi,1 of agent i. In Fig. 4.10 we display i’s value function

for the time horizon of 1, assuming that i’s initial belief as to the value j assigns to TL, pj(TL), is as depicted

in Fig. 4.7 (ii), i.e. i has no information about what j believes about the tiger’s location. This value function is

15The POMDP with noise is the same as level 0 I-POMDP.
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identical to the value function obtained for an agent using a traditional POMDP framework with noise as well

as the single agent POMDP, which we described in Section 4.5.2. The value functions overlap since agents

do not have to update their beliefs and the advantage of more refined modeling of agent j in i’s I-POMDP

does not become apparent. Put another way, when agent i models j using an intentional model, it concludes

that agent j will open each door with probability 0.1 and listen with probability 0.8. This coincides with the

noise factor we described in Section 4.5.2.
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Figure 4.11: Comparison of value functions obtained from solving a singly nested I-POMDP and a POMDP
with noise for time horizon of 2. I-POMDP value function dominates due to agent i adjusting the behavior
of agent j to the remaining steps to go in the interaction.

In Fig. 4.11 we display i’s value functions for the time horizon of 2. The value function of I-POMDPi,1 is

higher than the value function of a POMDP with the noise factor. The reason is not related to the advantages

of modeling agent j’s beliefs – this effect becomes apparent at the time horizon of 3 and longer. Rather, the

I-POMDP solution dominates due to agent i modeling j’s time horizon during interaction: i knows that at

the last time step j will behave according to its optimal policy for time horizon of 1, while with two steps to

go j will optimize according to its 2 steps to go policy. As we mentioned, this effect cannot be modeled using

a POMDP with a static noise factor included in the transition function.
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Figure 4.12: Comparison of value functions obtained from solving a singly nested I-POMDP and a POMDP
with noise for time horizon of 3. The I-POMDP value function dominates due to agent i’s adjusting j’s
remaining steps to go, and due to i’s modeling j’s belief update. Both factors allow for better predictions of
j’s actions during interaction. The descriptions of individual policies were omitted for clarity; they can be
read off of Fig. 4.13.

Fig. 4.12 shows a comparison between the I-POMDP and the noisy POMDP value functions for horizon

3. The advantage of the more refined agent modeling within the I-POMDP framework has increased.16 Both

factors, i’s adjusting j’s steps to go and i’s modeling j’s belief update during interaction are responsible

for the superiority of values achieved using the I-POMDP. In particular, recall that at the second time step

i’s information as to j’s beliefs about the tiger’s location is as depicted in Fig. 4.9 (c). This enables i to

make a high quality prediction that, with two steps left to go, j will perform its actions OL, L, and OR

with probabilities 0.009076, 0.96591 and 0.02501, respectively (recall that for POMDP with noise these

probabilities remained unchanged at 0.1, 0,8, and 0.1, respectively.)

Fig. 4.13 shows agent i’s policy graph for the time horizon of 3. As usual, it prescribes the optimal

first action depending on the initial belief about the tiger’s location. The subsequent actions depend on the

observations received. The observations include creaks that are indicative of the other agent’s having opened

a door. The creaks contain valuable information and allow the agent to make more refined choices, compared

to ones in the noisy POMDP in Fig. 4.6. Consider the case when agent i starts out with a fairly strong belief

as to the tiger’s location, decides to listen (according to the four off-center top row “L” nodes in Fig. 4.13)

16Note that the I-POMDP solution is not as good as the solution of a POMDP for an agent operating alone in the environment as
shown in Fig. 4.5.
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Figure 4.13: The policy graph corresponding to the I-POMDP value function in Fig. 4.12.

and hears a door creak. The agent is then in the position to open either the left or the right door, even if that is

counter to its initial belief. The reason is that the creak is an indication that the tiger’s position has likely been

reset by agent j and that j will then not open any of the doors during the following two time steps. Now, two

growls coming from the same door lead to enough confidence to open the other door. This is because agent

i’s hearing of tiger’s growls are indicative of the tiger’s position in the state following the agents’ actions.

Note that the value functions and the policy above depict a special case of agent i having no information

as to what probability j assigns to tiger’s location (Fig. 4.7 (ii)). Value functions for some other shapes of

i’s belief over j’s beliefs are shown in Chapter 5. Accounting for and visualizing all possible beliefs i can

have about j’s beliefs is difficult due to the complexity of the space of interactive beliefs. As our ongoing

work indicates, a drastic reduction in complexity is possible without loss of information, and consequently

representation of solutions in a manageable number of dimensions is indeed possible. We discuss more on

this topic in Chapter 8.

4.6 Application: Agent Based Simulation of Social Behaviors

We apply the I-POMDP framework to empirically demonstrate the emergence of commonly observed

anthropomorphic social behaviors among rational interacting agents.17 By successfully demonstrating the

17We believe that the framework can be used to simulate both agent based as well as mixed agent-human environments.
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occurrence of social behaviors or patterns among rational agents, we achieve multiple objectives: We estab-

lish that the commonly observed behaviors are rational in regards to their respective settings. The results

will serve to validate the framework as an important tool for studying and explaining rational interactions in

uncertain multiagent dynamic settings. Finally, and of key importance, it will pave the way for deployment

of the framework to new settings where rational social behavior has neither been established nor observed.

One of the most intuitive human social behavior is to follow the leader. It can arise when a follower

believes that a leader possesses a superior ability of some kind and following him may improve the follower’s

payoff (power relationship). To model this behavior we used the multiagent tiger game with two agents. We

gave the agent j (the leader) a better hearing capability, while curtailing the hearing accuracy of i. Addition-

ally, we also assumed that the tiger persists in its location with a high probability after the opening of any

door. We solved this game over three horizons under the assumption that i is initially unaware of where the

tiger is, and knows that j is also unaware of the tiger’s location. The resulting policy tree is in Fig. 4.14(a),

where GL(R) stands for i’s hearing the tiger’s growl on the left (right), and CL(R) denotes i’s hearing the

creak of the left(right) door opened by j. Note that, in this case, the optimal policy of i is to wait for a creak,

and then open the door which i believes j opened previously, but only if the information provided by the creak

and i’s own hearing of the growls come from the same side. This conditional following of the leader changes

if i believes that j’s hearing of growls is even more accurate or its own hearing even worse. In that case the

optimal policy for i is to follow j’s creaks (if they are considered reliable) and ignore its own perception of

where the growls come from. We demonstrate this behavior in Fig. 4.14(b).

Other social phenomena that we intend to focus on include the role of technological innovations in com-

petitive settings. Our existing results show that in single agent settings (monopolies), an agent will adopt a

technological innovation immediately when its long term usage is expected to justify its initial adoption cost

and maintenance costs. We intend to study these results in the context of multiagent settings (oligopolies),

and investigate the effect of the presence of other agents on decisions of when to adopt technological in-

novations. The decision of whether and when to embrace innovations is further complicated when a power

relationship exists between agents. In such scenarios, we conjecture that the agent in the position of power

will have no incentive to adopt new technology (unless others are likely to adopt it), and will obstruct the

adoption of innovations by other agents in order to preserve its position of power. Establishing the accuracy

of these and other commonly practiced social behaviors signifies an important step in our understanding of
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Figure 4.14: (a) Conditional follow the leader behavior in the multiagent tiger problem when the agent knows
that the other agent is better at hearing the tiger’s growls, and the tiger persists behind its original door when
any door is opened. The agent opens the same door as the one previously opened by the leader and only
when its own observations of the tiger’s location are consistent with the door opened by the leader. (b)
Unconditional follow the leader behavior when the agent receives no information about the tiger location
from its own observations. The agent has no choice but to follow the leader and it chooses to open the same
door as the one previously opened by the leader.

the causative events that rationally lead to these phenomena.

4.7 Summary

We presented a framework for optimal sequential decision-making suitable for controlling autonomous

agents interacting with other agents within an uncertain environment. We used the normative paradigm of

decision-theoretic planning under uncertainty formalized as partially observable Markov decision processes

(POMDPs) as a point of departure. We extended this framework to make it applicable to agents interacting

with other agents by allowing them to have beliefs not only about the physical environment, but also about the

other agents. This could include beliefs about the others’ beliefs, abilities, sensing capabilities, preferences,

and intended actions. Our framework shares numerous properties with POMDPs, has analogously defined

solutions, and reduces to POMDPs when agents are alone in the environment. In contrast to much of the

recent work (see Section 4.1), our approach is subjective and amenable to agents independently computing

their optimal solutions. We demonstrated, using the multiagent tiger problem, that modeling other’s beliefs

is beneficial: the refined modeling permits more informative decisions than a traditional POMDP based

approach, and this generates plans of larger value. We also explored the use of I-POMDPs to demonstrate

social behaviors that are typically observed in human settings.
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4.8 Contributions

Novel framework: We proposed a novel framework, called interactive POMDP, for optimal sequential

planning in multiagent settings. Interactive POMDPs reduce to POMDPs in the single agent setting. Our

framework is applicable to partially observable stochastic games, in which actions of others agents are not

perfectly observable. Additionally, in contrast to Bayesian games, we do not require the unrealistic assump-

tions of common knowledge of rationality, beliefs, and payoffs of all agents.

Addresses limitations of Nash equilibria: We have adopted a decision-theoretic approach to solving

games, and a solution concept centered on optimality and best response to anticipated action(s) of other

agents, rather than the prevailing concept of Nash equilibrium. Consequently, our approach does not suffer

from the limitations of Nash equilibria such as non-uniqueness and incompleteness.

Better quality plans: Our formalism replaces the ”flat” beliefs in POMDPs with an interactive belief

system that contains beliefs about others’ beliefs, and their beliefs about others’. While such belief systems

have been investigated as formalizations of Harsanyi’s notion of a type space, they have not been employed

for sequential decision-making before. We empirically demonstrated the advantage of this nested modeling,

by showing that I-POMDPs generate plans that are of significantly better value than those generated by using

the traditional POMDP framework.

Broad applicability: A natural result of adopting a decision-theoretic approach is that our framework

is applicable to both cooperative and non-cooperative games – such distinctions as well as categorization of

games into zero-sum or constant sum, and general sum is no longer needed. Additionally, we do not restrict

the scope of the framework to settings populated by just rational agents, but include intentional as well as

subintentional agents. Clearly, subintentional agents that may be simple memoryless finite state automatons

need not be modeled using sophisticated constructs.

Application: We demonstrated the emergence of some intuitive social behaviors among rational agents

modeled using the I-POMDP framework. This suggests that I-POMDPs can be employed to understand and

formalize the mechanisms that give rise to such behaviors, and also to investigate what behaviors may arise

in new unexplored settings.
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4.9 Future Work

The line of work presented here opens a wide area of future research on integrating frameworks for

sequential planning with elements of game theory and Bayesian learning in interactive settings. In particular,

one of the avenues of our future research centers on proving further formal properties of I-POMDPs, and

establishing clearer relations between solutions to I-POMDPs and various flavors of equilibria. Another

concentrates on developing efficient approximation techniques for solving I-POMDPs. As for POMDPs,

development of approximate approaches for solving I-POMDPs is crucial for moving beyond toy problems.

Both these lines of research are addressed in the remainder of this thesis. Another research issue is the

suitable choice of priors over models. We are looking at Kolmogorov complexity (Li & Vitanyi, 1997) as a

possible way to assign priors. We are also interested in developing models that capture the boundedness of

the resources realistically available to an agent. In this respect, developing algorithms for generating bounded

optimal plans becomes important.



Chapter 5

SOLUTIONS TO OTHER MULTIAGENT TIGER

PROBLEMS

THE tiger problem is a classical example for illustrating planning frameworks that deal with uncertainty.

It’s attractive because of its simplicity, flexibility, and richness in plan structure. In Section 4.5 of

Chapter 4, we extended the traditional single agent tiger problem to the multiagent setting to illustrate our

multiagent planning framework. We created a particular version in which the agents’ immediate reward was

not directly influenced by other agents’ actions. However, other agent’s actions affected the location of the

tiger which in turn could influence the behavior of the original agent. Let’s call this version of the multiagent

tiger problem as a neutral setting.

In this chapter, we provide solutions for a suite of non-cooperative and cooperative versions of the mul-

tiagent tiger problem, including the neutral setting. We utilize the transition, and observation functions of

the previously mentioned multiagent tiger problem, and create a variety of reward functions that encourage

coordination or friendly behaviors, and mis-coordination or conflicting behaviors. Traditionally – in game

theory – the type of interaction between agents is established through the reward function only. In the context

of I-POMDPs, as we mentioned in Section 4.5.4 of Chapter 4, the effect of an agent’s actions on the phys-

ical state of the problem also influences the behavior of the agents. Our objective in showing the solutions

to various multiagent tiger problems is to illustrate the effect of the type of interaction on the solution. In

doing so, we demonstrate the broad applicability of the I-POMDP framework to both non-cooperative and

cooperative settings. We also demonstrate the influence that different i’s beliefs over j’s beliefs have on the

71
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plan structure. Furthermore, we uncover behavioral insights that are intuitive of real-world interactions.

The remainder of this chapter is structured in the following manner. In Section 5.1 we present value

functions for non-cooperative versions of the multiagent tiger problem. Specifically, we concentrate on two

settings: enemy and neutral. We present value functions for the cooperative versions of the multiagent tiger

problem in Section 5.2. We again look at two settings: friend and team. We then summarize the chapter in

Section 5.3, give the contributions of this work in Section 5.4, and the future lines of research in Section 5.5.

5.1 Non-cooperative Versions

We develop two versions of the multiagent tiger problem that promote non-cooperation between the

agents. First is the enemy setting, in which agent i gets larger rewards if j opens the wrong door than if

j opens the correct door, thereby encouraging non-cooperation between the two. Additionally, as we men-

tioned before, j’s action of opening doors may reset the location of the tiger, thereby making i’s accumulated

observations uninformative. Second is the neutral setting in which, though i’s payoffs are indifferent to j’s

actions, j’s actions may change the state in a way that is detrimental to i.

For each of the settings below, the transition and observation functions for the agents i and j are as given

previously in Fig. 4.1 of Chapter 4. We will also adopt the assumptions mentioned previously: agent i is

singly nested, and is uncertain only about j’s beliefs (not j’s frames). Agent i assumes that the level 0 agent

j assigns a static distribution of 0.1, 0.1, and 0.9 to the opening of left, right, and no doors due to the noise.

Each of the settings below differs in the rewards that each agent receives given the joint action and the location

of the tiger.

5.1.1 Enemy

The reward functions for the agents in the enemy setting are given in Table 5.1. In this setting, it is most

beneficial for i if it opens the correct door and j opens the wrong door.

In Fig. 5.1, we show the value function plots for the horizons 1 and 2, when agent i thinks that j is likely

to be uninformed about the location of the tiger. To model i’s belief, we used a beta p.d.f. that peaks at

pj(TL) = 0.5. Policies corresponding to the value lines are conditional plans. The actions L, OR, or OL,

are conditioned on observational sequences in parenthesis. For example, L\();L\(GL,*),OL\(GR,S), L\(?)

denotes a plan to perform the listening action, L, at the beginning (list of observations is empty), and then
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〈ai, aj〉 /State TL TR
〈 OR,OR 〉 5 -50
〈 OL,OL 〉 -50 5
〈 OR,OL 〉 60 -105
〈 OL,OR 〉 -105 60
〈 L,L 〉 -0.5 -0.5
〈 L,OR 〉 -6 49
〈 OR,L 〉 10.5 -99.5
〈 L,OL 〉 49 -6
〈 OL,L 〉 -99.5 10.5

〈ai, aj〉 /State TL TR
〈 OR,OR 〉 5 -50
〈 OL,OL 〉 -50 5
〈 OR,OL 〉 -105 60
〈 OL,OR 〉 60 -105
〈 L,L 〉 -0.5 -0.5
〈 L,OR 〉 10.5 -99.5
〈 OR,L 〉 -6 49
〈 L,OL 〉 -99.5 10.5
〈 OL,L 〉 49 -6

Table 5.1: Reward functions for the agents i and j in the enemy setting.

another L if the observation is growl from the left (GL) and regardless of whether a creak is heard or not, open

the left door, OL, if the observation is growl from the right (GR) and no creak (S), and L for all the remaining

observations. ∗ is a wildcard with the usual interpretation and ? denotes all remaining observations.

We note that the horizon 2 value function refines the horizon 1 value function: Of the 2178 possible

conditional plans that i could follow, 7 were found optimal for the different regions of i’s beliefs. Notice

that the optimal plan L\();L\(GL,*),OL\(GR,*) and its symmetric counterpart L\();L\(GR,*),OR\(GL,*),

ignore the creaks and uses only growls heard in the next time step to guide i’s actions. This is because i is

certain that j will listen and consequently not change the location of the tiger. Any creak that is heard will be

dismissed as a noisy observation.

In Fig. 5.2, we present the horizon 1 and 2 value function plots for the case in which i thinks that j is

likely to be informed about the location of the tiger. In this state of belief, i believes that j likely assigns a

high probability to the correct location of the tiger. Again, i’s belief is modeled using a beta p.d.f. that peaks

at pj(TL) = 0.98 when the tiger is on the left, and at pj(TL) = 0.02 when the tiger is on the right. We point

out the presence of the plan L\();OL\(GR,S),L\(?) and its symmetric counterpart as part of the policy. i’s

belief that j is likely informed causes i to be almost certain that j will open doors. j’s opening of doors will

cause the tiger to reset forcing i to listen in the next time step. Because there is a small chance that j will

listen, i will open doors on hearing no creaks rather than dismiss it as a noisy observation.

When i’s certainty that j is informed of the location of the tiger increases, the belief region for which the

plan L\();OL\(GR,S),L\(?) is optimal gradually reduces. In the limit (i knows that j is informed – Dirac-

delta p.d.f.), the conditional plan mentioned above is no longer part of the policy. This is because i knows

that j will open doors and therefore dismisses the observation of no creaks as noisy.
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Figure 5.1: Horizon 1 and 2 value functions for the enemy setting when i believes that j is likely uninformed
about the tiger’s location.

On comparing the value functions in Fig. 5.1 with the corresponding ones in Fig. 5.2, we make an in-

sightful observation: The value of the interaction for an agent is more when its enemy is uninformed about

the state of the problem as compared to when the enemy is informed. In Fig. 5.3, we highlight the difference

between the two value functions. It clearly shows that the expected reward when the enemy is uninformed
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Figure 5.2: Horizon 1 and 2 value functions for the enemy setting when i believes that j is likely informed
about the tiger’s location.

is greater than when it is informed. The policy trees for the vectors can be read off the original plots. The

difference is, of course, also present between the horizon 1 value functions. We note that this observation is

intuitive of real world interactions.

Finally, in Fig. 5.4, we show the value functions for horizons 1 and 2 when i thinks that j is partly
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Figure 5.3: A comparison of the horizon 2 value functions obtained when i believes that j is likely informed
about the tiger’s location versus when i believes that j is uninformed. We observe that the value of the plan
is more when the enemy is uninformed compared to when it is informed.

informed: i believes that j likely assigns a high probability to the tiger being on the left regardless of whether

the tiger is indeed on the left or the right. We model this belief of i using a beta p.d.f. that peaks at pj(TL) =

0.98 no matter what the tiger’s location is. As a result of its beliefs about j, agent i thinks that j will likely

open the right door.

In contrast to the plots in Fig. 5.1 and 5.2, the value functions are not symmetric about pi(TL) = 0.5.

Agent i assigns a larger value to its beliefs about the location of the tiger that cause it to open the left door

(implying that j is opening the wrong door). This is because of i’s asymmetric beliefs about j’s and payoffs

which reward i opening the correct door and j’s opening of the wrong door. The ”skewness” of the value

functions increases as i’s belief of j being partly informed becomes stronger.

5.1.2 Neutral

For the neutral setting, the reward function is as given in Fig. 4.1 of Chapter 4. As we mentioned pre-

viously, though i’s rewards are independent of j’s actions, actions of j may alter the physical state of the

problem in a way that is detrimental to i. For example, let i believe that the tiger is likely to be on the left. On

hearing a creak, i believes that j has very likely opened a door causing the tiger to reset. Agent i must now

discard the information that it previously had about the tiger’s location. This simple example demonstrates

the effects that actions of agents have on each other through the state.
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Figure 5.4: Horizon 1 and 2 value functions for the enemy setting when i believes that j is partly informed
about the tiger’s location.

In Section 4.5.4, we showed the value functions for horizons 1, 2 and 3 when i is uninformed about j’s

beliefs over the location of the tiger. In Fig. 5.5, we show the value function plots for horizons 1 and 2 when

i thinks that j is likely uninformed about the location of the tiger. The horizon 1 value function is similar to
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Figure 5.5: Horizon 1 and 2 value function plots for the neutral payoffs when i believes that j is likely
uninformed about the tiger’s location.

the one in Fig. 2.4 for the single agent tiger problem. This is because i’s rewards are not dependent on j’s

actions, and the problem does not extend beyond the single time step for i to feel the effect of j’s actions. For

the same reason, policy trees that are common in the horizon 2 value function plot shown here and in Fig. 2.5
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have the same value.
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Figure 5.6: Horizon 2 value function plot for the neutral payoffs when i believes that j is likely informed. An
identical value function plot results when i believes that j is partly informed.

We show the horizon 2 value function when i believes that j is likely informed about the tiger’s location,

in Fig. 5.6. The horizon 1 value function is, of course, identical to the one shown in Fig. 5.5.

