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a b s t r a c t

The problem of computer vision-guided reconstruction of a fractured human mandible from a computed
tomography (CT) image sequence exhibiting multiple broken fragments is addressed. The problem resem-
bles 3D jigsaw puzzle assembly and hence is of general interest for a variety of applications dealing with
automated reconstruction or assembly. The specific problem of automated multi-fracture craniofacial
reconstruction is particularly challenging since the identification of opposable fracture surfaces followed
by their pairwise registration needs to be performed expeditiously in order to minimize the operative
trauma to the patient and also limit the operating costs. A polynomial time solution using graph match-
ing is proposed. In the first phase of the proposed solution, the opposable fracture surfaces are identified
attern matching

omputed tomography using the Maximum Weight Graph Matching algorithm. The pairs of opposable fracture surfaces, identi-
fied in the first stage, are registered in the second phase using the Iterative Closest Point (ICP) algorithm.
Correspondence for a given pair of fracture surfaces, needed for the Closest Set computation in the ICP
algorithm, is established using the Maximum Cardinality Minimum Weight bipartite graph matching
algorithm. The correctness of the reconstruction is constantly monitored by using constraints derived
from a volumetric matching procedure guided by the computation of the Tanimoto Coefficient.
. Introduction

Craniofacial fractures are frequently encountered. The major
auses are vehicle accidents, gunshot wounds and sports related
njuries [1]. From a surgical perspective, craniofacial reconstruc-
ion becomes very complex in case of multiple fractures since the
perating surgeon has to identify the opposable fracture surfaces
efore physically registering them. Often, the cost of surgery
ecomes prohibitive with the increased operative time necessary
o complete the entire reconstruction process [2]. Moreover, the
ncreased operative time also poses increased operative trauma
nd risk to the patient. The reconstruction problem essentially falls

ithin the category of automated jigsaw puzzle solving and hence

s of general interest in a variety of domains, ranging from forensics
o archeology, that deal with problems related to automated
econstruction or assembly. As the mandible is often unprotected,
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we concentrate specifically on mandibular fractures within the
broad class of craniofacial fractures. In an earlier paper, we showed
how computer vision algorithms can be applied to perform virtual
reconstruction in case of a single fracture [3]. In this paper, we
extend our earlier work to a multi-fracture scenario. The input
to the current problem of automated craniofacial reconstruction
is a computed tomography (CT) scan of a human mandible that
exhibits multiple fractures. After performing simple image pro-
cessing operations on the CT images, the broken bone fragments
are separated from the soft tissue. The fracture surfaces in the
broken fragments are highlighted manually by the surgeon. Thus,
our reconstruction scheme is semi-automated as opposed to fully
automated. A novel two step method based on graph matching is
proposed as a solution to the multi-fracture registration problem.
In the first step, the opposable fracture surfaces are identified using
the Maximum Weight Graph Matching (MWGM) algorithm for a
weighted graph. The fracture surfaces are modeled as vertices of
a weighted graph. The edge weights in the graph are chosen as a
linear combination of (a) the inverse Hausdorff distance and (b) an

appropriately formulated function of curvature. In the second step,
the opposable fracture surface pairs, identified in the first step,
are registered using the Iterative Closest Point (ICP) algorithm. The
surface point-wise correspondence between fracture surface pairs
during each iteration of the ICP algorithm is determined using the

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:ananda.chowdhury@gmail.com
mailto:suchi@cs.uga.edu
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assists the graph matching algorithm in generating an optimal
solution is presented. As mentioned earlier, the score matrix
elements reflect the property of spatial proximity and the desirable
surface characteristics between two opposable fracture surfaces.
The second important contribution lies in the design of the
34 A.S. Chowdhury et al. / Computerized Med

aximum Cardinality Minimum Weight (MCMW) bipartite graph
atching algorithm. The reconstruction process in the second step

s constantly monitored by constraints derived from a volumetric
atching procedure that is guided by the computation of the

animoto Coefficient. In [4] this work appeared in a preliminary
ersion with no description of the image processing, limited details
nd only partial theoretical analysis.

