52 m Chapter 1 Object-Oriented Programming and Java

Figure 1.15 What CheckingAccount inherits from BankAccount.

public BankAccount {
private int balance;
private String acctNumber;
private Client client;
private int serviceCharges;

public String getAcctNumber() ;
public int getBalance();

/’ public void setBalance();
public void makeDeposit();

public int makeWithdrawal();

public Checkinghccount extends BankAccount {

CheckingAccount chkacct; private boolean returnCancelledChecks;

\ public String getAcctNumber () ;
chkacct.getBalance() ; = public int getBalance();

public void setBalance();
public void makeDeposit () ;

chkacct . stopCheck(check) ;

public int makeWithdrawal () ;

public void sendCancelledChecks();
—>=public void stopCheck();
public void generateMonthlyStatement();

method defined in BankAccount and inherited by CheckingAccount. From a client’s
perspective, it is as if getBalance() was defined in CheckingAccount. The second
message is to a public method defined in CheckingAccount.

What Have We Done So Far?

We have abstracted a set of characteristics (attributes, behaviors, and constraints)
shared by all Bankaccounts to define the general class Bankaccount. For example,
all BankAccounts have an account number, a client name and address, a balance,
and so on, and have the shared behavioral characteristics that they can
getAccountNumber (), getBalance(), getClientName(), and so on. Then, we iden-
tified subclasses that all share the characteristics of the superclass, but each subclass
added characteristics that distinguished it from both its superclass and its “sibling”
classes.

We say that moving from a superclass to a subclass defines a specialization. A
SavingsAccount is a kind of BankAccount specialized for saving money that
accrues interest and can be drawn on (a withdrawal operation) or added to
(through interest and deposits). This distinguishes SavingsaAccounts from the
general class of BankAccounts as well as from its sibling class CheckingAccount.

Specialization