Let us compare the horizon 2 value function in Fig. 4.11 with those in Figs. 5.5 and 5.6. While both the

conditional plans, L\();L\(GL,*),OL\(GR,*) and L\();OL\(GR,S),L\(?) (and their symmetric counterparts),

are present in Fig. 4.11, one or the other is absent from the value functions in Figs. 5.5 and 5.6. The reason is

intuitive: Since i is uninformed about j’s beliefs in the former setting, i thinks that j may listen or open doors

with a probability distribution given by j’s policy. Hence neither the observation of creaks nor of no creaks

can be dismissed as noise. In Fig. 5.5, because i believes that j certainly listens, its observations of creaks

are dismissed as noise, and the conditional plan L\();OL\(GR,S),L\(?) is absent from the corresponding

value function. In Fig. 5.6, since i believes that j almost certainly opens doors causing the tiger’s location to

reset, the creaks cannot be ignored. Therefore the conditional plan L\();L\(GL,*),OL\(GR,*) which ignores

creaks is absent from the corresponding value function.

For the case when i believes that j is partly informed – i believes that j likely opens the right door
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regardless of the tiger’s location – the horizon 1 value function is, as usual, identical to the one in Fig. 5.5.

The horizon 2 value function turns out to be identical to the horizon 2 value function in Fig. 5.6. This is

because, in both these cases i believes that j opens doors. Since it does not matter to i which door j opens, i’s

value function remains the same. Additionally, unlike the corresponding value function in the enemy setting,

this function is not skewed because i’s rewards do not depend on j’s actions.

5.2 Cooperative Versions

In this section, we show solutions for two cooperative versions of the multiagent tiger problem. The first

version is a friend setting in which the payoffs encourage cooperation between the agents. The second version

is the team setting that has appeared previously in the literature (Nair et al., 2003). While our transition and

reward functions in the team setting are identical to those in (Nair et al., 2003), the observation function

differs due to the presence of creaks. The team setting encourages coordination among the agents.

For the settings below, the transition and observation functions for the agents i and j are as given previ-

ously in Fig. 4.1 of Chapter 4. We will adopt the assumptions that agent i is singly nested, and is uncertain

only about j’s beliefs (not j’s frames). Furthermore, agent i assumes that the level 0 agent j assigns a static

distribution of 0.1, 0.1, and 0.9 to the opening of left, right, and no doors due to the noise.

5.2.1 Friend

The reward functions for the agents i and j in the friend setting are given in Table. 5.2. We note that

unlike the team setting that we shall see later, the friend setting does not reward strict coordination, though it

does promote cooperation. Also, in contrast to the team setting, the reward functions of the two agents differ.

〈ai, aj〉 /State TL TR
〈 OR,OR 〉 15 -150
〈 OL,OL 〉 -150 15
〈 OR,OL 〉 -40 -95
〈 OL,OR 〉 -95 -40
〈 L,L 〉 -1.5 -1.5
〈 L,OR 〉 4 -51
〈 OR,L 〉 9.5 -100.5
〈 L,OL 〉 -51 4
〈 OL,L 〉 -100.5 9.5

〈ai, aj〉 /State TL TR
〈 OR,OR 〉 15 -150
〈 OL,OL 〉 -150 15
〈 OR,OL 〉 -95 -40
〈 OL,OR 〉 -40 -95
〈 L,L 〉 -1.5 -1.5
〈 L,OR 〉 9.5 -100.5
〈 OR,L 〉 4 -51
〈 L,OL 〉 -100.5 9.5
〈 OL,L 〉 -51 4

Table 5.2: Reward functions for the agents i and j for the friend setting.
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Figure 5.7: Horizon 1 and 2 value functions for the friend setting when i believes that j is likely uninformed
about the tiger’s location.

As before, we start with the value function plots (Fig. 5.7) when i believes that j is likely to be uninformed

about the location of the tiger. As we mentioned before, beliefs of i will be modeled using beta p.d.f.s. We

note that the conditional plans that are part of the optimal policy of i remain unchanged when compared with

the analogous cases in the non-cooperative settings. In Fig. 5.8, we show the value functions when i believes
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Figure 5.8: Horizon 1 and 2 value functions for the friend setting when i believes that j is likely informed
about the tiger’s location.

that j is likely informed about the location of the tiger. When we compare the plots in Fig. 5.7 with those

in Fig. 5.8, we again uncover a key insight: The value of the interaction for an agent is more when its friend

is informed about the state of the problem as compared to when the friend is uninformed. This observation

is true of real-world interactions, and is the counterpart of the observation we made in the enemy setting. A
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comparison of the two value functions is shown in Fig. 5.9. The plans denoted by each vector can be read

off from the original value functions. The difference in values is also evident between the horizon 1 value

functions.
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Figure 5.9: A comparison of the horizon 2 value functions when i believes that j is likely informed about the
tiger’s location versus when i believes that j is uninformed. The values of the plans are more when the friend
is informed compared to when it is uninformed.

In Fig. 5.10, we present the value functions for the case when i believes that j likely assigns a high

probability to the tiger being on the left. The value function plot is asymmetric about pi(TL) = 0.5 due to

the asymmetric nature of i’s beliefs over j’s beliefs and the reward function which encourages cooperation.

The ”skewness” of the value function plots increases as the belief of i about j’s becomes stronger. i assigns

larger value to beliefs that require it to open the same door as j. This is because the reward for i when

both agents open the same correct door is higher than when only i opens the correct door. As expected, the

direction of the skewness is opposite of that in Fig. 5.4.

5.2.2 Team

The reward functions for the team setting (Nair et al., 2003) are given in Table 5.3. Both agents have the

same reward function, which encourages cooperation between the two. Also, notice that coordinated actions

of the two agents are rewarded: the reward is doubled when both agents open the correct door, and the penalty

is halved when both agents open the wrong door.
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Figure 5.10: Horizon 1 and 2 value functions for the friend setting when i believes that j is likely partly
informed about the tiger’s location.

Fig. 5.11 shows the value function plots for horizons 1 and 2, when i believes that j is likely uninformed

about the location of the tiger. When we compare these plots with the corresponding ones in Fig. 5.12, we

again uncover a similar observation as before: It is beneficial if team members are informed rather than be

uninformed about the state of the problem.
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〈ai, aj〉 /State TL TR
〈 OR,OR 〉 20 -50
〈 OL,OL 〉 -50 20
〈 OR,OL 〉 -100 -100
〈 OL,OR 〉 -100 -100
〈 L,L 〉 -2 -2
〈 L,OR 〉 9 -101
〈 OR,L 〉 9 -101
〈 L,OL 〉 -101 9
〈 OL,L 〉 -101 9

〈ai, aj〉 /State TL TR
〈 OR,OR 〉 20 -50
〈 OL,OL 〉 -50 20
〈 OR,OL 〉 -100 -100
〈 OL,OR 〉 -100 -100
〈 L,L 〉 -2 -2
〈 L,OR 〉 9 -101
〈 OR,L 〉 9 -101
〈 L,OL 〉 -101 9
〈 OL,L 〉 -101 9

Table 5.3: Reward functions for the agents i and j for the team setting. Both agents have the same reward
function indicating that the team setting is purely cooperative.

In Fig. 5.13, we give the value functions for the case when i believes that j is partly informed about

the location of the tiger. In other words, i believes that j likely thinks that the tiger is on the left, and will

therefore likely open the right hand side door. As we saw in the friend setting, the value functions plots are

asymmetric. Agent i assigns a larger value to beliefs that require it to open the right hand side door – the same

door as agent j. This is a natural result because coordination between the two agents is encouraged. Because

the payoffs of the team setting encourage coordination more than those of the friend setting, the ”skewness”

is more pronounced here.

5.3 Summary

In this chapter, we presented and analyzed solutions – value functions and policies – of cooperative and

non-cooperative versions of the multiagent tiger problem. Specifically, we developed two settings in each

category: the enemy and neutral settings as non-cooperative versions, and the friend and team settings as

cooperative versions. Note that the team setting first appeared elsewhere in the literature. For each of these

settings, we showed value functions for specific shapes of i’s beliefs over j’s level 0 beliefs over the location

of the tiger. On comparing the solutions, we uncovered some key insights that are intuitive of real-world

interactions. We also illustrated the influence that different i’s beliefs over j’s beliefs and the type of setting

have on the plan value and structure.
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Figure 5.11: Horizon 1 and 2 value functions for the team setting when i believes that j is likely uninformed
about the tiger’s location.

5.4 Contributions

Behavioral insights: We made some key observations when comparing solutions of the various multia-

gent tiger problems. Specifically, we showed that the value of a cooperative interaction to an agent is more
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Figure 5.12: Horizon 1 and 2 value functions for the team setting when i believes that j is likely informed
about the tiger’s location.

when the other friendly agent is informed as compared to when it is uninformed. For a non-cooperative set-

ting, the opposite is true: the value of a non-cooperative interaction is more when the enemy is uninformed

as compared to when it is informed.. These observations, of course, reflect real-world interactions, and serve

to validate I-POMDPs as useful tools for analyzing and explaining social behaviors.
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Figure 5.13: Horizon 1 and 2 value functions for the team setting when i believes that j is partly informed
about the tiger’s location.

Broad applicability of I-POMDPs: By computing solutions for non-cooperative and cooperative prob-

lems, we have demonstrated the broad applicability of the I-POMDP framework. This is in contrast to many

other methods in the literature (see Section 4.1 of Chapter 4) which are applicable to only either one of the

two settings.
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5.5 Future Work

An important line of future work is to devise methods for representing I-POMDP solutions without as-

sumptions about what’s believed about other agents’ beliefs. Inspite of the complexity of the interactive state

space, there seem to be intuitive representations based on belief partitions corresponding to optimal policies

of the other agents. We are also looking into techniques for representing the solutions when beliefs are nested

to levels greater than one. Partitions of others’ multiply-nested beliefs based on their policies, again show

promise for scaling up the solutions to higher levels of belief nestings.



Chapter 6

APPROXIMATING I-POMDPS USING PARTICLE

FILTERS

INTERACTIVE POMDPs, a generalization of POMDPs to multiagent settings, offer a principled framework

for sequential decision-making in uncertain multiagent settings. Their solutions map an agent’s states

of belief about the environment and other agents’ models to policies, but optimal solutions are difficult to

compute due to two sources of intractability: First is the complexity of the belief representation, sometimes

called the curse of dimensionality. The second is the complexity of the space of policies, also called the

curse of history. Both these sources of intractability exist in POMDPs also (see Section 2.3 in Chapter 2),

but the curse of dimensionality is especially more acute in I-POMDPs. This is because in I-POMDPs the

complexity of the belief space is even greater; the beliefs may include beliefs about the physical environment,

and possibly the agent’s beliefs about other agents’ beliefs, their beliefs about others, and so on.

In this chapter, we present a method for computing approximately optimal policies for the finitely nested

I-POMDP framework. Since an agent’s belief is defined over other agents’ models, which may be a complex

continuous space, sampling methods, which are immune to the high dimensionality of the underlying space

are a promising approach. We adapt particle filtering (Doucet, Freitas, & Gordon, 2001; Gordon, Salmond,

& Smith, 1993), and more specifically the bootstrap filter (Gordon et al., 1993), to the multiagent setting,

resulting in the interactive particle filter (Doshi & Gmytrasiewicz, 2005a, 2005b). Mirroring the hierarchical

character of interactive beliefs, our approach involves nested sampling at each of the hierarchical levels of

beliefs. Our method is applicable to agents that start with a prior belief and optimize over finite horizons.

90
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Consequently, our method finds applications for online plan computation. We derive error bounds of our

approach, and empirically demonstrate its performance on simple test problems. In order to beat back the

curse of history, we present a complementary method based on sampling observations while building the look

ahead reachability tree during value iteration. This translates into considering only those future beliefs during

value iteration, that are likely . We report on the additional computational savings obtained when we combine

this method with the interactive particle filter, and also provide empirical results.

Rest of this chapter is structured in the following manner. We briefly review the various sampling methods

and their relevance, and the use of particle filters in previous works in Section 6.1. In Section 6.2, we introduce

the traditional particle filtering technique concentrating on bootstrap filters in particular. We then present the

interactive particle filter that approximates the I-POMDP belief update in Section 6.4. This is followed by

a method that utilizes the interactive particle filter to compute solutions to I-POMDPs, in Section 6.5. We

also comment on the asymptotic convergence and compute error bounds of our approach. In Section 6.6,

we report on the performance of our approximation method on simple test problems. In Section 6.7, we

provide a technique for mitigating the curse of history. We summarize the chapter in Section 6.8, lay out the

contributions of this work in Section 6.9, and outline future research directions in Section 6.10.

6.1 Related Work

Several approaches to non-linear recursive Bayesian estimation exist. Amongst these, the extended

Kalman filter (EKF) (Sorenson, 1985), is most popular. The EKF linearises the estimation problem so that the

Kalman filter can be applied. The required p.d.f. is still approximated by a Gaussian, which may lead to filter

divergence, and therefore an increase in the error. Other approaches include the Gaussian sum filter (Sorenson

& Alspach, 1971), and superimposing a grid over the state space with the belief being evaluated only over the

grid points (Kramer & Sorenson, 1988). In the latter approach, the choice of an efficient grid is non-trivial,

and the number of grid points that must be considered is exponential in the dimensions of the state space.

Recently, techniques that utilize Monte Carlo (MC) sampling for approximating the Bayesian state estima-

tion problem have received much attention. These techniques are general enough, in that, they are applicable

to both linear, as well as, non-linear problem domains. Amongst the spectrum of MC techniques, two that

have been particularly well-studied in sequential settings are Markov chain Monte Carlo (MCMC) (Hastings,

1970), and particle filters (Doucet et al., 2001; Gordon et al., 1993). Approximating the I-POMDP belief
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update using the former technique, may turn out to be computationally exhaustive. Specifically, MCMC al-

gorithms (Hastings, 1970) utilize rejection sampling, that may cause a large number of intentional models to

be sampled, solved, and rejected, before one is utilized for transition. However, particle filters do not em-

ploy rejection sampling, and produce reasonable approximations of the posterior while being computationally

feasible.

Particle filters have previously been successfully applied to approximate the belief update in continuous

state single agent POMDPs (Thrun, 2000; Poupart, Ortiz, & Boutilier, 2001). While Thrun integrates particle

filtering with Q-learning to learn the policy, Poupart et al. assume the existence of an exact value function and

present an error bound analysis of using particle filters. Loosely related to our work are the sampling algo-

rithms that appear in (Ortiz & Kaelbling, 2000) for selecting actions in influence diagrams, but this work does

not focus on sequential decision making. In the multiagent setting, particle filters have been employed for

collaborative multi-robot localization (Fox, Burgard, Kruppa, & Thrun, 2000). In this application, the empha-

sis was on predicting the position of the robot, and not the decisions and actions of the other robots (which is

the focus of our work). Additionally, to facilitate fast localization, beliefs of other robots encountered during

motion were considered to be fully observable.

6.2 Particle Filter for the Single Agent Setting

Particle filters represent a specific implementation of Bayes filters (Eq. 2.1), tailored towards making

Bayes filters applicable to non-linear dynamic systems. Rather than sampling directly from the target distri-

bution, which is often difficult to compute, particle filters adopt the method of importance sampling (Geweke,

1989), which allows samples to be drawn from a more tractable distribution called the proposal distribution,

π. Specifically, if Pr(St|ot
i, a

t−1
i , bt−1

i ) is the target posterior distribution, and π(St|ot
i, a

t−1
i , bt−1

i ) the pro-

posal distribution, and the support of π(St|ot
i, a

t−1
i , bt−1

i ) includes the support of Pr(St|ot
i, a

t−1
i , bt−1

i ), we

can approximate the posterior by sampling N i.i.d. particles {s(n), n = 1...N} according to π(St|ot
i, a

t−1
i , bt−1

i ),

and assigning to each particle a normalized importance weight:

w(n) =
w̃(s(n))

∑N
n=1 w̃(s(n))

where w̃(s(n)) =
Pr(s(n)|ot

i, a
t−1
i , bt−1

i )

π(s(n)|ot
i, a

t−1
i , bt−1

i )
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Each probability, Pr(s′|ot
i, a

t−1
i , bt−1

i ), is then approximated by:

PrN (s′|ot
i, a

t−1
i , bt−1

i ) =

N∑

n=1

w(n)δ(s′ − s(n))

where δ(·) is the Dirac-delta function. As N → +∞, PrN (s′|ot
i, a

t−1
i , bt−1

i )
a.s.
→ Pr(s′|ot

i, a
t−1
i , bt−1

i ).

When applied recursively over several steps, importance sampling leads to a large variance in weights. To

avoid this degeneracy, Gordon et al. (1993) suggested inserting a resampling step, which would increase the

population of particles that had high importance weights, thereby increasing the tracking ability of the particle

filter. Since particle filtering extends importance sampling sequentially and appends a resampling step, it has

also been called sequential importance sampling and resampling (SISR).

The general algorithm for the particle filtering technique is given in (Doucet et al., 2001). We shall

concentrate on a specific implementation of this algorithm, that has previously been studied under various

names such as Monte Carlo localization, survival of the fittest, and bootstrap filter. The implementation

maintains a set of N particles denoted by b̃t−1
i independently sampled from the prior, bt−1

i . Each particle

is then propagated forwards in time, using the transition kernel Ti of the environment. Each particle is then

weighted by the likelihood of perceiving the observation from the state that the particle represents, as given

by the observation function Oi. This is followed by the (unbiased) resampling step, in which particles are

picked proportionately to their weights, and a uniform weight is attached to each particle. We outline the

algorithm of the bootstrap filter in Fig. 6.1. A rigorous proof of the convergence of this algorithm towards the

true posterior as N →∞ is outlined in (Crisan & Doucet, 2002).

Let us understand the working of the bootstrap filter in the context of a simple example – the single agent

tiger problem described in Section 2.2.2 of Chapter 2. Let the agent have a prior belief according to which

it is uninformed about the location of the tiger. In other words, it believes with a probability of 0.5 that the

tiger is behind the left door, and with a similar probability that the tiger is behind the right door. We will

see how the agent approximately updates its belief using the particle filter when, say, it listens and hears a

growl from the left. Fig. 6.2 illustrates the particle filtering process. Since the agent is uninformed about the

tiger’s location, we start with an equal number of particles (samples) denoting TL (red) and TR (blue). The

initial sample set is approximately representative of the agent’s prior belief of 0.5. Since listening does not

change the location of the tiger, the composition of the sample set remains unchanged after propagation. On
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Function PARTICLEFILTER(̃bt−1
i , at−1

i , ot
i) returns b̃t

i

1. b̃tmp
i ← φ, b̃t

i ← φ
Importance Sampling

2. for all s(n),t−1 ∈ b̃t−1
i do

3. Sample s(n),t ∼ Ti(S
t|at−1

i , s(n),t−1)
4. Weight s(n),t with the importance weight:

w̃
(n)
t = Oi(o

t
i|s

(n),t, at−1
i )

5. b̃tmp
i

∪
← (s(n),t, w̃

(n)
t )

6. Normalize all w̃
(n)
t so that

∑N
n=1 w

(n)
t = 1

Selection
7. Resample with replacement N particles {s(n),t, n = 1...N}

from the set b̃tmp
i according to the importance weights.

8. b̃t
i ← {s

(n),t, n = 1...N}

9. return b̃t
i

end function

Figure 6.1: Particle filtering for approximating the Bayes filter. Note that the Bayes filter is precisely the
POMDP belief update that we have seen previously.

Propagate ResampleWeight

L

GL

~bi
t-1 ~bi

tmp ~bi
t

Figure 6.2: Particle filtering for state estimation in the single agent tiger problem. The red and blue particles
denote the states TL and TR respectively. The particle filtering process consists of three steps: Propagation
(line 3 of Fig. 6.1), Weighting (line 4), and Resampling (line 7).

hearing a growl from the left (GL), the red particles denoting TL will be tagged with a larger weight (0.85)

because they are more likely to be responsible for GL, than the blue particles denoting TR (0.15). Here, the

size of the particle is proportional to the weight attached to the particle. Finally, the resampling step yields the

sample set at time step t, which contains more particles denoting TL than TR. This sample set approximately

represents the updated belief of 0.85 of the agent.
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6.3 Sampling from Nested Beliefs

As we mentioned, there is a continuum of intentional and subintentional models of an agent. Since an

agent is unaware of the true models of interacting agents ex ante, it must maintain a belief over all possible

candidate models. The complexity of this space precludes practical implementations of I-POMDPs for all

but the simplest settings. Approximations based on sampling use a finite set of sample points to represent a

complete belief state.

In order to sample from nested beliefs we need a language to represent them. We introduce polynomials

as a basic building block and assume that all probability density functions representing agent i’s beliefs nested

to some level l are polynomials.12 Using the definitions of nested interactive state spaces in Section 4.4 as a

basis, we construct the polynomial based belief representation in a bottom-up manner, as follows:

Level 0 belief: i’s level 0 belief, bi,0 ∈ ∆(S), is a vector of probabilities over each physical state.

bi,0 = 〈pi,0(s1), pi,0(s2), . . . , pi,0(s|S|)〉

Level 1 belief: i’s first level belief, bi,1 ∈ ∆(S × {Θj,0 ∪ SMj}), is a vector of densities over j’s level 0

beliefs for each state and j’s intentional frame, as well as densities over j’s histories for each state and j’s

subintentional frame. We will represent the densities using polynomials. Formally,

bi,1 = 〈p
〈s,m̂j〉1
i,1 , p

〈s,m̂j〉2
i,1 , . . . , p

〈s,m̂j〉|S||M̂j |

i,1 〉

such that,

∀〈s, m̂j〉 :

if m̂j ∈ Θ̂j then p
〈s,θ̂j〉
i,1 (bj,0) = c1 + c2pj,0(s1) + c3pj,0(s2) + . . . + c(d+1)|S|−1

∏|S|−1
q=1 pj,0(sq)

d

else p
〈s,m̂j〉
i,1 (hj) = c1 + c2hj + . . . + cd+1h

d
j

Because belief is a probability distribution the areas of the polynomials must sum to 1. Formally,
∑

s,m̂j

∫
p
〈s,m̂j〉
i,1 = 1.