The rest of the paper is organized as follows: Section 2 describes
he existing literature and our contribution. Section 3 describes the
mage processing steps necessary to obtain the input data from the
egmented fracture surfaces. Section 4 explains the formulation of
he score matrix needed as an input to the MWGM algorithm. Sec-
ion 5 proves the combinatorial nature of the problem (in terms
f the number of reconstruction options) and illustrates how the
WGM algorithm identifies the opposable fracture surface pairs.

ection 6 describes the pairwise fracture surface registration pro-
edure using the ICP and MCMW algorithms. Section 7 explains
he shape monitoring procedure based on the computation of the
animoto coefficient. Section 8 presents the experimental results.
ection 9 concludes the paper and highlights directions for future
esearch.

. Literature review and our contribution

The multi-fracture reconstruction problem in a broader sense
an be viewed as a combinatorial pattern matching problem that
s similar to automated jigsaw puzzle solving (a detailed analysis
s given in Section 5). We first discuss the importance of multiple

andibular and related craniofacial fractures in the surgical litera-
ure. Various existing approaches for solving two-dimensional (2D)
nd three-dimensional (3D) jigsaw puzzle problems are mentioned
ext. The section ends by highlighting the contribution of the paper.

In an article by Ogundare et al. [5], it is shown that 52% of
he patients studied in a typical urban-level trauma center suf-
ered from multiple mandibular fractures. In a study conducted by
oole et al. [6], about 30% of the army soldiers who experienced
raniofacial trauma while on active duty suffer from two or more
andibular fractures. Clauser et al. [7] discuss the prevalence of

evere midface fractures as a result of vehicular accidents, which
ould lead to surgical procedures involving high clinical complexity.
t is interesting to note that in their work on multiple craniofacial
njuries, Schettler et al. [8] suggest that the technique of surgical
econstruction in the case of craniofacial trauma is often tanta-
ount to solving a jigsaw puzzle.
As the number of references in the research field of automated

igsaw puzzle solving is quite high, we restrict ourselves to dis-
ussing a few representative works. Research on jigsaw puzzle
olving by means of a computer using images as input was initi-
ted around 20 years ago with the work of Wolfson et al. [9]. In
heir seminal paper, they model the jigsaw puzzle solving prob-
em as a Traveling Sales Person (TSP) problem. Webster et al. [10]
dentify critical isthmus points as robust global features for match-
ng the pieces of a 2D jigsaw puzzle. The critical isthmus points
re extracted using a medial axis transformation. Leitato and Stolfi
11] use multi-scale filtering, an initial matching followed by refine-

ent and pruning of the search space with incremental dynamic
rogramming to solve the 2D jigsaw puzzle problem. Goldberg et
l. [12], on the other hand, address the same problem of 2D jig-
aw puzzle reconstruction with a global relaxation approach after
etection of fiducial points (robust canonical locations) on the

D jigsaw puzzle pieces. Makridis and Papamarkos [13] propose
new technique which employs both geometrical and color fea-

ures for jigsaw puzzle matching. Barequet and Sharir [14] present
mproved geometric hashing techniques for partial surface and vol-
me matching in 3D for solving 3D jigsaw puzzles. Papaioannou et
aging and Graphics 33 (2009) 333–342

al. [15] formulate a novel matching error metric for solving the 3D
reconstruction problem via matching of individual parts using a
3D shape signature. Huang et al. [16] use integral invariants in the
process of geometrically matching fragments of 3D objects. Some
other important instances of the 3D jigsaw puzzle solving problem
include the archaeological fragment assembly problem by Kampel
and Sablantig [17]. The 3D earthenware assembly problem using
axially symmetric shape descriptors for the broken fragments in
conjunction with a Bayesian reconstruction procedure as formu-
lated by Willis and Cooper [18] is also an instance of 3D jigsaw
puzzle solving.

A flowchart of the proposed multi-fracture reconstruction
scheme is diagrammed in Fig. 1. As shown in the figure, the recon-
struction process is complete only after all the fracture surface
pairs in a solution set si, derived from the MWGM algorithm, are
registered satisfying the volumetric matching constraints. The
primary contribution of the paper lies in proposing the MWGM
algorithm for identification of opposable fracture surface pairs
in CT image of a patient who has suffered severe craniofacial
trauma. To the best of our knowledge, no work has so far been
reported which uses a graph matching-based approach for virtual
multi-fracture reconstruction in particular, and assembling a 3D
jigsaw puzzle in general. A novel score matrix formulation which
Fig. 1. Flowchart for virtual multi-fracture reconstruction.
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Fig. 2. A CT image sequence of a mandible with multiple fractures.