1We use polynomials because it is a well known representation capable of approximating any function over Euclidean space to
arbitrary accuracy.

2An n-variable polynomial f of degree d has (d + 1)n coefficients.
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Level 2 belief: i’s second level belief, bi,2 ∈ ∆(S × {Θj,1 ∪ Θj,0 ∪ SMj}), is a vector of densities over j’s

level 1 and level 0 beliefs for each state and j’s intentional frame, as well as densities over j’s histories for

each state and j’s subintentional frame. Formally,

bi,2 = 〈p
〈s,m̂j〉1
i,2 , p

〈s,m̂j〉2
i,2 , . . . , p

〈s,m̂j〉|S||M̂j |

i,2 〉

such that

∀〈s, m̂j〉 :

if m̂j ∈ Θ̂j then p
〈s,θ̂j〉
i,2 (bj,1) = c1 + c2p

〈s,θ̂i〉1
j,1 (bj,0) + c3p

〈s,θ̂i〉2
j,1 (bj,0) + . . .

+c
(d+1)|S||M̂i|

∏|S||Θ̂i|
q=1 p

〈s,θ̂i〉q

j,1 (bj,0)
d
∏|S||M̂i|

q=|S||Θ̂i|+1
p
〈s,m̂i〉q

j,1 (hj)
d

p
〈s,θ̂j〉
i,2 (bj,0) = c1 + c2pj,0(s1) + c3pj,0(s2) + . . . + c(d+1)|S|−1

∏|S|−1
q=1 pj,0(sq)

d

else p
〈s,m̂j〉
i,1 (hj) = c1 + c2hj + . . . + cd+1h

d
j

Belief being a probability distribution the areas of the polynomials must sum to 1. Since polynomials are

described by their parameters, each of i’s level 2 polynomial defined over j’s level 1 belief is a density over

the degrees, coefficients, and variables of j’s level 1 polynomials that constitute j’s level 1 belief.

Level l belief: We generalize our polynomial representation to any level l > 0. i’s level l belief, bi,l ∈

∆(S×{Θj,l−1 ∪ . . .∪Θj,0 ∪SMj}) is a vector of densities over j’s level l− 1, level l− 2,. . . , downto level

0 beliefs, depending on the state and j’s frame, as well as densities over j’s histories for each state and j’s

frame. Formally,

bi,l = 〈p
〈s,m̂j〉1
i,l , p

〈s,m̂j〉2
i,l , . . . , p

〈s,m̂j〉|S||M̂j |

i,l 〉
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such that

∀〈s, m̂j〉 :

if m̂j ∈ Θ̂j then p
〈s,θ̂j〉
i,l (bj,l−1) = c1 + c2p

〈s,θ̂i〉1
j,l−1 (bj,l−2) + c3p

〈s,θ̂i〉2
j,l−1 (bj,l−2) + . . .

+c
(d+1)|S||M̂i|

∏|S||Θ̂i|(l−1)
q=1 p

〈s,θ̂i〉q

j,l−1 (bj,l−2)
d

×
∏|S||M̂i|

q=|S||Θ̂i|(l−1)+1
p
〈s,m̂i〉q

j,l−1 (hj)
d

p
〈s,θ̂j〉
i,l (bj,l−2) = c1 + c2p

〈s,θ̂i〉1
j,l−2 (bj,l−3) + c3p

〈s,θ̂i〉2
j,l−2 (bj,l−3) + . . .

+c
(d+1)|S||M̂i|

∏|S||Θ̂i|(l−2)
q=1 p

〈s,θ̂i〉q

j,l−2 (bj,l−3)
d

×
∏|S||M̂i|

q=|S||Θ̂i|(l−2)+1
p
〈s,m̂i〉q

j,l−2 (hj)
d

·

·

·

p
〈s,θ̂i〉
i,l (bj,0) = c1 + c2pj,0(s1) + c3pj,0(s2) + . . . + c(d+1)|S|−1

∏|S|−1
q=1 pj,0(sq)

d

else p
〈s,m̂j〉
i,l (hj) = c1 + c2hj + . . . + cd+1h

d
j

As we mentioned before, the areas of the polynomials must sum to 1.

Example 6.1. To illustrate our polynomial based representation, we utilize the multiagent tiger problem

introduced previously in Section 4.5 of Chapter 4. We will again assume that each agent knows that other’s

possible models are intentional nested to one level lower than its own, and it is uncertain of only the other’s

lower level beliefs.

An example level 0 belief of i, bi,0 = 〈pi,0(TL), pi,0(TR)〉, is 〈0.7, 0.3〉 that assigns a probability of 0.7

to TL and 0.3 to TR.

An example level 1 belief of i, bi,1 = 〈p
〈TL,θ̂′

j〉

i,1 , p
〈TR,θ̂′

j〉

i,1 〉, in the tiger problem is one according to which i

is uninformed about j’s level 0 beliefs and about the location of the tiger (see Fig. 4.7(ii)). The corresponding

polynomials are, p
〈TL,θ̂′

j〉

i,1 (bj,0) = p
〈TR,θ̂′

j〉

i,1 (bj,0) = 0.5. Here, the polynomials for each location of the tiger

and j’s frame are identical, and are of degree 0 with c1 = 0.5.

A level 2 belief of i, bi,2 = 〈p
〈TL,θ̂′

j〉

i,2 , p
〈TR,θ̂′

j〉

i,2 〉, is one in which i considers increasingly complex level

1 beliefs of j (for example, pj,1 of higher degrees) as less likely (Occam’s Razor), and is uninformed

of the location of the tiger. A level 2 polynomial of i is defined over bj,1 which as we saw above, is

a vector of two polynomials. Since a polynomial is described by its degree, coefficients, and variables,
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p
〈TL,θ̂′

j〉

i,2 (bj,1) = p
〈TL,θ̂′

j〉

i,2 (d1, d2, 〈c1, c2, . . . , cdmax+1〉1, 〈c1, c2, . . . , cdmax+1〉2, pi,0(TL)) and analogously

for p
〈TR,θ̂′

j〉

i,2 (bj,1). dmax is an upper bound on the degree. We express the example belief using a normalized

Taylor series expansion of 2−(d1+d2), i.e. p
〈TL,θ̂′

j〉

i,2 (d1, d2, 〈c1, c2, . . . , cdmax+1〉1,〈c1, c2, . . . , cdmax+1〉2,

pi,0(TL)) = p
〈TR,θ̂′

j〉

i,2 (d1, d2, 〈c1, c2, . . . , cdmax+1〉1, 〈c1, c2, . . . , cdmax+1〉2, pi,0(TL))

= β
∑5

n=0(−1)nln(2)n

(
1
n! (−1)n(d1−3)n +

∑n
m=0

1
n! (d2−3)m(d1−3)n−m

)
where β is the normalizing

constant and dmax = 3. 3

Now that we have a representation for agent i’s nested beliefs, we turn our attention to sampling from

these beliefs. In Fig. 6.3 we present the algorithm, PRIORSAMPLE 4 for recursively sampling from nested

beliefs using the polynomial based representation of the beliefs. In a nutshell, PRIORSAMPLE generates

nested sample sets by recursively sampling the parameters of the lower level polynomials from the higher

level ones. The recursion bottoms out when a level 0 belief is sampled from a level 1 polynomial density. In

the algorithm, k will stand for either agent i or j, and −k for the other agent, j or i, as appropriate. For a

visualization of the nested sample sets, see Fig. 6.6.

For singly nested beliefs, the sampling is straightforward: For each of the N sampled physical states,

s(n), and j’s frame, m̂
(n)
j , either the level 0 belief vector, 〈pj,0(s1), . . . , pj,0(s|S|)〉, or the observation his-

tory, hj is sampled from the polynomial p
〈s(n),θ̂

(n)
j

〉

j,1 or p
〈s(n),m̂

(n)
j

〉

j,1 , respectively (lines 2–15). Analogously,

from i’s level 2 beliefs, we will sample j’s level 1 belief or its observation history, depending on whether j’s

sampled frame is intentional or subintentional. Let’s consider the case where j’s sampled frame is intentional.

Because j’s level 1 belief is represented using |S||M̂i| polynomials, we must sample the parameters – degree

and coefficients – of these polynomials. Since the number of coefficients depends in part on the degree of the

polynomial, we must sample the degrees first by marginalizing the level 2 polynomial over the coefficients.

Therefore, we sample the joint degree 〈d1, d2, . . . , d|S||M̂i|
〉 ∼ p

〈s(n),θ̂
(n)
j

〉

i,2 (bj,1) and use the individual de-

grees to sample the coefficients 〈c1, . . . , c(d1+1)|S|−1〉1, . . . , 〈c1, . . . , c(d|S||Θ̂i|
+1)|S|−1〉|S||Θ̂i|

,

3We use 2−K(x) where K(·) is the Kolmogorov complexity as a mathematical formalization of Occam’s razor (Li & Vitanyi, 1997).
For simplicity and computability, we use the degrees of the lower level polynomials as approximate measures of the complexity.

4In favor of simplicity and clarity, in PRIORSAMPLE and in all other algorithms in this chapter, for level l beliefs we restrict the
intentional models of the other agent to level l − 1 only.
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Function PRIORSAMPLE(〈p〈s,θ̂−k〉1
k,l , . . . , p

〈s,θ̂−k〉|S||M̂−k|

k,l 〉, l > 0) returns b̃k,l

1. for n from 1 to N do
2. b

(n)
−k,l−1 ← φ

3. if (l = 1) then
4. for each s ∈ S, m̂−k ∈ M̂−k do
5. Pr(s)

+
←

∫
p
〈s,m̂−k〉
k,1

6. Sample s(n) ∼ Pr(S)

7. for each m̂−k ∈ M̂−k do
8. Pr(m̂−k)

+
←

∫
p
〈s(n),m̂−k〉
k,1

9. Sample m̂
(n)
−k ∼ Pr(M̂−k)

10. if m̂
(n)
−k ∈ Θ̂−k then /∗ If other’s frame is intentional ∗/

11. Sample b
(n)
−k,0 = 〈pj,0(s1), pj,0(s2), . . . , pj,0(s|S|−1)〉 ∼ p

〈s(n),θ̂
(n)
−k

〉

k,1

12. is
(n)
k ← 〈s(n), 〈b

(n)
−k,0, θ̂

(n)
−k 〉〉

13. else /∗ If other’s frame is subintentional ∗/

14. Sample h
(n)
−k ∼ p

〈s(n),m̂
(n)
−k

〉

k,1

15. is
(n)
k ← 〈s(n), 〈h

(n)
−k , m̂

(n)
−k 〉〉

16. else if (l = 2) then
17. for each s ∈ S, m̂−k ∈ M̂−k do
18. Pr(s)

+
←

∫
p
〈s,m̂−k〉
k,2

19. Sample s(n) ∼ Pr(S)

20. for each m̂−k ∈ M̂−k do
21. Pr(m̂−k)

+
←

∫
p
〈s(n),m̂−k〉
k,2

22. Sample m̂
(n)
−k ∼ Pr(M̂−k)

23. if m̂
(n)
−k ∈ Θ̂−k then /∗ If other’s frame is intentional ∗/

24. Sample 〈d1, . . . , d|S||Θ̂k|
, . . . , d

|S||M̂k|
〉 ∼ p

〈s(n),θ̂
(n)
−k

〉

k,2

25.

Sample 〈〈c1, c2, . . . , c(d1+1)|S|−1〉1, . . . , 〈c1, c2, . . . , c(d|S||Θ̂k|+1)|S|−1〉|S||Θ̂k|
,

〈c1, . . . , cd|S||Θ̂k|+1+1〉|S||Θ̂k|+1, . . . , 〈c1, c2, . . . , cd
|S||M̂k|

+1〉|S||M̂k|
〉

∼ p
〈s(n),θ̂

(n)
−k

〉

k,2

26. for i from 1 to |S||Θ̂k| do
27. p

〈s,θ̂k〉
−k,1 ← 〈di, c1, c2, . . . , c(di+1)|S|−1〉, b

(n)
−k,1

∪
← p

〈s,θ̂k〉
−k,1

28. for i from |S||Θ̂k|+1 to |S||M̂k| do
29. p

〈s,m̂k〉
−k,1 ← 〈di, c1, c2, . . . , cdi+1〉, b

(n)
−k,1

∪
← p

〈s,m̂k〉
−k,1

30. Normalize b̃
(n)
−k,1

31. b̃
(n)
−k,1 ← PRIORSAMPLE(b(n)

−k,1,1)
32. is

(n)
k ← 〈s(n), 〈 b̃

(n)
−k,1, θ̂

(n)
−k 〉〉

33. else /∗ If other’s frame is subintentional ∗/

34. Sample h
(n)
−k ∼ p

〈s(n),m̂
(n)
−k

〉

k,2
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/∗ If other’s frame is subintentional ∗/
35. is

(n)
k ← 〈s(n), 〈h

(n)
−k , m̂

(n)
−k 〉〉

36. else
37. for each s ∈ S, m̂−k ∈ M̂−k do
38. Pr(s)

+
←

∫
p
〈s,m̂−k〉
k,l

39. Sample s(n) ∼ Pr(S)

40. for each m̂−k ∈ M̂−k do
41. Pr(m̂−k)

+
←

∫
p
〈s(n),m̂−k〉
k,l

42. Sample m̂
(n)
−k ∼ Pr(M̂−k)

43. if m̂
(n)
−k ∈ Θ̂−k then /∗ If other’s frame is intentional ∗/

44. Sample 〈d1, . . . , d|S||Θ̂k|
, . . . , d

|S||M̂k|
〉 ∼ p

〈s(n),θ̂
(n)
−k

〉

k,l

45.

Sample 〈〈c1, . . . , c(d1+1)f(l)〉1, . . . , 〈c1, . . . , c(d|S||Θ̂k|+1)f(l)〉|S||Θ̂k|

, 〈c1, . . . , cd|S||Θ̂k|+1+1〉|S||Θ̂k|+1, . . . , 〈c1, . . . , cd
|S||M̂k|

+1〉|S||M̂k|
〉

∼ p
〈s(n),θ̂

(n)
−k

〉

k,l

46. for i from 1 to |S||Θ̂k| do
47. p

〈s,θ̂k〉
−k,l−1 ← 〈di, c1, . . . , cdi+1f(l)〉

48. b
(n)
−k,l−1

∪
← p

〈s,θ̂k〉
−k,l−1

49. for i from |S||Θ̂k|+1 to |S||M̂k| do
50. p

〈s,m̂k〉
−k,l−1 ← 〈di, c1, . . . , cdi+1〉

51. b
(n)
−k,l−1

∪
← p

〈s,m̂k〉
−k,l−1

52. Normalize b
(n)
−k,l−1

53. b̃
(n)
−k,l−1 ← PRIORSAMPLE(b(n)

−k,l−1,l − 1)
54. is

(n)
k ← 〈s(n), 〈 b̃

(n)
−k , θ̂

(n)
−k 〉〉

55. else /∗ If other’s frame is subintentional ∗/

56. Sample h
(n)
−k ∼ p

〈s(n),m̂
(n)
−k

〉

k,2

57. is
(n)
k ← 〈s(n), 〈h

(n)
−k , m̂

(n)
−k 〉〉

58. b̃k,l
∪
← {is

(n)
k }

59.return b̃k,l

end function

Figure 6.3: Algorithm for sampling from a nested belief that is represented using polynomial densities at
each level. Here, k denotes either agent i or j, and −k denotes j or i respectively.

〈c1, . . . , cd|S||Θ̂i|+1+1〉|S||Θ̂i|+1, . . . , 〈c1, . . . , cd
|S||M̂i|

+1〉|S||M̂i|
∼ p

〈s(n),θ̂
(n)
j

〉

i,2 (bj,1) (lines 16–35). The de-

grees and coefficients are then assembled to form the |S||M̂i| polynomials that represent j’s level 1 be-

lief. We generalize the sampling procedure to all levels greater than two in the remainder of the algo-

rithm. We observe that we are faced with sampling an exploding number of coefficients for increasing
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nesting levels. If the other agent’s sampled frame is intentional, then the number of coefficients for de-

scribing its polynomial is (d + 1)f(l) where d is the sampled degree and f(l) = |S||Θ̂|[1 + (dmax +

1)·
l×·|S||Θ̂|[1+(dmax+1)|S|−1]+|S||ŜM|[1+(dmax+1)]

] + |S||ŜM |[1 + (dmax + 1)].

6.4 Interactive Particle Filter for the Multiagent Setting

We presented the algorithm for the traditional bootstrap filter in Section 6.2. As we mentioned before,

the bootstrap filter is a MC sampling based randomized implementation of the POMDP belief update (Bayes

filter). We extend this implementation to the I-POMDP belief update presented previously in Section 4.3.2

of Chapter 4.

6.4.1 Description

Our extension of the boostrap filter to the multiagent case, which we call an interactive particle fil-

ter (I-PF), similar to basic particle filtering, requires the key steps of importance sampling and selection.

The resulting algorithm, inherits the convergence properties of the original algorithm (Doucet et al., 2001).

Specifically, the approximate posterior belief generated by the filter converges to the truth as the number of

particles (N ) tends to infinity. The extension to the multiagent setting turns out to be non-trivial because we

are faced with an interactive belief hierarchy. Analogously to the I-POMDP belief update, the I-PF reduces

to the traditional PF when there is only one agent in the environment.

The I-PF, described in Fig. 6.4, requires an initial set of N particles, b̃t−1
k,l , that is approximately repre-

sentative of the agent’s belief, along with the action, at−1
k , the observation, ot

k, and the level of belief nesting,

l > 0. As per our convention, k will stand for either agent i or j, and −k for the other agent, j or i, as

appropriate. Each particle, is
(n)
k , in the sample set represents the agent’s possible interactive state, in which

the belief, if present, may itself be a set of particles. Formally, is
(n)
k = 〈s(n),m

(n)
−k 〉 where if m

(n)
−k ∈ Θ−k

(other’s model is intentional), then m
(n)
−k = 〈̃b

(n)
−k,l−1, θ̂

(n)
−k 〉, else m

(n)
−k = 〈h

(n)
−k , m̂

(n)
−k 〉. Note that b̃

(n)
k,0 is a

probability distribution over the physical state space. We generate b̃t−1
k,l by recursively sampling N particles

from beliefs represented using polynomials at each level of nesting, using the PRIORSAMPLE procedure

outlined in the previous section. The particle filtering proceeds by propagating each particle forward in time.

However, as opposed to traditional particle filtering, this is not a one-step process. In order to perform the

propagation, other agent’s action must be known. If the model ascribed to the other agent is intentional,
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Function I-PARTICLEFILTER(b̃t−1
k,l , at−1

k , ot
k, l > 0) returns b̃t

k,l

1. b̃tmp
k,l ← φ, b̃t

k,l ← φ

Importance Sampling
2. for all is

(n),t−1
k = 〈s(n),t−1,m

(n),t−1
−k 〉 ∈ b̃t−1

k,l do
3. if m

(n),t−1
−k ∈ Θ−k then

4. Pr(A−k|θ
(n),t−1
−k )← APPROXPOLICY(θ(n),t−1

−k , l − 1)
5. Sample at−1

−k ∼ Pr(A−k|θ
(n),t−1
−k )

6. else
7. Sample at−1

−k ∼ Pr(A−k|m
(n),t−1
−k )

8. Sample s(n),t ∼ Tk(St|at−1
k , at−1

−k , s(n),t−1)
9. for all ot

−k ∈ Ω−k do
10. if m

(n),t−1
−k ∈ Θ−k then

11. if (l = 1) then
12. b

(n),t
−k ← LEVEL0BELIEFUPDATE(b(n),t−1

−k , at−1
−k , ot

−k)
13. θ

(n),t
−k ← 〈b

(n),t
−k , θ̂

(n)
−k 〉

14. is
(n),t
k ← 〈s(n),t, θ

(n),t
−k 〉

15. else
16. b̃

(n),t
−k ← I-PARTICLEFILTER(̃b(n),t−1

−k , at−1
−k , ot

−k, l − 1)
17. θ

(n),t
−k ← 〈 b̃

(n),t
−k , θ̂

(n)
−k 〉

18. is
(n),t
k ← 〈s(n),t, θ

(n),t
−k 〉

19. else
20. h

(n),t
−k ← APPEND(h(n),t−1

−k , ot
−k)

21. m
(n),t
−k ← 〈 h

(n),t
−k , m̂

(n)
−k 〉

22. is
(n),t
k ← 〈s(n),t,m

(n),t
−k 〉

23. Weight is
(n),t
k : w

(n)
t = O−k(ot

−k|s
(n),t, at−1

k , at−1
−k )

24. Adjust weight: w
(n)
t = w

(n)
t ×Ok(ot

k|s
(n),t, at−1

k , at−1
−k )

25. b̃tmp
k,l

∪
← (is(n),t

k , w
(n)
t )

26. Normalize all w
(n)
t so that

∑N
n=1 w

(n)
t = 1

Selection
27. Resample with replacement N particles {is(n),t

k , n = 1...N}

from the set b̃tmp
k,l according to the importance weights.

28. b̃t
k,l ← {is

(n),t
k , n = 1...N}

29. return b̃t
k,l

end function

Figure 6.4: Interactive particle filtering for approximating the I-POMDP belief update. A nesting of particle
filters is used to update all levels of the belief. Also see Fig. 6.6 for a visualization.

then this is obtained by solving the other agent’s model (using the algorithm APPROXPOLICY described in

Section 6.5) to find a distribution over its actions, from which its action is sampled (line 4 in Fig. 6.4). Addi-

tionally, analogously to the exact belief update, for each of the other agent’s possible observations, we must



CHAPTER 6. APPROXIMATING I-POMDPS USING PARTICLE FILTERS 103

Function LEVEL0BELIEFUPDATE(bt−1
k , at−1

k , ot
k) returns bt

k

1. Pr(at−1
−k )← 1/at−1

−k

2. for all st ∈ S do
3. sum← 0
4. for all st−1 ∈ S do
5. Pr(st|st−1, at−1

k )← 0
6. for all at−1

−k ∈ A−k do
7. Pr(st|st−1, at−1

k )
+
← Tk(st|st−1, at−1

k , at−1
−k )Pr(at−1

−k )

8. sum +
← Pr(st|st−1, at−1

k )bt−1
k (st−1)

9. Pr(ot
k|s

t, at−1
k )← 0

10. for all at−1
−k ∈ A−k do

11. Pr(ot
k|s

t, at−1
k )

+
← Ok(ot

k|s
t, at−1

k , at−1
−k )Pr(at−1

−k )

12. bt
k(st)← Pr(ot

k|s
t, at−1

k )× sum
13. Normalize the belief, bt

k

14. return bt
k

end function

Figure 6.5: The level 0 belief update which is similar to the exact POMDP belief update with a noise factor.

update its model (line 9). If its model is intentional, then we must update its belief state. If l > 1, updating

the other agent’s belief requires invoking the interactive particle filter for performing its belief update (lines

16–18). This recursion in depth of the belief nesting terminates when the level of nesting becomes one, and a

LEVEL0BELIEFUPDATE described in Fig. 6.5 is performed (lines 12–14).5 If the model of the other agent

is subintentional, then we simply append the observation to its previous observation history. Though the

propagation step generates |Ω−k|N appropriately weighted particles, we resample N particles out of these

(line 27), using an unbiased resampling scheme. A visualization of our implementation is shown in Fig. 6.6.

6.4.2 Illustration of the I-PF

We illustrate the operation of the I-PF using the multiagent tiger problem introduced in Section 4.5.

For the sake of understanding, we restrict j’s models to be intentional, assume that i is uncertain only of j’s

beliefs and not its frame, and consider singly nested beliefs for agent i. According to these beliefs, i knows

that j is uninformed about the location of the tiger, and is itself unaware of where the tiger is. We demonstrate

the operation of the I-PF for the case when i listens and hears a growl from the left and no creaks. This

5If the physical state space is also continuous or very large, then we would replace the level 0 belief update with a traditional particle
filter. However, in doing so, we would loose the theoretical bounds given in Section 6.5.1
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b
k,l

t−1
k
t

 o

b
k,l

tmp
b
k,l

t

b
−k,l−1

(n),t−1
b
−k,l−1

(n),t

b −k
t−1

b −k
t

b
k,l−2
(n),t−1 b

k,l−2
(n),t

b
k,1

(n),t−1
k,1

b (n),t

a k
t−1

Resample

Level 1

WeightPropagation

θ −ks ,         , θ −ks ,         ,
(n) (n) (n)  (n)

θ ks,        , θ ks,        ,
 (n)  (n)  (n)  (n)

θ ks,        , θ ks,        ,
 (n)  (n)  (n)  (n)

depth

time

Figure 6.6: An illustration of the nesting in the interactive particle filter. Colors black and gray distinguish
filtering for the two agents. Because the propagation step involves updating the other agent’s beliefs, we
perform particle filtering on its beliefs. The filtering terminates when it reaches the level 1 nesting, where a
level 0 belief update is performed for the other agent.

example, is therefore, an approximate implementation of the exact I-POMDP belief update shown in Fig. 4.8

of Chapter 4.

<st-1 = TL, bj
t-1 = 0.5>

<st-1 = TR, bj
t-1 = 0.5>

~bi
t-1

ai
t-1=L

Figure 6.7: Initial sample set of 2 particles that is approximately representative of bt−1
i,1 .

In Fig. 6.7, we show the initial sample set, b̃t−1
i,1 , consisting of N = 2 particles that is approximately
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representative of i’s beliefs. As shown, each particle is an interactive state consisting of the tiger’s location

and j’s level 0 belief. Because i knows that j is uninformed, j’s level 0 belief is 0.5 in both the particles.

<st-1 = TL, bj
t-1 = 0.5>

<st-1 = TR, bj
t-1 = 0.5>

~bi,1
t-1

ai
t-1=L

aj
t-1=L

aj
t-1=L

Figure 6.8: The initial sample set with j’s optimal action shown for each particle.

As we mentioned before, the propagation of the particles from time step t− 1 to t is a multi-step process.

As the first step, we solve j’s POMDP to compute its optimal action when its belief is 0.5. j’s action is to

listen since it does know the location of the tiger. We depict this in Fig. 6.8.

<st-1 = TR, bj
t = 0.85>

~bi,1
t-1

ai
t-1=L

1. Sample  st ~ T(S|st-1,ai
t-1,aj

t-1)
2. forall oj

t  bj
t = SEj(bjt-1,aj

t-1,oj
t)

Propagation

<st-1 = TR, bj
t = 0.15>

<st-1 = TL, bj
t = 0.85>

<st-1 = TL, bj
t = 0.15>L,GL

L,GR

L,GR

L,GL

Figure 6.9: The propagation of the particles from time step t− 1 to time step t. It involves sampling the next
physical state and updating j’s beliefs by anticipating its observations. Because j may recieve any one of two
observations, there are 4 particles in the propagated sample set.

The second step of the propagation is to sample the next physical state for each particle using the transition

function. Since both i and j listen, the location of the tiger remains unchanged. Additionally, we must update

j’s beliefs. We do this by anticipating what j might observe, and updating its belief exactly given its optimal

action of listening. Since j could receive one of two possible observations – GL or GR – each particle ”splits”
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into two. This is shown using the thin arrows going from particles in the initial sample set to the particles in

the propagated sample set, in Fig. 6.9. When j hears a GL, its updated belief is 0.85 (that the tiger is behind

the left door), otherwise it is 0.15 when it hears a GR.

ai
t-1=L

<st-1 = TR, bj,0
t = 0.85>

w = 0.15*0.135 = 0.020

~bi,1
t-1

Propagation

<st-1 = TR, bj,0
t = 0.15>

w = 0.85*0.135 = 0.115

<st-1 = TL, bj,0
t = 0.85>

w = 0.85*0.765 = 0.650

<st-1 = TL, bj,0
t = 0.15>

w = 0.15*0.765 = 0.115Weighting

oi
t-1=GL,S

~bi,1
tmp

Figure 6.10: The weighting step is a two step process: Each particle is first weighted with the likelihood
with which j receives its observations, followed by adjusting this weight using the probability of i making its
observation of 〈 GL,S 〉. Note that resulting weights as shown are not normalized.

As part of the weighting, we will first weight each particle with the probability of j receiving its obser-

vations. Thereafter, we will scale this weight with the probability of i observing a growl from the left and

no creaks, 〈GL,S〉. To understand the weighting process, let’s focus on a single particle. Weighting for the

remaining particles is analogous.

We consider the particle on the top right in the sample set, b̃tmp
i,1 , shown in Fig. 6.10. j’s level 0 belief of

0.85 in this particle is due to j hearing a growl from the left. The probability of j making this observation

as given by its observation function, when the tiger is on the left is 0.85. We will adjust this weight with the

probability of i receiving 〈GL,S〉 when the tiger is on the left and both agents are listening. This probability

as given by i’s observation function is 0.765. The final weight attached to this particle is 0.65. Note that the

weights as shown in Fig. 6.10 are not normalized. After normalization i’s belief that the tiger is on the left is

0.85 (obtained by marginalizing over j’s beliefs for particles that have st=TL), and 0.15 for tiger on the right.

The final step of the I-PF is an unbiased resampling of the particles using the weights as the distribution.

To prevent an exponential growth in the number of particles 6, we resample N particles resulting in the sample

6After t propagation steps, there will be N |Ωj |
t particles in the sample set.
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ai
t-1=L

~bi,1
t-1

Propagation <st-1 = TL, bj,0
t = 0.85>

Weighting

oi
t-1=GL,S

~bi,1
tmp

<st-1 = TL, bj,0
t = 0.85>

Resampling

~bi,1
t

Figure 6.11: The final step is an unbiased resampling using the weights as the distribution.

set, b̃t
i,1, that is approximately representative of the exact updated belief.

When i’s belief is multiply nested, the above mentioned example forms the bottom step of the recursive

filtering process.

6.4.3 Performance of the I-PF

As part of our empirical investigation of the performance of the I-PF, we show, using a standard distance

metric and visually, that our particle filter approximates the exact state estimation closely. For our analysis,

we utilize the two-agent tiger problem, that has two physical states, as described in Section 4.5, and a two-

agent version of the machine maintenance problem (MM) (Smallwood & Sondik, 1973), described in detail

in Appendix B, that has three physical states. For both these problems, we make the simplifying assumption

that models of the other agent are intentional and differ only in their beliefs. We use a numerical integration

implementation 7 for the exact filter as the baseline for comparison.

The lineplots in Fig. 6.12 show that the quality of the approximation, as measured by KL-Divergence 8

increases as the number of particles increases, for both the problem domains. As we may expect, level 2

belief approximations require considerably more particles as compared to level 1 approximations, to achieve

similar performance. Also, note that the performance of the I-PF remains consistent for both the two-state

tiger and the three-state MM problem indicating that our implementation is not affected by the dimensionality

7We obtained the points for numerical integration by superimposing a high resolution regular grid on the interactive state space.
8When the level of nesting of the beliefs > 1, we compute the average of the KL-Divergences of the lower level beliefs, and add it

to the upper level KL-Divergence, which is computed assuming that the lower level beliefs match exactly.
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Figure 6.12: Performance of the I-PF as a function of the number of particles, on (i) multiagent tiger
problem, (ii) multiagent machine maintenance game.

Particle Filter Numerical
Belief Game N=500 N=1000 Integration
Level Multiagent 0.148s 0.332s 21.80s
1 Tiger ± 0.001s ± 0.007s ± 0.036s

Multiagent 0.452s 0.931s 1m 18.20s
MM ± 0.009s ± 0.0146s ± 0.45s

Level Multiagent 2m 23.28s 11m 41.30s 51m 12.24s
2 Tiger ± 1.1s ± 1.52s ± 5.66s

Multiagent 1m 37.59s 8m 27.29s 151m 29.48s
MM ± 0.17s ± 1.65s ± 1m 55.73s

Table 6.1: Comparison of the average running times of our numerical integration and particle filter imple-
mentations on same platform (Pentium IV, 1.7GHz, 512MB RAM, Linux).

of the underlying state space. Each data point in the lineplots is the average of 10 runs of our particle filter. In

the case of the tiger problem, the posterior used for comparison is the one that is obtained after agent i listens

and hears a growl from the left and no creaks. For the machine maintenance game, the posterior obtained

after i manufactures and perceives no defect in the product, is used for comparison. We selected the belief

states mentioned in Example 6.1 as the prior level 1 and level 2 beliefs (dmax = 3) of agent i when playing

the tiger problem, and analogously for the machine maintenance game.

A comparison of the run times of the filter implemented using numerical integration and the interactive

particle filter is shown in Fig. 6.1. Our particle filtering implementation significantly outperforms the numeri-

cal integration based implementation, while providing comparable performance quality. Additionally, the run

times of the numerical integration implementation significantly increase when we move from the two-state
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tiger problem to the three-state MM problem, in contrast to the particle filter. This is because numerical inte-

gration requires more points for larger state spaces to maintain comparable quality (curse of dimensionality).

In order to assess the quality of the approximations after successive belief updates, we graphed the p.d.f.s

produced by the particle filter and the exact filter. The p.d.f.s arising after each of three filtering steps on the

level 1 belief of agent i in the tiger problem, are shown in Fig 6.13. Each approximate p.d.f. is the average of

10 runs of the particle filter which contained 5000 particles, and is estimated using a standard Gaussian ker-

nel. The action/observation sequence followed was 〈L,GL, S〉, 〈L,GL, S〉, 〈OR,GL, S〉. As can be seen,

our particle filter produces a good approximation of the true densities.

Level 1 Beliefs in the Multiagent Tiger Problem
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Figure 6.13: The exact and approximate p.d.f.s after successive filtering steps. The peaks of the approximate p.d.f.s
align correctly with those of the exact p.d.f.s, and the areas under the approximate and exact p.d.f.s are approximately
equal.

6.5 Value Iteration

Because the interactive particle filter represents each belief of agent i, bi,l, using a set of N particles, b̃i,l,

a value backup operator which operates on samples is needed. Let H̃ denote the required backup operator,

and Ũ the approximate value function, then the backup operation, Ũ t = H̃Ũ t−1, is:
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Function APPROXPOLICY(θk, l > 0) returns ∆(Ak)

1. b̃0
k,l ← {is

(n)
k , n = 1...N |is

(n)
k ∼ bk,l ∈ θk}

Reachability Analysis
2. reach(0)← b̃0

k,l

3. for t← 1 to T do
4. reach(t)← φ

5. for all b̃t−1
k,l ∈ reach(t− 1), ak ∈ Ak, ok ∈ Ωk do

6. reach(t) ∪
← I-PARTICLEFILTER(̃bt−1

k,l , ak, ok, l)
Dynamic Programming

7. for t← T downto 0 do
8. for all b̃t

k,l ∈ reach(t) do
9. ŨT−t,l(〈 b̃t

k,l, θ̂k〉)← −∞, OPT(〈 b̃t
k,l, θ̂k〉)← φ

10. for all ak ∈ Ak do
11. ŨT−t

ak
(〈̃bt

k,l, θ̂k〉)← 0
12. for all is

(n),t
k = 〈s(n),t,m

(n)
−k 〉 ∈ b̃t

k,l do
13. if m

(n)
−k is intentional then

14. Pr(A−k|m
(n)
−k )← APPROXPOLICY(θ(n)

−k , l − 1)
15. for all a−k ∈ A−k do
16. ŨT−t

ak
(〈̃bt

k,l, θ̂k〉)
+
← 1

N R(s(n),t, ak, a−k)Pr(a−k|m
(n)
−k )

17. if (t < T ) then
18. for all ok ∈ Ωk do
19. sum← 0, b̃t+1

k,l ← reach(t + 1)[|Ωk|ak + ok])

20. for all is
(n),t
k = 〈s(n),t,m

(n)
−k 〉 ∈ b̃k,l do

21. if m
(n)
−k is intentional then

22. Pr(A−k|m
(n)
−k )← APPROXPOLICY(θ(n)

−k , l − 1)
23. for all a−k ∈ A−k, st+1 ∈ Sk do
24. sum +

← Ok(ok|s
t+1, ak, a−k)Pr(is(n),t+1|is(n),t, ak, a−k)Pr(a−k|m

(n)
−k )

25. ŨT−t,l
ak

(〈̃bt
k,l, θ̂k〉)

+
← γ × 1

N × sum× ŨT−t−1(̃bt
k,l)

26. if ŨT−t
ak

(〈̃bt
k,l, θ̂k〉) ≥ ŨT−t(〈̃bt

k,l, θ̂k〉)) then
27. if (ŨT−t

ak
(〈̃bt

k,l, θ̂k〉) > ŨT−t(〈̃bt
k,l, θ̂k〉) then

28. ŨT−t(〈̃bt
k,l, θ̂k〉)← ŨT−t

ak
(〈̃bt

k,l, θ̂k〉)
29. OPT(〈̃bt

k,l, θ̂k〉)← φ

30. OPT(〈̃bt
k,l, θ̂k〉)

∪
← ak

31. for all ak ∈ Ak do
32. if (ak ∈ OPT(〈̃bt

k,l, θ̂k〉) then
33. Pr(ak|θk)← 1

|OPT(〈b̃t
k,l

,θ̂k〉)|

34. else
35. Pr(ak|θk)← 0
36. return Pr(Ak|θk)

end function

Figure 6.14: Algorithm for computing an approximately optimal finite horizon policy tree given a model
containing an initial sampled belief. When l = 0, the exact POMDP policy tree is computed.
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Ũ t(〈̃bi,l, θ̂i〉) = max
ai∈Ai

{
1

N

∑

is(n)∈b̃i,l

ERi(is
(n), ai) + γ

∑

oi∈Ωi

Pr(oi|ai, b̃i,l)Ũ
t−1(〈I-PF(̃bi,l, ai, oi), θ̂i〉)

}

(6.1)

where ERi(is
(n), ai) =

∑
aj

Ri(s
(n), ai, aj)Pr(aj |m

(n)
j ), and I-PF denotes the belief update implemented

using the interactive particle filter. The set of optimal actions at a given approximate belief, OPT(〈b̃i,l, θ̂j〉),

is then calculated by returning the actions that have the maximum value:

OPT (〈̃bi,l, θ̂i〉) = argmax
ai∈Ai

{
1
N

∑
is(n)∈b̃i,l

ERi(is
(n), ai) + γ

∑
oi∈Ωi

Pr(oi|ai, b̃i,l)

×Ũ t−1,l(〈I-PF(̃bi,l, ai, oi), θ̂i〉)

} (6.2)

Equations 6.1 and 6.2 are analogous to the Eqs. 4.3 and 4.4 respectively, with exact integration replaced

by Monte Carlo integration, and the exact belief update replaced with the interactive particle filter. Note that

H̃ → H as N →∞. The algorithm for computing an approximately optimal finite horizon policy tree using

value iteration when l > 0 is given in Fig. 6.14. When l = 0, the algorithm reduces to the POMDP policy

tree computation which is carried out exactly.9 The algorithm consists of the usual two steps: Compute the

look ahead reachability tree as part of the reachability analysis (see Section 17.5 of Russell & Norvig, 2003);

and perform value backup on the reachability tree.

6.5.1 Convergence and error bounds

The use of randomizing techniques such as particle filters means that value iteration does not necessarily

converge. This is because, unlike the exact belief update, posteriors generated by the particle filter with

finitely many particles are not guaranteed to be identical for identical input. The non-determinism of the

approximate belief update rules out isotonicity and contraction for H̃ as N →∞. 10

Our inability to guarantee convergence implies that we must approximate an infinite horizon policy with

the approximately optimal finite horizon policy tree. Let U ∗ be the value of the optimal infinite horizon policy,

Ũ t be the value of the approximate and U t be the value of the optimal t-horizon policy tree, then the error

9For large problems, exact POMDP solutions may be replaced with approximate ones. But in doing so, our error bounds will no
longer be applicable.

10One may turn particle filters into deterministic belief update operators (de-randomization) by generating several posteriors from the
same input. A representative posterior is then formed by taking a convex combination of the different posteriors.
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bound (using the supremum norm || · ||) is, ||U ∗− Ũ t|| = ||U∗−U t +U t− Ũ t|| ≤ ||U∗−U t||+ ||U t− Ũ t||.

Note that the first term is bounded by γt||U∗ − U0||. The bound for the second term is calculated below:

Et = ||Ũ t − U t||

= ||H̃Ũ t−1 −HU t−1||

= ||H̃Ũ t−1 −HŨ t−1 + HŨ t−1 −HU t−1|| (add zero)

≤ ||H̃Ũ t−1 −HŨ t−1||+ ||HŨ t−1 −HU t−1|| (triangle inequality)

≤ ||H̃Ũ t−1 −HŨ t−1||+ γ||Ũ t−1 − U t−1|| (contracting H)

≤ ||H̃Ũ t−1 −HŨ t−1||+ γE t−1

We will turn our attention to ||H̃Ũ t−1 − HŨ t−1||. In the analysis that follows we focus on level 1

beliefs. Let U̇ t = HŨ t−1, Ũ t = H̃Ũ t−1, and bi,1 be the singly nested belief where the worst error is

made: bi,1 = argmax
bi,1∈Bi,1

|U̇ t − Ũ t|. Let α̃ be the policy tree (alpha vector) that is optimal at b̃i,1 (the sampled

estimate of bi,1), and α̇ be the policy tree that is optimal at bi,1. We will use Chernoff-Hoeffding (C-H) upper

bounds (Theorem A.1.4, pg 265 in Alon & Spencer, 2000) 11, a well-known tool for analyzing randomized

algorithms, to derive a confidence threshold 1− δ at which the observed estimate, Ũ t
α̃, is within 2ε of the true

estimate U̇ t
α̇ (= E[α̇]):

Pr(Ũ t
α̃ > U̇ t

α̇ + ε) ≤ e−2Nε2/(α̃max−α̃min)2

Pr(Ũ t
α̃ < U̇ t

α̇ − ε) ≤ e−2Nε2/(α̃max−α̃min)2

For a confidence probability of atleast 1− δ, the error bound is:

ε =

√
(α̃max − α̃min)2ln(2/δ)

2N
(6.3)

where α̃max − α̃min may be loosely upper bounded as Rmax−Rmin

1−γ . Note that Eq. 6.3 can also be used

to derive the number of particles, N , for some given δ and ε. To get the desired bound, we note that with

probability 1 − δ our error bound is 2ε and with probability δ the worst possible sub-optimal behavior may

result: ||H̃Ũ t−1 −HŨ t−1|| ≤ (1− δ)2ε + δ Rmax−Rmin

1−γ . The final error bound now obtains:

11At horizon t, samples in b̃i,1 are i.i.d. However, at horizons < t, the samples are generated by the I-PF and exhibit limited
statistical independence, but independent research (Schmidt, Spiegel, & Srinivasan, 1995) reveals that C-H bounds still apply.
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Et ≤ (1− δ)2ε + δ Rmax−Rmin

1−γ + γE t−1 (geometric series)

= (1− δ) 2ε(1−γt)
1−γ + δ (Rmax−Rmin)(1−γt)

(1−γ)2

where ε is as defined in Eq. 6.3.