CMW algorithm for establishing a correspondence between two
racture surfaces while registering them using the ICP algorithm.
inally, monitoring the reconstruction process at each step using
olumetric constraints also deserves special mention.

. Image processing

The input to the computer vision-guided virtual craniofacial
econstruction procedure is a sequence of 2D grayscale CT images
f a human mandible that exhibits multiple fractures. Fig. 2 shows
hree consecutive CT slices of such an image sequence. Some basic
mage processing procedures are undertaken to segment the broken
one fragments from the surrounding tissue. A surgeon then identi-
es the fracture surfaces and helps in extraction of the needed frac-
ure surface data. A brief description of these tasks is given below.

In the CT images, the bright area with higher Hounsfield unit
alues [19] represent the fractured mandible (bone) fragments
hereas the dark areas with relatively lower Hounsfield unit values

epresent the surrounding soft tissue. Hence, the threshold value for
he binarization of the CT image is not difficult to select and simple
hresholding was observed to be sufficient. For a grayscale CT image
lice G(i, j), we obtain a binary image B(i, j) by setting

(i, j) =
{

1 if G(i, j) > T,
0 otherwise

(1)

The result of the simple thresholding is shown in Fig. 3, where
he broken fragments are represented by the highest intensity value
nd everything else by the lowest intensity value. A 2D Connected
omponent Labeling (CCL) procedure is used on the binary image.

he results of the 2D CCL procedure are propagated across the CT
mage slices, resulting in a 3D CCL algorithm. A 3D component (a
ractured jaw bone in this case) is identified by computing the area
f overlap of the corresponding 2D components in successive CT
mage slices.

Fig. 3. The result of thresholding on the three CT slices in Fig. 2. The broken f
ages in (a)–(c) represent three consecutive slices in the sequence.

The result of the CCL procedure is shown in Fig. 4, where the six
broken fragments are represented by six different grayscale values
and the background pixels are assigned the highest intensity value
for better visualization. The fracture surfaces on the broken bone
fragments are identified manually by the surgeon in the current
implementation. The task of interactive contour data extraction is
performed on each of the binary image slices. A surgeon/user is
required to click on the end points of the fracture contours in each
of the binary image slices. The intervening contour points are then
automatically generated using a contour tracing algorithm. The
contour points, obtained from the individual binary image slices,
are collated to generate the 3D surface point dataset. A 3D surface
point dataset is thus generated for each fracture surface. The above
image processing tasks are necessary to obtain the surface data for
all the fracture surfaces corresponding to the broken bone frag-
ments. The fracture surface data is used as input for solving the
combinatorial pattern matching problem and generating the 3D
transformation for surface registration. The 3D transformation is
then applied to the appropriate bone fragments for the purpose of
virtual reconstruction.

4. Design of a score matrix

A score matrix is formulated based on the appearance of var-
ious mandibular fragments in the input CT image sequence. The
mandibular fragments are classified as terminal or non-terminal,
based on the presence or absence of condyles (an extremity of
the human mandible that exhibits pronounced sphericity), respec-
tively. It is worth-mentioning that this type of prior rudimentary

classification of the bone fragments to be assembled is similar to
the schemes of Wolfson et al. [9] and Goldberg et al. [12] in the con-
text of automated jigsaw puzzle solving. Both Wolfson et al. and
Goldberg et al. separately assemble the border and interior frame
pieces of a jigsaw puzzle. In fact, Goldberg et al. further classify

ragments are shown in white while the background is shown in black.
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Fig. 4. The result of connected component labeling on the three CT slice

he border pieces as indents, outdents and flat sides. A terminal
ragment in our case is similar to a border piece of a jigsaw puzzle
hereas a non-terminal fragment corresponds to an interior piece