Theorem 6.1 (Error Bound). For a singly nested t-horizon I-POMDPi,1, the error introduced by our ap-

proximation technique is upper bounded and is given by:

||Ũ t − U t|| ≤ (1− δ)
2ε(1− γt)

1− γ
+ δ

(Rmax −Rmin)(1− γt)

(1− γ)2

where ε is as defined in Eq. 6.3.

At levels of belief nesting greater than one, j’s beliefs are also approximately represented using samples.

Hence the approximation error is not only due to the sampling, but also due to the possible incorrect prediction

of j’s actions based on its approximate beliefs. We are currently investigating if it is possible to derive bounds

that are useful, that is, tighter than the usual difference between the best and worst possible behavior, for this

case.

6.5.2 Computational savings

Since the complexity of solving I-POMDPs is dominated by the complexity of solving the models of

other agents we look at the reduction of the number of agent models that must be solved. In an M+1-agent

setting with the number of particles bounded by N , each particle in b̃t−1
k,l of level l may contain M models

all of level l − 1. Solution of each of these level l − 1 models requires solution of the lower level models

recursively. The upper bound on the number of models that are solved is O((MN)l−1). Given that there

are M level l − 1 models in a particle, and N such possibly distinct particles, we need to solve O((MN)l)

models. Note that each of these (level 0) models is a POMDP with an initial belief, and is solved exactly.

Our upper bound on the number of models is polynomial in M . This can be contrasted with O((M |Θ∗|
M )l)

models that need to be solved in the exact case, which is exponential in M . Here, amongst the spaces of

models of all agents, Θ∗ is the largest space. Typically, N � |Θ∗|
M , resulting in a substantial reduction in

computation.
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6.6 Empirical Performance

The goal of our experimental analysis is to demonstrate empirically, (a) the reduction in error with in-

creasing sample complexity, and (b) savings in computation time and space when our approximation tech-

nique is used. We use the multiagent tiger problem introduced previously, and a multiagent version of the

machine maintenance (MM) problem (Smallwood & Sondik, 1973) (see Appendix B) as test problems. Be-

cause the problems are rather simplistic (Tiger: |S|=2, |Ai|=|Aj |=3, |Ωi|=|Ωj |=6; MM: |S|=3, |Ai|=|Aj |=4,

|Ωi|=|Ωj |=2), our results should be considered preliminary.

To demonstrate the reduction in error, we construct performance profiles showing an increase in perfor-

mance as more computational resources – in this case particles – are allocated to the approximation algorithm.

In Figs. 6.15(a) and (c) we show the performance profile curves when agent i’s prior belief is the level 1 belief

described previously in Example 6.1, and suitably modified for the MM problem. As expected the average

rewards for both, horizon 2 and 3 approach the exact expected reward as the number of particles increases.

We show the analogous plots for the level 2 belief in Figs. 6.15(b) and (d). In each of these cases the av-

erage of the rewards accumulated by i over a 2 and 3 horizon policy tree (computed using the algorithm in

Fig. 6.14) while playing against agent j were plotted. To compensate for the randomness in sampling, we

generated i’s policy tree 10 times independent of each other, and performed 100 runs each time. Within each

run, the location of the tiger and j’s prior beliefs were sampled according to i’s prior belief. j’s policy was

then computed using the algorithm in Fig 6.14.

Problem Error t = 2 t = 3
N=102 N=103 N=102 N=103

Multiagent Obs. 5.61 0 4.39 2.76
tiger Et 108.38 48.56 207.78 86.09

Multiagent Obs. 0.28 0.23 0.46 0.40
MM Et 4.58 2.05 8.79 3.64

Table 6.2: Comparison of the worst case observed errors and the theoretical error bounds.

In Table 6.2, we compare the worst observed error – difference between the exact expected reward and

the observed expected reward – with the theoretical worst case error bound (δ=0.1,γ=0.9) from Section 6.5.1,

for horizons 2 and 3. The difference between the best and the worst possible behavior for the tiger problem

for t = 2 is 209.00, and for t = 3 is 298.1. For the multiagent MM problem, the differences are 8.84 and

12.61, respectively. The theoretical error bounds appear loose due to the worst-case nature of our analysis

but (expectedly) are tighter than the worst bounds, and reduce as the number of particles increases.
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Multiagent Tiger Problem
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Multiagent Machine Maintenance Problem
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Figure 6.15: Performance profiles: The multiagent tiger problem using the (a) level 1, and (b) level 2 belief
as the prior for agent i. The multiagent MM using the (c) level 1, and (d) level 2 belief as i’s prior.

Table 6.3 compares the average run times of our sample-based approach (SB) with the exact approach,

for computing policy trees of different horizons starting from the level 1 belief. The values of the policy trees

generated by the two approaches were similar. The run times demonstrate the dominant impact of the curse

of dimensionality on the exact method as shown by the higher run times for the MM problem in comparison

to the tiger problem. Our sample based implementation is immune to this curse, but is affected by the curse

of history, as illustrated by the higher run times for the tiger problem (branching factor = 18) compared to the

MM problem (branching factor = 8).
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Problem Method Run times
t = 2 t = 3 t = 4 t = 5

Multiagent Exact 37.84s 11m 22.25s * *
tiger ± 0.6s ± 1.34s

SB 1.44s 1m 44.29s 19m 16.88s *
± 0.05s ± 0.6s ± 17.5s

Multiagent Exact 5m 26.57s 20m 45.69s * *
MM ± 0.07s ± 0.29s

SB 5.75s 34.52s 3m 24.9s 17m 58.39s
± 0.01s ± 0.01s ± 0.04s ± 0.57s

Table 6.3: Run times on a Pentium IV 2.0 GHz, 2.0GB RAM and Linux. * = program ran out of memory.

6.7 Sampling the Look Ahead Reachability Tree

In order to address the curse of dimensionality, we took recourse to a sampling based method – the inter-

active particle filter – that is typically immune to the dimensions of the underlying state space. Though we

successfully addressed the problem of dimensionality, we were unable to generate solutions for large hori-

zons. The main reason for this is the exponential growth of the look ahead reachability tree with increasing

horizons; we referred to this as the curse of history. At some time step t, there could be (|Ai||Ωi|)
t−1 reach-

able beliefs states of the agent i. For example, in the multiagent tiger problem, at the second time step there

could be 18 possible belief states, 324 of them at the third time step, and more than 0.1 million at the fifth

time step.

To mitigate the curse of history, we reduce the branching factor of the look ahead reachability tree by

sampling from the possible observations that the agent may receive. While this approach does not completely

address the curse of history, it beats back the impact of this curse substantially. On performing an action,

the agent propagates its belief and uses the propagated belief to arrive at a distribution over its observations,

which is then used for sampling. In other words, ot
i ∼ Pr(Ωi|a

t−1
i , b̃t−1

i,l ). Of course, in the process we may

build a partial reachability tree, and therefore obtain a partial policy tree. For observations that occur which

were not sampled (the probability of such observations will be low), we pick a policy tree at random, out of

the prescribed policy trees for sampled observations. Let us label this approach as reachability tree sampling

(RTS). RTS shares its conceptual underpinnings with the exploration models of PBVI (Pineau et al., 2003b),

but differs in that our method is applicable to online policy tree generation for I-POMDPs, compared to

PBVI’s use in offline policy generation for POMDPs.
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6.7.1 Computational Savings

Let us consider the computational savings that result from sampling the look ahead reachability tree.

If we are sampling NΩi
observations within the reachability tree, then at some time step t, we will obtain

(|Ai||NΩi
|)t−1 possible belief states, assuming the worst case occurs and we end up sampling NΩi

< |Ωi|

distinct observations. Typically, as our experiments demonstrate, the number of distinct sampled observations

is less than |Ωi|, resulting in significant computational savings.

As an illustration of the computational savings we compare the run times of computing the policy tree

for the multiagent tiger problem. We compare value iteration in which the reachability tree is sampled (SB-

RTS) with complete value iteration and no reachability tree sampling (SB-No-RTS), the algorithm for which

is given in Fig. 6.14. For SB-RTS, we sampled three times from the observation distribution upto the sixth

horizon and two times thereafter. For both the algorithms, we used a similar number of particles. Not only

does the SB-RTS compute the policy faster, we were able to compute it upto eight time horizons. When

compared with the SB-No-RTS, our results demonstrate that the approach of sampling the reachability tree

yields significant computational savings.

Method Run times
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

SB-No-RTS 1.44s 1m 44.29s 19m 16.88s * * * *
± 0.05s ± 0.6s ± 17.5s

SB-RTS 0.10s 0.923s 7.307s 41.73s 2m 12.64s 8m 15.55s 17m 9.83s
± 0.003s ± 0.003s ± 0.71s ± 3.49s ± 14.32s ± 56.11s ± 0.95s

Table 6.4: Run times on a Pentium IV 2.0 GHz, 2.0GB RAM and Linux. * = program ran out of memory.

6.7.2 Empirical Performance

We present the performance profiles in Fig. 6.16 for the multiagent tiger problem when partial look ahead

reachability trees are built by sampling the observations. We plot the average reward accumulated by i

over 10 independent trials consisting of 100 runs each, as the number of the observation samples, NΩi
are

gradually increased. Within each run, the location of the tiger and j’s prior beliefs were sampled according

to i’s prior level 1 belief. Since we have combined RTS with the I-PF, in addition to varying NΩi
, we

also vary the number of particles, Np, employed to approximate the beliefs. As expected of performance

profiles, the expected reward initially increases sharply, before flattening out as NΩi
becomes large and the
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Multiagent Tiger Problem
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Figure 6.16: Performance profiles for the multiagent tiger problem for (a) horizon 3, and for (b) horizon 4
when the look ahead tree is built by sampling observations.

sampled observation distribution reaches the true one. Reflecting intuition, the plots for Np = 100 exhibit

better expected rewards than those for Np = 50. We also obtained the average reward over a similar number

of trials when a random policy (null hypothesis) is used for i. For horizon 3, the random policy gathered

an average reward of -84.785 (± 37.9847), and -108.5 (± 41.56) for horizon 4. Even for a small number

of observation samples, RTS does significantly better than the random policy thereby demonstrating the

usefulness of partial tree expansion.

We observed that the empirical expected reward is close to the exact expected reward when only a few

distinct observations were sampled while building the reachability tree. This observation when combined

with the tremendous computational savings demonstrated in Section 6.7.1 indicate that our approximation

approach is viable. Additionally, by varying the parameters Np and NΩi
, we can flexibly control the effects

of both the curses on the solutions. An interesting line of future work is to investigate the interplay of these

parameters.

6.8 Summary

We described a randomized method for obtaining online approximate solutions to I-POMDPs based on

a novel extension of particle filtering to multiagent settings. The extension is not straightforward because we

are confronted with an interactive belief hierarchy when dealing with multiagent settings. We proposed the

interactive particle filter which descends the levels of interactive belief hierarchies and samples and propa-

gates beliefs at each level. The interactive particle filter is able to deal with the belief space dimensionality,
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but it does not address the policy space complexity. Though our technique is not guaranteed to converge

asymptotically, we established useful error bounds for level 1 nested I-POMDPs. We provided performance

profiles for the multiagent tiger problem and the machine maintenance problem. They show that the filter

saves on computation over the space of models but it does not scale (usefully) to large values of time hori-

zons and needs to be combined with methods that deal with the curse of history. In order to reduce the impact

of the curse of history, we proposed sampling observations while constructing the look ahead reachability

tree during the reachability analysis phase of value iteration. This effectively reduces the branching factor of

the tree and allows computation of solutions for larger horizons.

6.9 Contributions

Bounded approximation technique: We proposed a randomized method to compute online approxi-

mately optimal plans for I-POMDPs. Our method addresses the curse of dimensionality afflicting I-POMDPs,

by utilizing a Monte Carlo sampling based approach that is typically immune to the cardinality of the underly-

ing state space. We also established useful bounds on the approximation error for singly nested I-POMDPs.

Interactive particle filter: We introduced the interactive particle filter that extends the basic bootstrap

filter to the multiagent setting. Mirroring the hierarchical nature of the interactive beliefs, the interactive

particle filter descends through the levels of nesting, and samples and propagates beliefs at each level. The

interactive particle filter reduces to the traditional particle filter when there is just one agent. Our empirical

results demonstrate that the interactive particle filter closely approximates the exact belief update.

I-PF+RTS: For increasing horizons, the exponential growth of the reachability tree becomes the main

bottleneck. We combined the interactive particle filter with the sampling of observations while building the

reachability tree. The resulting technique, I-PF+RTS, addresses the curse of dimensionality and beats back

curse of history. As a result, we are able to compute solutions for larger horizons.

Anytime algorithm: Our approximation technique is anytime: the quality of the approximation increases

as more computational resources – particles and observation samples – are allocated to the method. In support

of this, we generated performance profiles for two simple test problems.
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6.10 Future Work

While we bounded the approximation error for singly nested I-POMDPs, the same approach cannot be

used to bound the error for I-POMDPs nested to levels greater than one. Therefore, another research issue

is to investigate whether the approximation error for multiply nested I-POMDPs can be usefully bounded.

A method to further scale the approximation technique is to pick a subset of actions in addition to sampling

the observations while building the reachability tree. This further dampens the exponential growth of the

reachability tree with increasing horizons, and permits solutions for large horizons. However, this approach

must be used cautiously – we do not want to leave out critical actions from the policy. Finally, specific

approaches to speeding up the computation remain to be explored. For example, can we assign monotonically

decreasing number of particles to represent beliefs nested at deeper levels exploiting the common sense notion

that beliefs nested at deeper levels are less likely to influence the optimal policy?



Chapter 7

SUBJECTIVE EQUILIBRIA IN I-POMDPS: THEORY

AND COMPUTATIONAL LIMITATIONS

WE theoretically analyze the interactions taking place between agents participating in the infinite hori-

zon partially observable stochastic game (POSG) as formalized within the I-POMDP framework.

As we mentioned before, I-POMDPs represent and solve a POSG from the perspective of an agent playing

the game. We consider the setting in which an agent may be unaware of other agents’ behavioral strategies,

it is uncertain about their observations, and it may be unable to perfectly observe other agents’ actions. In

accordance with Bayesian decision theory, the agent maintains and updates its belief about the physical state

as well as the strategies of the other agents, and its decisions are best responses to its beliefs.

Under the assumption of compatibility of agents’ prior beliefs about future observations with the true dis-

tribution induced by the actual strategies of all agents, we show that for agents modeled within the I-POMDP

framework, the following properties hold: (i) the agents’ beliefs about the future observation paths of the

game coincide in the limit with the true distribution over the future, and (ii) the agents’ beliefs about the

opponents’ strategies do not change in the limit. Strategies that are best responses to beliefs with these

properties are said to be in subjective equilibrium, which is stable with respect to learning and optimization.

Strategies in subjective equilibrium need not necessarily also be in Nash equilibrium, though the converse is

always true.

Our results in this chapter generalize prior results. Specifically, we theoretically show the asymptotic

121
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existence of subjective equilibrium in a general and realistic multiagent setting; there is state and action out-

come uncertainty and imperfect observations of others’ actions. We note that the I-POMDP belief update

plays a key role in making the generalization possible. Further, we address the open research problem posed

in (Kalai & Lehrer, 1993a) regarding the existence of subjective equilibrium in POSGs. We also draw a par-

allel with works in multiagent learning (Hu & Wellman, 1998; Bowling & Veloso, 2002)(also see Section 3.3

of Chapter 3) that show convergence of play to Nash equilibrium. However, our results differ in that we

assume that the state and others’ actions are partially observable, and the plan is computed offline using a

given model of the environment. Finally, we comment on the difficulties in achieving subjective equilibria in

I-POMDPs when a computational perspective is adopted. The difficulties arise because of obstacles in satis-

fying the truth compatibility condition, in practice. This potentially negative result – the possible inability of

I-POMDPs to reach the subjective equilibrium in practice – also calls into question the role of equilibrium

in multiagent planning when a decision-theoretic viewpoint is adopted.

The rest of this chapter is structured in the following manner. In the next section, we briefly review the

previous work related to ours. In Section 7.2, we review the I-POMDP belief update focusing on the setting

where general models are ascribed to the other agent. In Section 7.3, we introduce the concept of a subjective

equilibrium and theoretically prove that the strategy profile of agents playing a POSG within the I-POMDP

framework, in the limit, is in subjective equilibrium. In Section 7.4, we remark on the computational infeasi-

bility of arriving at this equilibrium. We then summarize this chapter in Section 7.5, and give the contributions

of our work in Section 7.6. We conclude this chapter with open research directions in Section 7.7.

7.1 Related Work

In prior work, Kalai and Lehrer (1993a, 1993b) (also see Section 3.2.2 of Chapter 3) have shown that the

strategies of agents engaged in infinitely repeated games with discounted payoffs, who are unaware of others’

strategies, and under the assumptions of perfect observability of others’ actions (perfect monitoring) and

truth compatibility of prior beliefs will converge to a subjective equilibrium. Hahn (Hahn, 1973) introduced

the concept of a conjectural equilibrium in economies where the signals generated by the economy do not

cause changes in the agents’ theories, nor do they induce changes in the agents’ policies. Fudenberg and

Levine (1993) consider a general model of finitely repeated extensive form games wherein strategies of

opponents may be correlated (unlike Kalai & Lehrer, 1993a, where strategies are assumed independent),
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and show that behavior of agents that maintain beliefs and optimize according to their beliefs, converges to

a self-confirming equilibrium. There is a strong link between the subjective equilibrium and its objective

counterpart – the Nash equilibrium. Specifically, under the assumption of perfect monitoring, both (Kalai

& Lehrer, 1993a) and (Fudenberg & Levine, 1993) show that the strategy profile in subjective and self-

confirming equilibrium induce a distribution over the future action paths that coincides with the distribution

induced by a set of strategies in Nash equilibrium. In other words, the continuation path of the game would

asymptotically resemble that of a Nash equilibrium. Of course, this does not imply that strategies in subjective

equilibrium are also in Nash equilibrium; however, the converse is always true. Work of a similar vein is

reported in (Jordan, 1995). It assumes agents have a common prior over the possible types of agents engaged

in a repeated game, and shows that the sequence of Bayesian-Nash equilibrium beliefs of agents converges

to a Nash equilibrium.

7.2 Review: Bayesian Belief Update in I-POMDPs

In order to act rationally, agents within the I-POMDP framework continually update their beliefs over the

physical states and other agents’ models on performing an action and receiving an observation. We described

the belief update process in detail in Section 4.3.2, but gave the explicit formulations for intentional models.

Here, we give the equations for the general model, and utilize them later for our results.

Recall that is ∈ ISi = S ×Mj , where mj ∈ Mj and mj = 〈hj , Oj , fj〉. fj is agent j’s function 1,

fj : Hj → ∆(Aj), assumed computable 2, which maps possible histories of j’s observations to distributions

over its actions. hj is an element of Hj , and Oj is a function specifying the way the environment is supplying

the agent with its input. For convenience, we may write model mj as mj = 〈hj , m̂j〉, where m̂j consists of

fj and Oj . We assume without loss of generality that the models of the other agent are not directly observable

nor manipulable. We decompose the belief update process into two steps:

1Note that an agent function is similar to a behavioral strategy in game theory parlance.
2We assume computability in the Turing machine sense: fj is a total recursive function.



CHAPTER 7. SUBJECTIVE EQUILIBRIA IN I-POMDPS 124

• Prediction: When an agent, say i, with a previous belief, bt−1
i , performs a control action at−1

i and if

the other agent performs its action at−1
j , the predicted belief state is:

Pr(ist|at−1
i , at−1

j , bt−1
i ) =

∑
ISt−1:m̂t−1

j
=m̂t

j

bt−1
i (is)Pr(at−1

j |mt−1
j )T (st−1, at−1

i , at−1
j , st)

×
∑
ot

j

Oj(s
t, at−1

i , at−1
j , ot

j)δK(APPEND(ht−1
j , ot

j)− ht
j)

where δK is the Kronecker delta function, and APPEND(·, ·) returns a string in which the second

argument is appended to the first.

• Correction: When agent i perceives an observation, ot
i, the intermediate belief state

Pr(·|at−1
i , at−1

j , bt−1
i ), is corrected according to:

Pr(ist|ot
i, a

t−1
i , bt−1

i ) = β
∑

at−1
j

Oi(s
t, at−1

i , at−1
j , ot

i)Pr(ist|at−1
i , at−1

j , bt−1
i )

where β is the normalizing constant.