f a jigsaw puzzle. A terminal fragment is often found to contain a
ingle fracture surface. By contrast, a non-terminal fragment often
xhibits two fracture surfaces (for example, please see Fig. 5). In
he present work, experiments and subsequent mathematical anal-
sis are based on the assumption that a terminal fragment has one
racture surface and a non-terminal fragment has two fracture sur-
aces. However, the proposed scheme is flexible enough to handle
ny number of fracture surfaces for a given fragment. Each fracture
urface is represented by a collection of 3D data points obtained by
xtracting and collating the corresponding fracture contour points
n the individual 2D CT image slices. In the case of 2D jigsaw puzzle

olving, the score matrix formulation is based typically on curve
atching, where the matrix elements denote the compatibility

etween potentially opposable edge points [20,21]. In our case, we
eed to estimate the matching score between the 3D fracture sur-

ig. 5. A Single 2D slice showing the terminal and non-terminal fragments with the
ractured contours.
g. 2. Each broken fragment is represented by a separate grayscale value.

faces extracted from the CT image slices. A high matching score is
assigned to a pair of fracture surfaces if (a) they are determined to
be spatially proximal, and (b) they are determined to exhibit com-
plementary (opposable) fracture surface characteristics. We have
used both of these factors in determining the matching score for
the proposed score matrix formulation.

4.1. Mathematical formulation of spatial proximity

The various fracture surfaces under consideration possess a
varying number of data points. The formulation of a distance mea-
sure (i.e., a measure of spatial separation) between any surface
pair requires the establishment of correspondence between the
data points on the two surfaces. Given the dimensions of the score
matrix, i.e., the number of possible fracture surface pairs for which
the above correspondence has to be established beforehand, the
task of determining a distance measure is computationally very
expensive. We therefore use the Hausdorff distance, which does
not need prior determination of correspondence between the two
data point sets, to yield a measure of spatial separation between
them. The Hausdorff distance H(A, B) between two datasets A and
B is given [22] by:

H(A, B) = max(h(A, B), h(B, A)), (2)

where h(A, B) denotes the directed Hausdorff distance between the
two datasets A and B and is defined as

h(A, B) = max
a ∈ A

(min
b ∈ B

‖a − b‖). (3)

Here ‖a − b‖ represents the Euclidean distance between the points
a and b. Each such a, and b, in our case, is a 3D data point in the
fracture surface data set A and B, respectively. The computation of
the Hausdorff distance can be performed directly in O(mn) time, i.e.,
quadratic polynomial time, where m and n denote the cardinalities
of the two fracture surface data sets under consideration.

4.2. Mathematical formulation of surface characteristics

There are well-known measures for characterizing 3D surfaces
described in the computer vision literature, of which the Gaussian
and Mean curvatures are the most prominent [23]. Each fracture
surface in the present scenario is viewed as a collection of sev-
eral fracture contours. It is to be noted that the determination of
the Gaussian and Mean curvatures is relatively computationally

intensive and also more sensitive to noise as compared to the deter-
mination of contour curvature. The choice of contour curvature as a
measure of surface irregularity is further justified by the fact that it
also possesses the properties of rotational and translational invari-
ance [24]. The contour curvature for a point (x, y) in a given CT image
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lice (for a specific value of z) is given by [24]:

(x, y) = (d2y/dx2)

(1 + (dy/dx)2)
3/2

. (4)

e formulate a function which captures the compatibility between
wo fracture surfaces using contour curvature. The function FS(A, B)
or a pair of surfaces A, B is defined as the sum of the scores fs(a, b)
or each possible point pair, one point from each of the surfaces. If
he two points under consideration have the same signs for their
ontour curvatures, then they cause the overall surface matching
core to increase; otherwise they cause it to decrease. Thus, we can
rite:

S(A, B) =
∑
a ∈ A

∑
b ∈ B

fs(a, b). (5)

ntuitively, the score fs(a, b), between any pair of points a, and b,
s high if (a) the slice-wise locations of two points are spatially
roximal, and (b) the relative positions of the two points in their
espective slices (estimated using the end-points of the slices as
he reference points) are proximal and (c) the curvature values of
he two points are close. The score will be low if any of the above
riteria is not satisfied. Thus, we can quantitatively express fs(a, b)
s the product of the above three factors and a sign function:

s(a, b) = S(a, b)E(a, b)C(a, b)sg(cacb) (6)

here

S(a, b) = 2
1 + exp(|sa − sb|) ,

E(a, b) = 2
1 + exp(|ea − eb|) ,

C(a, b) = 2
1 + exp(|ca − cb|) ,

sg(cacb) =
{

+1 if cacb > 0
−1 if cacb < 0.

(7)

ere S(a, b), E(a, b) and C(a, b) respectively denote the slice-wise
ocation-based score, relative position within the slice-based score
nd the curvature value-based score of the two surface points a and
where sa(sb), ea(eb), ca(cb) respectively denote the slice value, rel-
tive position value of the surface point within the slice and contour
urvature value (given by Eq. (4)) of the surface point a(b).

.3. Elements of the score matrix

The elements of the score matrix SC(A, B) are computed as a lin-
ar combination of the inverse Hausdorff distance and the surface
atching score:

C(A, B) = �1H−1(A, B) + �2FS(A, B) (8)

here the coefficients of the linear combination are determined
sing the following constraints:

�1 + �2 = 1,
�1

�(H−1(A, B))
= �2

�(FS(A, B))
.

(9)
n Eq. (9), �(H−1(A, B)) and �(FS(A, B)), respectively, denote the
tandard deviation of the terms H−1(A, B) and FS(A, B) for all pos-
ible fracture surface pairs A and B. Let us denote the number of
racture surfaces by nfs and enumerate the fracture surfaces as
, 2, . . . , nfs.
aging and Graphics 33 (2009) 333–342 337

5. Identification of opposable fracture surfaces

In this section, we first derive an expression showing the expo-
nential behavior of the current reconstruction problem in terms of
number of reconstruction options. Next, using a Maximum Weight
Graph Matching algorithm, we show how we can identify the jux-
taposable fracture surface pairs in polynomial time.

5.1. Combinatorial nature of the reconstruction problem

Theorem 1. Given that a non-terminal fragment has two fracture
surfaces and a terminal fragment has one fracture surface, the number
of possible reconstruction options rcn, where n is the total number of
fragments, is given by: rcn = (n − 2)!2(n−2).

Proof. With n fragments in total, we have (n − 2) non-terminal
fragments and 2 terminal fragments. The (n − 2) non-terminal frag-
ments can be encountered in any of (n − 2)! possible orderings.
Furthermore, each non-terminal fragment can be oriented such that
either of the fracture surfaces is the first surface in the sequence.
This accounts for the factor 2(n−2) in counting the number of possi-
bilities. �

The presence of a factorial and an exponential term in the above
expression for rcn clearly demonstrates the combinatorial nature of
the reconstruction problem in terms of the number of reconstruc-
tion options. Thus, an exhaustive search to identify the opposable
fracture surfaces quickly becomes impractical. Note that even for
such a reasonably small number of fragments as 6, the number of
reconstruction options is already 384. It is important to mention
that the analysis with the assumption of two fracture surfaces per
non-terminal fragment and one fracture surface per terminal frag-
ment can be easily generalized when the above assumptions are
relaxed.

5.2. Maximum weight graph matching for restricting the
reconstruction options

As mentioned in the literature review, various algorithmic and
computational geometry-based approaches have been undertaken
to restrict the number of reconstruction options for the jigsaw
puzzle problem. We use the Maximum Weight Graph Matching algo-
rithm to achieve this goal by generating k solution sets, where k ≥ 2
and the solution sets are indexed by j, j = (1, . . . , k). A result on
the time complexity of MWGM algorithm is stated (without proof)
below.

Theorem 2. The worst-case time complexity of the maximum weight
graph matching (MWGM) algorithm for a graph G = (V, E) with |V | = n
is O(n4).

For a detailed proof of the above theorem we refer the interested
reader to [25,26]. We state and justify the following claim regarding
the modeling of the current reconstruction problem as a MWGM
problem.

Claim 1. The Maximum Weight Graph Matching algorithm for a
weighted graph correctly identifies a number of solution sets, where
each individual solution set is guaranteed to include all the fracture
surfaces given by a collection of unordered opposable fracture surface
pairs, in polynomial time.