To act, the agent optimizes its beliefs using Eqs. 4.3 and 4.4.

7.3 Subjective Equilibrium in I-POMDPs

In the two-agent I-POMDP framework presented in Section 4.3 of Chapter 4, each agent computes the

discounted infinite horizon policy tree (strategy) which is the subjective best response of the agent to its belief.

During each step of game play, the agent starting with a prior belief revises it in light of the new information

using the Bayesian belief update process outlined in Section 7.2, and computes the optimal strategy given its

beliefs. The latter step is equivalent to using its observation history to index into its policy tree (computed

offline using the process given in Section 4.3.3) 3, to compute the best response future strategy.

Before we analyze the play of agents, we briefly introduce the requisite background concepts, which we

will reference later.
3In the infinite horizon case, convergence of value iteration allows us to conveniently represent the policy tree as a finite state machine
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7.3.1 Background: Stochastic Processes, Martingales, and Bayesian Learning

A stochastic process is a sequence of random variables, {Xt}, t = 0, 1, . . ., whose values are realized

one at a time. Well-known examples of stochastic processes are Markov chains, as well as sequences of

beliefs updated using the Bayesian update. Bayesian learning turns out to exhibit an additional property that

classifies it as a special type of stochastic process, called a Martingale.

A Martingale is a stochastic process that, for any observation history up to time t, ht, exhibits the property

that for all l ≥ t:

E[Xl|h
t] = Xt

Consequently, for all future time points l ≥ t the expected change, E[Xl − Xt|h
t] = 0. A sequence of

an agent’s beliefs updated using Bayesian learning is known to be a Martingale. Intuitively, this means that

the agent’s current estimate of the state is equal to what the agent expects its future estimates of the state will

be, based on its current observation history. Because the Martingale property of Bayesian learning is central

to our results, we sketch a formal proof below.

Let an agent, say i’s, initial belief about some state, ξ ∈ Ξ, be X0 = Pri(ξ). The agent receives an

observation, oi, in the future according to a distribution φi that depends on ξ. Let the revised future belief be

X1 = Pri(ξ|oi). By Bayes theorem, Pr(ξ|oi) = φi(oi|ξ)Pri(ξ)
Pr(oi)

. We will show that E[Pri(ξ|oi)] = Pri(ξ),

where the expectation is over the future observations:

E[Pri(ξ|oi)] =
∑

oi
Pri(ξ|oi)Pri(oi)

=
∑

oi

φi(oi|ξ)Pri(ξ)
Pri(oi)

Pri(oi)

=
∑

oi
φi(oi|ξ)Pri(ξ)

= Pri(ξ)
∑

oi
φi(oi|ξ)

= Pri(ξ)

= X0

The above result extends immediately to observation histories of any length t. Formally, E[Xt+1|h
t] =

Xt, and from the law of conditional expectations, E[Xl|h
t] = Xt, l ≥ t. Therefore, Bayesian learning is a

Martingale.

All Martingales share the following convergence property:
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Theorem 7.1 (Martingale Convergence Theorem (§4 of Chapter 7 in Doob, 1953)). If {Xt}, t = 0, 1, . . .

is a Martingale with E[|Xt|
2] < U <∞ for some U and all t, then the sequence of random variables, {Xt}

converges with probability 1 to some X∞ in mean-square.

7.3.2 Subjective Equilibrium

We investigate the asymptotic behavior of agents playing an infinite horizon POSG as formalized by

I-POMDPs, in which each agent learns and optimizes. Specifically, each agent starts with a prior belief

which is revised on performing an action and receipt of sensory information, followed by computing the

strategy which optimizes its beliefs. In the context of I-POMDPs, each agent uses its prior beliefs to index

into its policy (computed offline using Equations 4.3 and 4.4) resulting in the policy tree that will form its

behavior strategy.

Sequential behavior of agents in the I-POMDP framework may be represented using their observation

histories. For an agent, say i, let ot
i be its observation at time step t. Let ot = [ot

i, o
t
j ]. An observation

history of the game is a sequence, h = {ot}, t = 1, 2, . . . . The set of all histories is, H =
⋃∞

t=1 Ωt where

Ωt = Πt
1(Ωi ×Ωj). The set of observation histories upto time t is, H t = Πt

1(Ωi ×Ωj), and the set of future

observation paths from time t onwards is, Ht = Π∞
t (Ωi × Ωj).

Example 7.1. We use the multiagent tiger problem described in Section 4.5 of Chapter 4 as an illustrative

example. Briefly, the game consists of two doors, behind one is a tiger and behind the other is some gold,

and two agents, i and j. The agents are unaware of where the tiger is (TL or TR), and each can either open

any one of two doors, or listen(OL, OR, or L). A tiger emits a growl periodically, which reveals its position

behind a door (GL or GR) but only with some certainty. Additionally, each agent can also hear a creak with

some certainty, if the other agent opens a door (CL, CR, or S). We will assume that neither agent can perceive

other’s observations nor actions. The game is not cooperative since either i or j may open a door, thereby

reseting the location of the tiger, and rendering any information collected by the other agent about the tiger’s

location useless to it. Example histories in the multiagent tiger problem are shown in Fig. 7.1.

In the I-POMDP framework, each agent’s belief over the physical state and others’ candidate models,

together with the agent’s perfect information regarding its own model, induces a predictive probability distri-

bution over the future observation paths. Because these distributions play a critical role in our analysis, we
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<GL,S><GL,CL>
<GR,CR><GR,CL>

<GR,CR><GR,CR>

[TL,L,L][TL,OR,OR] [TL,L,L]

<GR,CR><GR,CR>

<GR,CR><GR,CR><GL,S> <GL,S>

<GL,S><GL,S> <GL,S><GL,S>

[TL,L,L]

[TL,L,L] [TL,L,L] [TL,L,L] [TL,L,L]

[TL,L,L]

Figure 7.1: Joint observation histories in the infinite horizon multiagent tiger problem. The nodes represent
the physical state of the game and play of agents, while the edges are labelled with the possible observations.
This example starts with the tiger on the left and each agent listening. Each agent may receive one of six
observations (labels on the arrows), and performs an action that optimizes its resulting belief.

represent them mathematically using a collection of probability measures:

{µk}, k = 0, i, j

defined over the space M ×H , where M = Mi ×Mj and H is as defined previously, such that:

1. µ0 is the objective true distribution over models of each agent and the observation histories,

2. projMk
µk = projMk

µ0 = δmk
k = i, j

3. projM−k
µk = projM−k

b0
k k = i, j

Here, condition 1 is self-explanatory and condition 2 states that each agent knows its own model (δmk
is the

Kronecker delta function). Condition 3 states that the probability measures, µi and µj , ”contain” i and j’s

prior beliefs over other’s models, respectively. Additionally, projH µ0 gives the true distribution over the

histories as induced by the initial strategy profile, and projH µk for k = i, j gives the predictive probability

distribution for each agent over the histories at the start of the game. 4

If the actual sequence of observations in the game does not proceed along a history that is assigned some

positive predictive probability by an agent, then the agent’s observations would contradict its beliefs and

4Following (Nyarko, 1997; Jordan, 1995) the unconditional measure µk may be seen as a prior before an agent knows its own model,
and µk along with the conditions as an interim prior once an agent knows its own model.
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the Bayesian update would not be possible. Clearly, it is desirable for each agent’s initial belief to assign a

non-zero probability to each possible observation history; this is called the truth compatibility condition. To

formalize this condition we need a notion of absolute continuity of two probability measures.

Definition 7.1 (Absolute Continuity). A probability measure p1 is absolutely continuous with p2, denoted

as p1 � p2, if p2(E) = 0 implies p1(E) = 0, for any measurable set E.

We will utilize the absolute continuity as defined above to formalize the truth compatibility condition,

which we call the absolute continuity condition.

Condition 7.1 (Absolute Continuity Condition (ACC)). ACC holds for any agent k = i, j if projH µ0 �

projH µk.

Condition 7.1 states that the probability distribution induced by an agent’s initial belief on future obser-

vation paths should not rule out positive probability events according to the real probability distribution on

the paths. A sure way to satisfy ACC is for each agent’s initial belief to have a ”grain of truth” – assign a

non-zero probability to the true model of the other agent. Since an agent has no way of knowing the true

model of its opponent from beforehand, it must assign a non-zero probability to each candidate model of the

other agent.

Truth compatible beliefs of an agent that performs Bayesian learning tend to converge in the limit to the

opponent model(s) that most likely generates the observations of the agent. In the context of the I-POMDP

framework, an agent’s belief updated using the process outlined in Section 7.2, will converge in the limit.

Formally:

Theorem 7.2 (Bayesian Learning in I-POMDPs). For an agent in the I-POMDP framework, if its initial

belief satisfies the ACC, its posterior beliefs will converge with probability 1.

Proof. As we proved before, Bayesian learning is a Martingale. In Section 7.3.1, set the state space Ξ = ISi,

and the observation function φi = Oi. Noting that the I-POMDP belief update is Bayesian, its Martingale

property follows from applying the proof outlined in Section 7.3.1 appropriately. In order to apply Theo-

rem 7.1 to the I-POMDP belief update, set Xt = bt
i where bt

i is agent i’s belief at some time t. We must first
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show that E[|bt
i|

2] is bounded:

E[|bt
i|

2] =
∑(|Ai||Ωi|)

t

k=1 |bt
i = b̂k

i |
2Pr(̂bk

i )

=
∑(|Ai||Ωi|)

t

k=1

∑
ISt b̂k

i (is)2Pr(̂bk
i ) (L2 norm)

≤
∑(|Ai||Ωi|)

t

k=1 1 · Pr(̂bk
i ) (

∑
x p(x)2 ≤ 1)

= 1

Theorem 7.2 now follows from a straightforward application of Theorem 7.1.

The above result does not imply that an agent’s belief converges to the true model of the other agent.

This is due to the possible presence of observationally equivalent models of the other agent. Given agent

i’s model, all models of j that induce identical distributions over all possible future observation paths are

said to be observationally equivalent. When a particular observation history obtains, agent i is unable to

distinguish between the observationally equivalent models of j. In other words, observationally equivalent

models generate distinct behaviors for histories which are never observed. As an aside, if for some model of

i, all models of j induce distributions over the paths that are mutually singular 5, then Bayesian learning is

consistent, and will converge to a point mass.

Example 7.2. For an example of observationally equivalent models, consider a version of the multiagent

tiger game in which the tiger persists behind its original door once any door has been opened. Additionally,

i has superior observation capabilities compared to j, and each agent is able to perfectly observe other’s

actions but observes the growls imperfectly. Let i’s utility dictate that it will not open any doors until it’s

100% certain of the tiger’s location. The corresponding strategy for i is to listen for an infinite number of

time steps, and then open the door. Suppose that as a best response to its belief, j were to adopt a strategy

in which it would listen for an infinite number of steps, but if at any time i opened a door, it would also open

the same door at the next time step (because the tiger persists) and then continue opening the same door.

The true distribution assigns a probability 1 to the histories {[〈GL|GR,S〉, 〈GL|GR,S〉]}∞1 . Instead of the

above mentioned strategy if j were to adopt a follow-the-leader strategy, i.e. j performs the action which

i did in the previous time step, then the true distribution would again assign probability 1 to the previously

5A pair of probability measures, p1 and p2, are mutually singular, p1⊥p2, if there exist a disjoint pair of measurable sets, A and B,
such that p1(E ∩ A) = p2(E ∩ B) = 0 for any measurable E.
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mentioned histories. The two different strategies of j turn out to be observationally equivalent for i; however

they differ for observation paths that are not part of the game.

An immediate consequence of the convergence of Bayesian learning is that the predictive distribution

over the future observation paths induced by each agent’s belief after a finite sequence of observations ht
k,

projHt
µk(·|ht

k), k = i, j becomes arbitrary close to the true distribution, projHt
µ0(·|h

t), for a finite t,

and converges uniformly in the limit. This is an important result, because it establishes that no matter what

the initial beliefs of the agents are, provided that these beliefs are truth compatible, the agents’ opinions

(about the future) will merge and correctly predict the true future in the limit. This result was first noted

in (Blackwell & Dubins, 1962); we present the theorem below and refer the reader to the paper for its proof.

Theorem 7.3 ( (Blackwell & Dubins, 1962)). Suppose that P is a predictive probability on X, and Q is

absolutely continuous w.r.t. P . Then for each conditional distribution P t(x1, . . . , xt) of the future given the

past w.r.t. P , there exists a conditional distribution Qt(x1, . . . , xt) of the future given the past w.r.t. Q such

that, ||P t(x1, . . . , xt)−Qt(x1, . . . , xt)|| →
t→∞

0 with Q-probability 1.

We use Theorem 7.3 to establish predictive convergence within the I-POMDP framework.

Theorem 7.4 (ε-Predictive Convergence in I-POMDPs). For all agents in the I-POMDP framework, if

their initial beliefs satisfy the ACC, then for every ε > 0, there exists a finite T which is a function of ε, such

that for all t ≥ T and with µ0-probability 1,

||projHt
µ0(·|h

t)− projHt
µk(·|ht

k)|| ≤ ε

for k = i, j.

Proof. Referring to Theorem 7.3, let X = H . We observe that projH µ0 and projH µk for k = i, j are

predictive as defined in (Blackwell & Dubins, 1962). Set Q = projH µ0, and P = projH µk. Subse-

quently, Qt = projHt
µ0(·|h

t), and P t = projHt
µk(·|ht

k). Theorem 7.4 then follows immediately from a

straightforward application of Theorem 7.3.

We have shown that for a POSG modeled using the I-POMDP formalism, the players’ beliefs over op-

ponent’s models converge in the limit if they satisfy the ACC property. However, the limit beliefs may be
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incorrect, due to the inability of agents to distinguish between observationally equivalent models of the oppo-

nent on the basis of their observation history. Nevertheless, their beliefs over the future paths come arbitrary

close, and remain close, to the true distribution over the future, after a finite amount of time. Further obser-

vations will only confirm their beliefs about the truth 6, and will not alter their beliefs. We capture this notion

using the concept of a subjective equilibrium (Kalai & Lehrer, 1993a), defined as follows:

Definition 7.2 (Subjective ε-Equilibrium). Let bt
k, k = i, j be the agents’ beliefs at some time t. A pair of

policy trees, π∗ = [π∗
i , π∗

j ] is a subjective ε-equilibrium if,

1. π∗
i = OPT (bt

i), π
∗
j = OPT (bt

j)

2. ||projHt
µ0(·|h

t)− projHt
µk(·|ht

k)|| ≤ ε, k = i, j with a µ0-probability 1.

When ε = 0, subjective equilibrium obtains. Condition 1 of subjective ε-equilibrium states that the agents

are subjectively rational, i.e. their strategies are best responses to their beliefs. As we mentioned before,

these strategies are the policy trees computed using Equations 4.3 and 4.4. The second condition states that

the agents’ beliefs have attained ε-predictive convergence. In other words, a strategy profile is in subjective

ε-equilibrium when the strategies are best responses to agents’ beliefs that have attained ε-predictive conver-

gence. Note that the beliefs, bt
i and bt

j , are ”contained” in the measures µi(·|h
t
i) and µj(·|h

t
j), respectively.

We now establish the main result of this chapter, which is that behavior strategies of agents playing a

POSG within the I-POMDP framework, attain subjective ε-equilibrium in finite time, and subjective equilib-

rium in the limit. The following corollary gives our result:

Corollary 7.1 (Convergence to Subjective Equilibrium in I-POMDPs). Let π = [πi, πj ] be the strategies

of agents i, and j respectively, within the I-POMDP formalism. Let b0
i , and b0

j be their initial beliefs. If the

following conditions are met,

1. πi = OPT (b0
i ), πj = OPT (b0

j )

2. projH µ0 � projH µk, k = i, j (ACC)

then for any ε > 0, and for all µ0-positive probability histories, there exists some finite time step T which is

a function of ε, such that for all t ≥ T , the strategy profile, π∗ = [π∗
i , π∗

j ] is a subjective ε-equilibrium where,

6Hence these beliefs are sometimes called self-confirming.
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• bt
i and bt

j are the agents’ beliefs at time t

• π∗
i = OPT (bt

i), π
∗
j = OPT (bt

j)

Proof. Corollary 7.1 follows in part from Theorem 7.4, and in part from noting that agents’ strategies in the

I-POMDP framework are best responses to their posterior beliefs at each time step, and that the beliefs are

updated using their observation history.

Strategy profiles in subjective ε-equilibrium for arbitrarily small ε ≥ 0 are stable. Specifically, further play

will bring agents’ beliefs over the future closer to the truth statistically, and the corresponding strategy profiles

will remain in the subjective ε-equilibrium. Note that ACC is a sufficient condition, but not a necessary one.

An example setting in which even though ACC is violated, yet subjective ε-equilibrium still results is given

in (Kalai & Lehrer, 1993a).

7.4 Computational Limitations of Our Results

Recall that in Section 7.2, we made the assumption that agent models (strategies) are computable. This

restricts the space of possible strategies to be countable. However, as observed in (Nachbar & Zame, 1996),

there exist computable strategies for which no exact best response strategy is computable, and even when

computable best responses do exist, the decision procedure of computing these best responses may not be

computable. Consequences of these negative results lead to a subtle tension between learning and opti-

mization within the I-POMDP framework. Specifically, if agents’ exact best response strategies are not

computable, then their beliefs fail to account for such strategies of others, thereby violating the mutual grain

of truth assumption. This presents a serious impediment to satisfying ACC and thereby obtaining predic-

tive convergence, in practice. On the other hand, if we posit that best responses be computable, then the

corresponding prior beliefs may be unrealistic – for example, they may not assign non-zero probability to all

possible strategies of others. Nachbar (1997) makes an argument along similar lines in the context of repeated

games using the notion of a conventional set of strategies (analogous to the computable set in our setting)

attributed to each agent.7 We believe that these implausibility issues are a direct implication of Binmore’s

claim in (1990) that perfect rationality is an unattainable ideal. Binmore proves that a Turing machine cannot

always predict truthfully the behavior of an opponent Turing machine (given its complete description) and

7Also see (Nachbar, 1997) for a simple illustration of our argument using the game of Matching Pennies.
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optimize simultaneously. His claim rests on a particular construction of a two-agent game in which a suppos-

edly rational Turing machine when required to compute the best response is unable to predict truthfully, and

when required to predict truthfully is unable to terminate its computations and optimize.

Manifestations of the computational obstacles mentioned above are evident in the I-POMDP framework

in a more straightforward manner. In Section 4.4 of Chapter 4, we introduced finitely nested I-POMDPs as

computable approximations of I-POMDPs. Within the finitely nested I-POMDP framework, we prove the

impossibility of all agents simultaneously satisfying the grain of truth assumption. Recall that the grain of

truth assumption required assigning a non-zero probability to the true model of the other agent. Beliefs of

agents that exhibited a grain of truth also satisfied the ACC, though the converse is not necessarily true 8.

Theorem 7.5 (Impossibility Result). Within the finitely nested I-POMDP framework, all of the agents’

beliefs cannot simultaneously satisfy the grain of truth assumption.

Proof. In keeping with the spirit of this thesis, we will consider two agents, i and j. Let agent i’s strategy

level be li, and j’s strategy level be lj . We consider the following three cases that are exhaustive:

Case 1: li = lj . For agent i, if its strategy level is li, then by construction, it considers models of j that

have strategy level at most li − 1. Analogously, if j’s strategy level is lj , then i’s models have strategy

level at most lj − 1. Because li = lj , neither i’s nor j’s beliefs can account for the true model of the

other, and therefore fail to satisfy the grain of truth assumption.

Case 2: li > lj . When i’s strategy level is li, it considers models of j that have a strategy level at most

li − 1. Therefore, i’s beliefs that assign non-zero probability to every model of j satisfy the grain of

truth assumption. For agent j, because its strategy level is lj , i’s models are ascribed a strategy level of

at most lj − 1. Since li > lj , j’s beliefs cannot satisfy the grain of truth assumption.

Case 3: li < lj . Proof for this case is analogous to Case 2; i’s beliefs cannot satisfy the grain of truth

assumption, while j’s can.

For each of the three cases listed above, i’s and j’s beliefs cannot simultaneously satisfy the grain of truth

assumption when formalized using finitely nested I-POMDPs.

8The converse is not true because the grain of truth assumption is stronger than the ACC.
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We stress that the impossibility of satisfying the grain of truth assumption does not imply that agents

within the finitely nested I-POMDP framework cannot satisfy the ACC – there may exist lower strategy level

models that turn out to be observationally equivalent to the higher level models for the observation path of the

game. However, because the grain of truth assumption is a realistic way of satisfying the ACC, Theorem 7.5

does indicate the practical difficulties in achieving ACC and therefore equilibria.

Though the above mentioned negative results are existential, they serve to show that it may be problematic

to fulfill the assumptions laid out in our analysis – the ACC – in practice. Nevertheless, there may be ways

to overcome these limitations. One interesting direction is to replace exact optimization with approximate

optimization. Specifically, rather than computing the exact best response to its subjective belief, an agent may

compute an ε-best response 9 that is guaranteed to be always computable. However, strategies that are ε-best

responses may differ considerably from strategies that are exact best responses. Consequently, the effect of

ε-optimality on predictive convergence remains an open question.

7.5 Summary

We analyzed the play of agents engaged in a partially observable stochastic game formalized using the

interactive POMDP framework. In particular, we considered subjectively rational agents who may not know

others’ strategies. Therefore, they maintain beliefs over the physical state and models of other agents and

optimize with respect to their beliefs. We have also shown how such agents update their beliefs on performing

actions and receiving observations, and compute best responses to their beliefs. Within this framework, we

proved that if agents’ beliefs satisfy a truth compatibility condition, then strategies of agents that learn and

optimize converge to the subjective equilibrium in the limit, and subjective ε-equilibrium for arbitrarily small

ε > 0 in finite time.

We pointed out that attempts to practically validate these theoretical results could run into obstacles. One

problem is the inherent difficulty in perfect optimization and simultaneous prediction. As an example, we

showed the difficulty in achieving the equilibrium in finitely nested I-POMDPs that are computable approx-

imations of I-POMDPs. One may be forced to resort to ε-optimality. Whether any form of equilibrium

obtains when the players are bounded rational is a topic of future work.

9One way to compute an ε-best response is to consider finite horizons for maximization, rather than infinite.
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7.6 Contributions

Existence of equilibria in I-POMDPs: Though we adopted a decision-theoretic solution concept (not

based on equilibria), we proved the asymptotic existence of (subjective) equilibria in I-POMDPs. Our result

demonstrates the role of equilibria as fixed points of play within decision-theoretic frameworks for multiagent

settings.

Generalization of prior results: While the concept of subjective equilibrium is not novel, we believe

that our results complement and generalize the existing results in the game theory literature. Specifically,

using the I-POMDP framework for learning and optimizing, we have shown the existence of equilibria in a

POSG, in which, additionally, the assumption of perfect monitoring has been relaxed. The POSGs provide a

more realistic setting than repeated games, in which existence of equilibria was known previously.

Obstacles in equilibration within finitely nested I-POMDPs: We commented on and showed the diffi-

culty in satisfying the sufficiency conditions for achieving subjective equilibrium, in practice. The computa-

tional obstacles call into the question the role of equilibria in multiagent planning when a decision-theoretic

viewpoint is adopted. They also suggest bounded rationality as an important topic for future research.

7.7 Future Work

The computational complications arising out of simultaneous prediction and perfect optimization mo-

tivate us to adopt a solution approach that takes into account the bounded rationality of practical agents.

Though work exists in game theory that addresses bounded rationality (Rubinstein, 1998), it is not from

the perspective of sequential decision-making. Consequently, computational models of boundedly rational

agents that optimize and predict form an interesting line of future work. Another related line of research is to

then investigate whether our results of asymptotic convergence to equilibria hold for bounded rational agents,

and if so under what additional conditions.



Chapter 8

CONCLUSION

INTELLIGENT decision making is a characteristic trait of human behavior. Humans usually co-habit with

others in societies; therefore they must make decisions keeping in mind how their actions will affect

others, and how others’ decisions will affect them. Sometimes, this involves reasoning about the state of

mind of others, others’ reasoning about others’ states of minds, and so on. Humans are also primarily self-

interested – they act to advance their own goals or preferences. In cooperative societies, we realize that it is

in our best interest to promote the welfare of others, while in non-cooperative societies, the opposite is true.

In this thesis, we presented a computational framework, called the interactive POMDP (I-POMDP), that

models the decision making situation of an agent co-habiting a cooperative or non-cooperative multiagent set-

ting. We presented exact and approximation algorithms that enable an agent to plan sequentially, over the long

term and strategically, within the I-POMDP framework. Similar to human behavior, our algorithms maintain

beliefs and reason with a nested belief system. Applications of the I-POMDP framework are significant:

I-POMDPs may be used to control planetary rovers in their exploration missions, plan a long term patient

treatment therapy in the context of other interacting treatments, coordinate troop movements in battlefields,

and provide formal explanations for social behaviors such as follow the leader.

In the remainder of this chapter, we summarize this thesis, and outline avenues of future work. In par-

ticular, we briefly review the I-POMDP framework in Section 8.1, focusing on its interdisciplinary nature.

We then summarize the particle filtering based approximation technique, in Section 8.2. In Section 8.3, we

comment on the existence of equilibria in I-POMDPs, and its role in multiagent planning. In Section 8.4, we

outline several avenues of future work in some detail.

136
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8.1 I-POMDP: An Interdisciplinary Approach to Multiagent Planning

We proposed I-POMDP, a new framework for autonomous rational planning in multiagent environments.

The framework is applicable to agents that locally compute what actions they must execute in order to op-

timize their preferences given what they believe, while interacting with other agents. The preferences of

others may conflict or agree with those of the agent. I-POMDPs combine the decision-theoretic framework

of POMDPs with elements from game theory. Specifically, they generalize Bayesian games by relaxing the

assumptions of common knowledge of prior beliefs; they extend repeated games to a sequential setting; and

they generalize stochastic games to partially observable environments. Much of game theory uses Nash equi-

librium as a solution concept. However, Nash equilibrium suffers from the limitations of being non-unique

(there could be many Nash equilibria for a game) and incomplete (Nash equilibrium does not prescribe what

an agent should do if others do not follow their part of the equilibrium). I-POMDPs, by adopting a decision-

theoretic solution approach based on best response to anticipated actions of others, do not suffer from these

limitations. On the decision-theoretic side, they generalize POMDPs, traditionally used for single agent

planning, to multiagent settings.

I-POMDPs expand the traditional physical state space of POMDPs to include models of other agents.

These models may either be the sophisticated intentional models (analogous to types as used in Bayesian

games) that include the agent’s beliefs, capabilities, and preferences, or the subintentional models that are

simply mappings from the agent’s observation history to a probability distribution over its actions, coupled

with its observation history. An example of a subintentional model is a finite state machine. When the

other agents’ models are intentional, maintaining a belief over the expanded state space results in beliefs

over others’ beliefs over others, and so on. Since operations such as the belief update on the infinitely nested

beliefs are not computable in general, we defined finitely nested belief systems as computable approximations

of the infinitely nested ones. Similar interactive belief systems have been studied before, in game theory and

in theoretical computer science. Our contribution is a novel method for updating an agent’s beliefs within the

interactive belief system after the agent acts and receives an observation (Proposition 4.2), allowing its use

for decision making. The I-POMDP belief update is a conditional update depending on whether the other

agent’s model is intentional or subintentional. If it is intentional, the update proceeds by anticipating the other

agent’s action(s) by solving its model, tracking its possible observations, and updating its beliefs. Because the

beliefs are nested, the belief update recurses through each level of the belief nesting, until level 0 is reached.
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Multiagent Tiger Singly nested beliefs of i
Game Versions i believes j i believes j i believes j is i is uninformed

is uninformed is informed partly informed of j’s beliefs
NON-COOPERATIVE

ENEMY 1, 2 1, 2 1, 2 –
NEUTRAL 1, 2 1, 2 1, 2 1, 2, 3

COOPERATIVE
FRIEND 1, 2 1, 2 1, 2 –
TEAM 1, 2 1, 2 1, 2 –

Table 8.1: A quick summary of the solutions to the multiagent tiger problems that appeared in this thesis. Our
solutions are conditioned on the shape of i’s beliefs over j’s. The numbers in each cell indicate the horizon
of the solutions.

If the other agent’s model is subintentional, we anticipate the other agent’s action(s) by solving its model,

and append to its previous observation history, each of its possible observations, weighted with the likelihood

of the agent receiving the observation. In Proposition 4.1, we showed that the I-POMDP belief update is a

sufficient statistic for the agent’s past observation history, thereby paving the way for solving I-POMDPs.

For the finitely nested I-POMDP framework, we proved in Theorem 4.1, that value iteration converges to a

unique fixed-point, and the value function is always piece-wise linear and convex (Theorem 4.2). Both these

properties are analogous to those for POMDPs, and make it possible to compute solutions for I-POMDPs.

We extended the single agent tiger problem traditionally used to illustrate POMDPs, to the multiagent

setting. Using the multiagent tiger problem, we illustrated the I-POMDP framework by first demonstrating

its superior performance in comparison to the simple approach of using POMDPs in multiagent settings (by

treating the other agent as static noise in the environment). Second, we showed value functions and policies

for several non-cooperative and cooperative versions of the multiagent tiger problem within the I-POMDP

framework. See Table 8.1 for a summary of the multiagent tiger problems that we solved.

The complexity of I-POMDPs restricts their application to all but the simplest settings. However, even in

simple problems, we demonstrated intuitive anthropomorphic social behaviors: we showed the emergence of

a follow the leader behavior in a setting of two agents in which one agent possesses an ability that is superior

to that of the other, thereby assuming a leadership role. Additionally, we empirically demonstrated the simple

insight that in cooperative settings it is beneficial to have friends that are informed rather than uninformed

about the state of the situation. However, in non-cooperative settings, the opposite is true for the adversaries.
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8.2 Approximation Methods

The benefit derived from modeling others’ beliefs comes at a price: Solving finitely nested I-POMDPs is

a PSPACE-Complete problem. Therefore, approximation techniques that trade off computations with quality

of the solution are critically needed, if we are to move beyond toy applications. Analogously to POMDPs,

I-POMDPs are afflicted with two sources of complexity: the curse of dimensionality of the belief space, and

the curse of history due to the complexity of the policy space. While these curses also affect POMDPs, the

complexity of the belief space is greater for I-POMDPs; they include beliefs about the physical environment,

and possibly about other agents’ beliefs, and their beliefs about others, and so on.

To address the belief space dimensionality problem, we took recourse to sampling methods which are

typically immune to the high dimensionality of the underlying state space. We introduced a polynomial-based

representation language for interactive beliefs to allow nested sampling. We adapted the basic particle filtering

algorithm – the bootstrap filter – to the multiagent setting, resulting in an interactive version of the particle

filter. Mirroring the hierarchical nature of interactive beliefs, the interactive particle filter (I-PF), samples

and propagates particles on each level of the nested belief. We combined the I-PF with value iteration

to compute approximately optimal solutions for I-POMDPs. Using two simple test problems, namely the

multiagent tiger problem and the multiagent machine maintenance problem, we gave a preliminary indication

of the favorable performance of our approximation method. We also derived bounds on the approximation

error introduced by the randomized algorithm (Theorem 6.1), and commented on the computational savings.

While the I-PF does successfully alleviate the curse of dimensionality, we are unable to compute solu-

tions beyond a few time horizons. Therefore, we combined the I-PF with a method to beat back the curse

of history. Instead of including all possible reachable beliefs at each step in the look ahead reachability tree

generated during value iteration, we include only a subset of the likely reachable beliefs. We sample from the

observation space to generate this subset. This effectively reduces the branching factor of the reachability tree

– the main source of complexity when we scale to larger horizons. The net result is a scalable anytime ap-

proximation method that addresses the curse of dimensionality and reduces the impact of the curse of history

in I-POMDPs.
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8.3 Equilibria in I-POMDPs

Agents within the I-POMDP framework update their beliefs over models of other agents after they act

and receive sensory information. Using the Martingale property of the Bayesian belief update, and under

the condition of truth compatibility of the prior beliefs – the absolute continuity condition – we showed in

Theorem 7.2 that an agent’s belief will converge uniformly in the limit. A natural result of this convergence

is that the distribution over the future joint observations induced by the agent’s belief after finite time will

become arbitrarily close to the true distribution induced by the actual strategies, and coincide with it in the

limit (Corollary 7.1). Strategies that are best responses to beliefs that are consistent with others’ actual

behaviors (though not necessarily converged to others’ true strategies) and the state of the game are said to be

in subjective equilibrium. The equilibrium is stable because additional observations will only reinforce their

beliefs about others’ behaviors and the state of the game. This result generalizes a similar result for repeated

games to partially observable stochastic games as modeled within I-POMDPs.

While we theoretically proved the existence of equilibrium as a fixed point of play for agents within

the I-POMDP framework, realizing it in practice is a different matter. When we stipulate that all strate-

gies be computable, the task of simultaneous prediction and exact optimization may become impossible.

Theorem 7.5 exemplified the difficulty by showing that within the finitely nested I-POMDP framework, it

is impossible for all the agents to simultaneously satisfy the grain of truth assumption. Inability to satisfy

the grain of truth assumption implies that we must find other (non-intuitive) ways to satisfy the absolute

continuity condition.

The difficulty in achieving equilibrium computationally calls into question the role of equilibrium in mul-

tiagent planning. Within the multiagent learning community, researchers are questioning the relevance of

Nash equilibria as a solution paradigm, because to achieve it requires unrealistic conditions on the behav-

iors of the learning algorithms. Similarly, the limitations of Nash equilibria such as non-uniqueness and

incompleteness make it unsuitable as a solution concept for planning. This points to the normative decision

theoretic approach as being more practical.
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8.4 Future Work

Much of the work described in this thesis is foundational. We introduced a new framework for planning

in multiagent settings, and analyzed its working using simple toy problems. To address its enormous compu-

tational complexity we developed the first approximation techniques based on sampling. We also analyzed

the play of agents within this framework, establishing the theoretical existence of equilibria as a fixed point,

but realizing the potential computational obstacles in reaching the fixed point. Future work involves finding

new exact and approximate methods that in addition to reducing the complexity, give tighter bounds on ap-

proximation errors. Additionally, we are also interested in large scale realistic applications that will bring

I-POMDPs into mainstream thinking. We outline a few of the directions of future research in some detail.

8.4.1 Lossless Compression of the Interactive State Space

The interactive state space includes not only the states of the physical environment but also the models

of the other agents. Some of these models may be intentional and include the beliefs, capabilities as well as

preferences of the agents, while others may be subintentional. It is possible to define an equivalence relation

on the space of the models which will partition it into a collection of equivalence classes. All models within

an equivalence class when solved generate identical policy trees. As an example, let models of the other agent

be level 0 intentional models or POMDPs that differ only in the beliefs. Then the partition of the belief space

induced by the value function (obtained from solving the POMDP) is a collection of equivalence classes. If

the number of actions and observations are finite, then the number of equivalence classes are also finite.

The new interactive state space, ĨSi,l is a combination of the physical state space and the equivalence

classes. The compression of the original interactive state space into the new one is lossless: the value function

over the new belief space and therefore the optimal policy remain unchanged. The theorem below captures

this result. Note that the I-POMDP and the beliefs are of strategy level l, but for the sake of clarity we do not

indicate it explicitly.

Theorem 8.1. For a finitely nested I-POMDPi, define a mapping CP : ∆(ISi)→ ∆(ĨSi) such that,

b̃i(s, cj,k) =

∫

bj∈cj,k

bi(s, bj)dbj (8.1)



CHAPTER 8. CONCLUSION 142

where bi ∈ ∆(ISi), b̃i ∈ ∆(ĨSi), and cj,k is the kth equivalence class of j’s models. Then the mapping CP

is value preserving.

Proof by induction. Let bi be an arbitrary belief of agent i. Let ECj = {cj,1, cj,2, ..., cj,n} be the collection

of equivalence classes of agent j’s belief. Each class cj,k is a set of beliefs of j such that the action ak
j is

optimal for each belief. Thus ∀bj∈cj,k
ER(s, bj , ai) = R(s, ai, a

k
j ), because ak

j is optimal for all bj ∈ cj,k.

Basis Step: We show that the horizon 1 value remains unchanged when i’s original belief is replaced by its

belief over the equivalence classes.

Q1(bi, ai) =
∫

isi
bi(isi)ER(isi, ai) =

∑
s

∫
bj

bi(s, bj)ER(s, bj , ai)

=
∑

s

{∫
bj∈cj,1

bi(s, bj)ER(s, bj , ai) + ... +
∫

bj∈cj,n
bi(s, bj)ER(s, bj , ai)

}

=
∑

s

{∫
bj∈cj,1

bi(s, bj)R(s, ai, a
1
j ) + ... +

∫
bj∈cj,n

bi(s, bj)R(s, ai, a
n
j )

}

=
∑

s

{
R(s, ai, a

1
j )

∫
bj∈cj,1

bi(s, bj) + ... +R(s, ai, a
n
j )

∫
bj∈cj,n

bi(s, bj)
}

=
∑

s

{
R(s, ai, aj,1)b̃i(s, cj,1) + ... + R(s, ai, aj,n)b̃i(s, cj,n)

}
(using Eq. 8.1)

=
∑

s,k b̃i(s, cj,k)R(s, ai, aj,k) = Q̃1(b̃i, ai)

Because the Q values remain unchanged, maximizing over them will also yield identical values.

Inductive Hypothesis: Let us assume that ∀ai, bi QN (bi, ai) = Q̃N (b̃i, ai) where b̃i is related to bi using

Eq. 8.1. Because the Q values are identical, the N horizon value function also remains unchanged.

Inductive Proof:
QN+1(bi, ai) =

∫
isi

bi(isi)ER(isi, ai) + γ
∑

oi
Pr(oi|bi, ai)V

N (SE(bi, ai, oi))

= Q1(bi, ai) + γ
∑

oi,isi
Pr(oi|isi, ai)bi(isi)V

N (SE(bi, ai, oi))

= Q̃1(b̃i, ai) + γ
∑

oi,isi,aj
Pr(oi|isi, ai, aj)Pr(aj |bj)bi(isi)V

N (SE(bi, ai, oi)) (Basis step)

= Q̃1(b̃i, ai) + γ
∑

oi

∑
s

∫
bj

∑
aj

Pr(oi|isi, ai, aj)Pr(aj |bj)bi(s, bj)V
N (SE(bi, ai, oi))

= Q̃1(b̃i, ai) + γ
∑

oi

∑
s,k

∫
bj∈cj,k

∑
aj

Pr(oi|isi, ai, aj)Pr(aj |bj)bi(s, bj)V
N (SE(bi, ai, oi))

Using the BNM and BNO assumption:

QN+1(bi, ai) = Q̃1(b̃i, ai) + γ
∑

oi

∑
s,k

∫
bj∈cj,k

Pr(oi|s, ai, a
k
j )bi(s, bj)V

N (SE(bi, ai, oi))

= Q̃1(b̃i, ai) + γ
∑

oi

∑
s,k Pr(oi|s, ai, a

k
j )

∫
bj∈cj,k

bi(s, bj)V
N (SE(bi, ai, oi)) (using Eq. 8.1)

= Q̃1(b̃i, ai) + γ
∑

oi

∑
s,k Pr(oi|s, ai, a

k
j )b̃i(s, cj,k)V N (SE(bi, ai, oi))
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Note that Pr(oi|s, ai, cj,k) =
∑

aj
Pr(oi|s, ai, aj , cj,k)Pr(aj |cj,k) = Pr(oi|s, ai, aj,k)

= Q̃1(b̃i, ai) + γ
∑

oi

∑
s,k Pr(oi|s, ai, cj,k)b̃i(s, cj,k)Ṽ N (SE(b̃i, ai, oi)) (Inductive Hypothesis)

= Q̃1(b̃i, ai) + γ
∑

oi
Pr(oi|ai, b̃i)Ṽ

N (SE(b̃i, ai, oi))

= Q̃N+1(b̃i, ai)

Because the Q values are identical under the mapping, the values of the compressed beliefs remain un-

changed. We have assumed in the proof that agent j’s policies are deterministic, i.e., for every partition cj,k

there is one optimal action aj,k. The proof extends in a straightforward manner when there is more than one

optimal action for a class.

Because the compressed interactive state space ĨSi is of less dimension than the original interactive

state space, it is possible to visualize complete solutions of I-POMDPs, in constrast to solutions for specific

beliefs.

8.4.2 Other Approximation Methods

Since methods for solving I-POMDPs are conceptually similar to those for solving POMDPs, we can

leverage the variety of POMDP approximation techniques to approximate I-POMDPs. While the sample

based approximation method introduced in this thesis proved to be scalable and delivered good performance,

the approximation bounds were loose. Therefore, new approximation techniques in addition to addressing

both the sources of complexity in order to be viable, must provide tighter error bounds.

Promising approaches for addressing the curse of dimensionality include statistically identifying those

physical states and models of other agents that are most relevant from the perspective of making decisions

(for example, see Roy & Gordon, 2002), and finding a threshold level for nested beliefs beyond which the

additional levels of beliefs do not significantly affect the behavior. Approaches that may address the curse

of history include utilizing bounded finite state controllers as policies (for example, see Poupart & Boutilier,

2004), and other innovative methods to prune the look ahead reachability tree. Deriving tight error bounds

would be a key requirement for any approximation method.

8.4.3 Multiagent Planning with Bounded Rational Agents

There is growing theoretical evidence that perfect rationality is an unattainable ideal (Binmore, 1990;

Rubinstein, 1998). The limits on perfect rationality arise due to the boundedness of time and space, and our
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choice of computability models 1. Researchers are therefore turning their attention to bounded rationality and

ways to represent it (for example, see Rubinstein, 1998).

Within the I-POMDP framework, the computational obstacle in reaching the subjective equilibrium is

an implication of the inability of agents to be perfectly rational. Consequently, we must look at models

that compactly represent the boundedness of the resources available to the agents and the approximate ε-

optimization performed by practical agents. Such models may simply be the intentional models augmented

with additional parameters that capture the limited resources. Investigating whether any type of equilibria

results when agents are bounded rational is another interesting line of future work.

1The inability of Turing machines to decide the halting problem is at the heart of several arguments against perfect rationality.
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Appendix A Proofs of Theorems

Proof of Propositions 4.1 and 4.2. We start with Proposition 4.2, by applying the Bayes Theorem:

bt
i(is

t) = Pr(ist|ot
i, a

t−1
i , bt−1

i ) =
Pr(ist,ot

i|a
t−1
i

,bt−1
i

)

Pr(ot
i
|at−1

i
,bt−1

i
)

= β
∑

ist−1 bt−1
i (ist−1)Pr(ist, ot

i|a
t−1
i , ist−1)

= β
∑

ist−1 bt−1
i (ist−1)

∑
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j
Pr(ist, ot

i|a
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j , ist−1)Pr(at−1
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i , ist−1)

= β
∑

ist−1 bt−1
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∑
at−1

j
Pr(ist, ot

i|a
t−1
i , at−1

j , ist−1)Pr(at−1
j |ist−1)

= β
∑

ist−1 bt−1
i (ist−1)

∑
at−1

j
Pr(at−1

j |mt−1
j )Pr(oi

t|is
t, at−1, ist−1)Pr(ist|at−1, ist−1)

= β
∑

ist−1 bt−1
i (ist−1)

∑
at−1

j
Pr(at−1

j |mt−1
j )Pr(oi

t|is
t, at−1)Pr(ist|at−1, ist−1)

= β
∑

ist−1 bt−1
i (ist−1)

∑
at−1

j
Pr(at−1

j |mt−1
j )Oi(s

t, at−1, ot
i)Pr(ist|at−1, ist−1)

(A-1)

To simplify the term Pr(ist|at−1, ist−1) let us substitute the interactive state ist with its components.

When mj in the interactive states is intentional: ist = (st, θt
j) = (st, bt

j , θ̂
t
j).

Pr(ist|at−1, ist−1) = Pr(st, bt
j , θ̂

t
j |a

t−1, ist−1)

= Pr(bt
j |s

t, θ̂t
j , a

t−1, ist−1)Pr(st, θ̂t
j |a

t−1, ist−1)

= Pr(bt
j |s

t, θ̂t
j , a

t−1, ist−1)Pr(θ̂t
j |s

t, at−1, ist−1)Pr(st|at−1, ist−1)

= Pr(bt
j |s

t, θ̂t
j , a

t−1, ist−1)I(θ̂t−1
j , θ̂t

j)Ti(s
t−1, at−1, st)

(A-2)
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When mj is subintentional: ist = (st,mt
j) = (st, ht

j , m̂
t
j).

Pr(ist|at−1, ist−1) = Pr(st, ht
j , m̂

t
j |a

t−1, ist−1)

= Pr(ht
j |s

t, m̂t
j , a

t−1, ist−1)Pr(st, m̂t
j |a

t−1, ist−1)

= Pr(ht
j |s

t, m̂t
j , a

t−1, ist−1)Pr(θ̂t
j |s

t, at−1, ist−1)Pr(st|at−1, ist−1)

= Pr(ht
j |s

t, m̂t
j , a

t−1, ist−1)I(m̂t−1
j , m̂t

j)Ti(s
t−1, at−1, st) (A-2’)

The joint action pair, at−1, may change the physical state. The third term on the right-hand side of Eqs. A-

2 and A-2’ above captures this transition. We utilized the MNM assumption to replace the second terms of

the equations with boolean identity functions, I(θ̂t−1
j , θ̂t

j) and I(m̂t−1
j , m̂t

j) respectively, which equal 1 if the

two frames are identical, and 0 otherwise. Let us turn our attention to the first terms. If mj in ist and ist−1

is intentional:

Pr(bt
j |s

t, θ̂t
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ot
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∑
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=
∑
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j
τθt

j
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j , ot

j , b
t
j)Oj(st, a

t−1, ot
j)

(A-3)

Else if it is subintentional:

Pr(ht
j |s

t, m̂t
j , a

t−1, ist−1) =
∑

ot
j
Pr(ht

j |s
t, m̂t

j , a
t−1, ist−1, ot

j)Pr(ot
j |s

t, m̂t
j , a
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=
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t, m̂t
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j)Pr(ot
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=
∑
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j
δK(APPEND(ht−1

j , ot
j)− ht

j)Oj(st, a
t−1, ot

j) (A-3’)

In Eq. A-3, the first term on the right-hand side is 1 if agent j’s belief update, SEθj
(bt−1

j , at−1
j , ot

j) generates

a belief state equal to bt
j . Similarly, in Eq. A-3’, the first term is 1 if appending the ot

j to ht−1
j results in ht

j .

δK is the Kronecker delta function. In the second terms on the right-hand side of the equations, the MNO

assumption makes it possible to replace Pr(ot
j |s

t, θ̂t
j , a

t−1) with Oj(s
t, at−1, ot

j), and Pr(ot
j |s

t, m̂t
j , a

t−1)

with Oj(s
t, at−1, ot

j) respectively.

Let us now substitute Eq. A-3 into Eq. A-2.

Pr(ist|at−1, ist−1) =
∑

ot
j
τθt

j
(bt−1

j , at−1
j , ot

j , b
t
j)Oj(s

t, at−1, ot
j)I(θ̂t−1

j , θ̂t
j)Ti(s

t−1, at−1, st) (A-4)
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Substituting Eq. A-3’ into Eq. A-2’ we get,

Pr(ist|at−1, ist−1) =
∑

ot
j
δK(APPEND(ht−1

j , ot
j), h

t
j)Oj(s

t, at−1, ot
j)I(m̂t−1

j , m̂t
j)

×Ti(s
t−1, at−1, st) (A-4’)

Replacing Eq. A-4 into Eq. A-1 we get:
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j)Ti(s
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(A-5)

Similarly, replacing Eq. A-4’ into Eq. A-1 we get:
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∑
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We arrive at the final expressions for the belief update by removing the terms I(θ̂t−1
j , θ̂t

j) and I(m̂t−1
j , m̂t

j)

and changing the scope of the first summations.

When mj in the interactive states is intentional:

bt
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∑
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=θ̂t
j

bt−1
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Else, if it is subintentional:

bt
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(A-7)

Since proposition 2 expresses the belief bt
i(is

t) in terms of parameters of the previous time step only,

Proposition 1 holds as well.

Before we present the proof of Theorem 4.1 we note that the Equation 4.3, which defines value iteration

in I-POMDPs, can be rewritten in the following form, Un = HUn−1. Here, H : B(Θi) → B(Θi) is a
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backup operator, and is defined as,

HUn−1(θi) = max
ai∈Ai

h(θi, ai, U
n−1)

where h : Θi ×Ai ×B(Θi)→ R is,

h(θi, ai, U) =
∑
is

bi(is)ERi(is, ai) + γ
∑

o∈Ωi
Pr(oi|ai, bi)U(〈SEθi

(bi, ai, oi), θ̂i〉)

and where B(Θi) is the set of all bounded value functions U . Lemmas 1 and 2 establish important properties

of the backup operator. Proof of Lemma 1 is given below, and proof of Lemma 2 follows thereafter.

Proof of Lemma 4.1. Select arbitrary value functions V and U such that V (θi,l) ≤ U(θi,l) ∀θi,l ∈ Θi,l. Let

θi,l be an arbitrary type of agent i.

HV (θi,l) = max
ai∈Ai

{ ∑
is bi(is)ERi(is, ai) + γ

∑
o∈Ωi

Pr(oi|ai, bi)V (〈SEθi,l
(bi, ai, oi), θ̂i〉)

}

=
∑

is bi(is)ERi(is, a
∗
i ) + γ

∑
o∈Ωi

Pr(oi|a
∗
i , bi)V (〈SEθi,l

(bi, a
∗
i , oi), θ̂i〉)

≤
∑

is bi(is)ERi(is, a
∗
i ) + γ

∑
o∈Ωi

Pr(oi|a
∗
i , bi)U(〈SEθi,l

(bi, a
∗
i , oi), θ̂i〉)

≤ max
ai∈Ai

{ ∑
is bi(is)ERi(is, ai) + γ

∑
o∈Ωi

Pr(oi|ai, bi)U(〈SEθi,l
(bi, ai, oi), θ̂i〉)

}

= HU(θi,l)

Since θi,l is arbitrary, HV ≤ HU .

Proof of Lemma 4.2. Assume two arbitrary well defined value functions V and U such that V ≤ U . From

Lemma 4.1 it follows that HV ≤ HU . Let θi,l be an arbitrary type of agent i. Also, let a∗
i be the action that

optimizes HU(θi,l).
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0 ≤ HU(θi,l)−HV (θi,l)

= max
ai∈Ai

{
sumisbi(is)ERi(is, ai) + γ

∑
o∈Ωi

Pr(oi|ai, bi)U(SEθi,l
(bi, ai, oi), 〈θ̂i〉)

}
−

max
ai∈Ai

{ ∑
is bi(is)ERi(is, ai) + γ

∑
o∈Ωi

Pr(oi|ai, bi)V (SEθi,l
(bi, ai, oi), 〈θ̂i〉)

}

≤
∑

is bi(is)ERi(is, a
∗
i ) + γ

∑
o∈Ωi

Pr(oi|a
∗
i , bi)U(SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉) −

∑
is bi(is)ERi(is, a

∗
i )− γ

∑
o∈Ωi

Pr(oi|a
∗
i , bi)V (SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉)

= γ
∑

o∈Ωi
Pr(oi|a

∗
i , bi)U(SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉)− γ

∑
o∈Ωi

Pr(oi|a
∗
i , bi)V (SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉)

= γ
∑

o∈Ωi
Pr(oi|a

∗
i , bi)

[
U(SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉)− V (SEθi,l

(bi, a
∗
i , oi), 〈θ̂i〉)

}

≤ γ
∑

o∈Ωi
Pr(oi|a

∗
i , bi)||U − V ||

= γ||U − V ||

As the supremum norm is symmetrical, a similar result can be derived for HV (θi,l) −HU(θi,l). Since

θi,l is arbitrary, the Contraction property follows, i.e. ||HV −HU || ≤ ||V − U ||.

Lemmas 4.1 and 4.2 provide the stepping stones for proving Theorem 4.1. Proof of Theorem 4.1 follows

from a straightforward application of the Banach Fixed-point theorem. Of course, we must first show that

the normed space (B(Θi), || · ||) is a Banach space. The proof for this is identical to that of Theorem 2.1 in

Chapter 2.

We state the Banach Fixed-point theorem (Stokey & E., 1989) below:

Theorem A.1 (Banach Fixed-point Theorem). If (S, ρ) is a complete metric space and T : S → S is a

contraction mapping with modulus γ, then

1. T has exactly one fixed point U∗ in S, and

2. The sequence {Un} converges to U∗.

Proof of Theorem 4.1 follows.

Proof of Theorem 4.1. The normed space (B(Θi), ||·||) is complete w.r.t the metric induced by the supremum

norm. Lemma 2 establishes the contraction property of the backup operator, H . Using Theorem A.1, and

substituting T with H , convergence of value iteration in I-POMDPs to a unique fixed point is established.
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We go on to the piecewise linearity and convexity (PWLC) property of the value function. We follow the

outlines of the analogous proof for POMDPs in Section 2.1.2 of Chapter 2.

Let α : IS → R be a real-valued and bounded function. Let the space of such real-valued bounded

functions be B(IS). We will now define an inner product.

Definition A.1 (Inner product). Define the inner product, 〈·, ·〉 : B(IS)×∆(IS)→ R, by

〈α, bi〉 =
∑

is

bi(is)α(is)

The next lemma establishes the bilinearity of the inner product defined above.

Lemma A.1 (Bilinearity). For any s, t ∈ R, f, g ∈ B(IS), and b, λ ∈ ∆(IS) the following equalities hold:

〈sf + tg, b〉 = s〈f, b〉+ t〈g, b〉

〈f, sb + tλ〉 = s〈f, b〉+ t〈f, λ〉

We are now ready to give the proof of Theorem 4.2. Theorem A.2 restates Theorem 4.2 mathematically,

and its proof follows thereafter.

Theorem A.2 (PWLC). The value function, Un, in finitely nested I-POMDPi,l is piece-wise linear and

convex (PWLC). Mathematically,

Un(θi,l) = max
αn

∑

is

bi(is)α
n(is) n = 1, 2, ...

Proof of Theorem A.2. Basis Step: n = 1

From Bellman’s Dynamic Programming equation,

U1(θi) = max
ai

∑

is

bi(is)ER(is, ai) (A-8)
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where ERi(is, ai) =
∑

aj
R(is, ai, aj)Pr(aj |mj). Here, ERi(·) represents the expectation of R w.r.t.

agent j’s actions. Eq. A-8 represents an inner product and using Lemma A.1, the inner product is linear in bi.

By selecting the maximum of a set of linear vectors, we obtain a PWLC horizon 1 value function.2

Inductive Hypothesis: Suppose that Un−1(θi,l) is PWLC. Formally we have,

Un−1(θi,l) = max
αn−1

∑
is bi(is)α

n−1(is)

= max
α̇n−1, α̈n−1

{ ∑
is:mj∈IMj

bi(is)α̇
n−1(is) +

∑
is:mj∈SMj

bi(is)α̈
n−1(is)

} (A-9)

Inductive Proof: To show that Un(θi,l) is PWLC.

Un(θi,l) = max
at−1

i

{ ∑

ist−1

bt−1
i (ist−1)ERi(is

t−1, at−1
i ) + γ

∑

ot
i

Pr(ot
i|a

t−1
i , bt−1

i )Un−1(θi,l)

}

From the inductive hypothesis:

Un(θi,l) = max
at−1

i

{
∑

ist−1 bt−1
i (ist−1)ERi(is

t−1, at−1
i )

+γ
∑

ot
i
Pr(ot

i|a
t−1
i , bt−1

i ) max
αn−1∈Γn−1

∑
ist bt

i(is
t)αn−1(ist)

}

Let l(bt−1
i , at−1

i , ot
i) be the index of the alpha vector that maximizes the value at bt

i = SE(bt−1
i , at−1

i , ot
i).

Then

Un(θi,l) = max
at−1

i

{
∑

ist−1 bt−1
i (ist−1)ERi(is

t−1, at−1
i )

+γ
∑

ot
i
Pr(ot

i|a
t−1
i , bt−1

i )
∑

ist bt
i(is

t)αn−1

l(bt−1
i

,at−1
i

,ot
i
)

}

From the second equation in the inductive hypothesis:

Un(θi,l) = max
at−1

i

{
∑

ist−1 bt−1
i (ist−1)ERi(is

t−1, at−1
i ) + γ

∑
ot

i
Pr(ot

i|a
t−1
i , bt−1

i )

×

{ ∑
ist:mt

j
∈IMj

bt
i(is

t)α̇n−1

l(bt−1
i

,at−1
i

,ot
i
)
+

∑
ist:mt

j
∈SMj

bt
i(is

t)α̈n−1

l(bt−1
i

,at−1
i

,ot
i
)

}

2If |S| = 2, then the value function is composed of a set of lines, otherwise it is composed of a set of hyperplanes.
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Substituting bt
i with the appropriate belief updates from Eqs. A-5 and A-5’ we get:

Un(θi,l) = max
at−1

i

{
∑

ist−1 bt−1
i (ist−1)ERi(is

t−1, at−1
i ) + γ

∑
ot

i
Pr(ot

i|a
t−1
i , bt−1

i )

×β

[
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ist:mt
j
∈IMj

∑
ist−1 bt−1

i (ist−1)

{ ∑
at−1

j
Pr(at−1

j |θt−1
j )
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t, at−1, ot
i)

×
∑

ot
j
Ot

j(s
t, at−1, ot

j)

{
τθt

j
(bt−1

j , at−1
j , ot

j , b
t
j)I(θ̂t−1

j , θ̂t
j)Ti(s

t−1, at−1, st)

}]}

×α̇n−1

l(bt−1
i

,at−1
i

,ot
i
)
(ist)

+
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j
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∑
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{ ∑
at−1

j
Pr(at−1

j |mt−1
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t, at−1, ot
i)

×
∑

ot
j
Ot
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j)− ht
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i

,at−1
i

,ot
i
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= max
at−1

i

{
∑

ist−1 bt−1
i (ist−1)ERi(is
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∑
ot

i
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∑
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j
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{ ∑
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∑
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i (ist−1)

{ ∑
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j
Pr(at−1

j |mt−1
j )

[
Oi(s

t, at−1, ot
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×
∑
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j
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j(s
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j)
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δK(APPEND(ht−1

j , ot
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j , m̂t
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,ot
i
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Rearranging the terms of the equation:

Un(θi,l) = max
at−1

i

{
∑

ist−1:mt−1
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∈IMj
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i (ist−1)

{
ERi(is

t−1, at−1
i ) + γ

∑
ot

i

∑
ist:mt

j
∈IMj

×

{ ∑
at−1

j
Pr(at−1

j |θt−1
j )

[
Oi(s

t, at−1, ot
i)

∑
ot

j
Ot

j(s
t, at−1, ot
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where, if mt−1
j in ist−1 is intentional then αn = α̇n:
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and, if mt−1
j is subintentional then αn = α̈n:
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Eq. A-10 is an inner product and using Lemma A.1, the value function is linear in bt−1
i . Furthermore,

maximizing over a set of linear vectors (which are either lines or hyperplanes) produces a piecewise linear

and convex value function.
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Appendix B Multiagent Machine Maintenance Problem

We extend the traditional single agent version of the machine maintenance problem (Smallwood &

Sondik, 1973) to the two-agent purely cooperative version. We increase the non-determinism of the orig-

inal problem to make it more realistic. This has the beneficial effect of producing a rich policy structure.

• Physical state space: S = {0-fail, 1-fail, 2-fail}

• Action space: A = Ai ×Aj where Ai = Aj = {M, E, I, R}

• Observation space: Ωi = Ωj = {not-defective, defective}

• Transition function: Ti : S ×A× S → [0, 1]

〈ai, aj〉 State 0-fail 1-fail 2-fail
〈M/E,M/E〉 0-fail 0.81 0.18 0.01
〈M/E,M/E〉 1-fail 0.0 0.9 0.1
〈M/E,M/E〉 2-fail 0.0 0.0 1.0
〈M,I/R〉 0-fail 1.0 0.0 0.0
〈M,I/R〉 1-fail 0.95 0.05 0.0
〈M,I/R〉 2-fail 0.95 0.0 0.05
〈E,I/R〉 0-fail 1.0 0.0 0.0
〈E,I/R〉 1-fail 0.95 0.05 0.0
〈E,I/R〉 2-fail 0.95 0.0 0.05
〈I/R,*〉 0-fail 1.0 0.0 0.0
〈I/R,*〉 1-fail 0.95 0.05 0.0
〈I/R,*〉 2-fail 0.95 0.0 0.05

Table B-1: Ti = Tj

• Observation function: Oi : S ×A× Ωi → [0, 1]

〈ai, aj〉 State not-defective defective
〈M,M/E〉 * 0.5 0.5
〈M,I/R〉 * 0.95 0.05
〈E,M/E〉 0-fail 0.75 0.25
〈E,M/E〉 1-fail 0.5 0.5
〈E,M/E〉 2-fail 0.25 0.75
〈E,I/R〉 * 0.95 0.05
〈I/R,*〉 * 0.95 0.05

〈ai, aj〉 State not-defective defective
〈M/E,M〉 * 0.5 0.5
〈I/R,M〉 * 0.95 0.05
〈M/E,E〉 0-fail 0.75 0.25
〈M/E,E〉 1-fail 0.5 0.5
〈M/E,E〉 2-fail 0.25 0.75
〈I/R,E〉 * 0.95 0.05
〈*,I/R〉 * 0.95 0.05

Table B-2: Observation functions for agents i and j.
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• Reward function: Ri : S ×A→ R

〈ai, aj〉 0-fail 1-fail 2-fail
〈M,M〉 1.805 0.95 0.5
〈M,E〉 1.555 0.7 0.25
〈M,I〉 0.4025 -1.025 -2.25
〈M,R〉 -1.0975 -1.525 -1.75
〈E,M〉 1.5555 0.7 0.25
〈E,E〉 1.305 0.45 0.0
〈E,I〉 0.1525 -1.275 -2.5
〈E,R〉 -1.3475 -1.775 -2.0
〈I,M〉 0.4025 -1.025 -2.25
〈I,E〉 0.1525 -1.275 -2.5
〈I,I〉 -1.0 -3.00 -5.00
〈I,R〉 -2.5 -3.5 -4.5
〈R,M〉 -1.0975 -1.525 -1.75
〈R,E〉 -1.3475 -1.775 -2.0
〈R,I〉 -2.5 -3.5 -4.5
〈R,R〉 -4 -4 -4

〈ai, aj〉 0-fail 1-fail 2-fail
〈M,M〉 1.805 0.95 0.5
〈M,E〉 1.555 0.7 0.25
〈M,I〉 0.4025 -1.025 -2.25
〈M,R〉 -1.0975 -1.525 -1.75
〈E,M〉 1.555 0.7 0.25
〈E,E〉 1.305 0.45 0.0
〈E,I〉 0.1525 -1.275 -2.5
〈E,R〉 -1.3475 -1.775 -2.0
〈I,M〉 0.4025 -1.025 -2.25
〈I,E〉 0.1525 -1.275 -2.5
〈I,I〉 -1.0 -3.00 -5.00
〈I,R〉 -2.5 -3.5 -4.5
〈R,M〉 -1.0975 -1.525 -1.75
〈R,E〉 -1.3475 -1.775 -2.0
〈R,I〉 -2.5 -3.5 -4.5
〈R,R〉 -4 -4 -4

Table B-3: Reward functions for agents i and j.
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