Justification: The fracture surfaces are modeled as the vertices

of a weighted graph G = (V, E). Let wAB be the weight of an edge
between two vertices (fracture surfaces in this problem) A and
B (where A, B belongs to V). The anatomical constraints preclude
placement of edges between certain pairs of vertices. For these
edges, we set wAB = 0. For other edges, we assign the pre-computed
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eal symmetric score matrix elements SC(A, B) (from Eq. (8)) to wAB.
he goal is to identify the sets of opposable fracture surfaces such
hat the sum of the matching scores is maximized. Thus, the cur-
ent reconstruction problem maps to the following well-known
aximum weight graph matching problem in graph-theory, i.e.,

iven a weighted undirected graph G = (V, E) with edge weights
AB ≥ 0, obtain a pairing of the vertices such that the sum of the

dge weights
∑

wAB is maximized. The number of vertices of our
raph is even and hence a complete/perfect matching is guaran-
eed, i.e., a solution set will always include a possible pairing of
ll the (opposable) fracture surfaces. Furthermore, since the score
atrix is symmetrical and the graph is undirected, the ordering
ithin an individual pair of surfaces does not matter. Once a solu-

ion is generated, the edge weights for all pairs in it are set to 0
rior to generating the next solution. Thus successive solutions are
isjoint sets of pairs (of fracture surfaces). Each successive solu-
ion obtained by the MWGM algorithm set will lead to a decrease
n the value of

∑
wAB compared to its previous solution. Let the

um of edge-weights in two successive solutions (j and (j + 1)) be
enoted by

∑
wj

AB and
∑

wj+1
AB , respectively. We continue to gener-

te k solution sets from the MWGM algorithm unless the following
onstraint is violated:∑

wj
AB −

∑
wj+1

AB

)
< p

∑
wj

AB. (10)

here p is an appropriately chosen positive constant (0.1 for the
resent problem). From Theorem 2, the MWGM algorithm for a
eighted graph G with n vertices (i.e., n = |V |), has O(n4)run-time

omplexity. If we generate k orthogonal solution sets with no edges
n common (according to Eq. (10)), where k is usually much less
han n, then the time-complexity of our proposed solution is O(kn4),
hich is polynomial.

. Pairwise registration of the fracture surfaces

The fracture surface pairs are first registered using the ICP
lgorithm described in [28] with the incorporation of a novel
raph-theoretic enhancement. The main steps in the enhanced ICP
lgorithm [4] are as follows:

1) The matching points in one fracture surface data set, called the
model data set, that correspond to points in the other fracture
surface data set, called the sample data set, are determined and
termed as the closest set. The matching point pairs are deter-
mined using the MCMW bipartite graph matching algorithm
[26]. The use of the MCMW bipartite graph matching algorithm
obviates the need for any prior alignment of the two fracture
surface data sets when computing the closest set in the ICP
algorithm.

2) The 3D rigid body transformation computed using the closest
set is applied to the original sample data set and the Mean
Squared Error (MSE) between the transformed sample data
points and the corresponding closest points is computed. The
MSE (�2) is given by

�2 =
(

1
p

) p∑
i=1

((ci − (Rsi + T))2) (11)

where R denotes the rotation matrix, T denotes the translation
vector, si denotes a point in the sample data set, ci represents
the corresponding point in the closest set and p = min{|V1|, |V2|}

(where |V1| and |V2| denote the cardinalities of the two fracture
surface datasets).

The above two steps are repeated with an updated sample set
generated by applying R and T obtained in the current iteration
aging and Graphics 33 (2009) 333–342

to the current sample set) until a pre-specified error convergence
criterion (0.01 in our case) is reached. Next, we elaborate upon the
MCMW bipartite graph matching algorithm and justify an associ-
ated claim.

Theorem 3. The worst-case time-complexity of the Maximum Cardi-
nality Minimum Weight (MCMW) matching algorithm for a bipartite
graph G = (V1 ∪ V2, E) with |V1| = |V2| = n is O(n3).

For the proof of the above theorem we refer the interested reader
to [25,26].

Claim 2. Given that in typical cases of craniofacial injury, the rota-
tional or translational displacements are not very large, the Maximum
Cardinality Minimum Weight (MCMW) matching algorithm for a
bipartite graph correctly establishes the correspondence between two
fracture surfaces at every stage of the Iterative Closest Point (ICP) algo-
rithm in polynomial time.

Justification: Our justification is based on Theorem 3. Each frac-
ture surface, consisting of several 3D data points, is modeled as a
vertex set of a weighted bipartite graph G = (V1 ∪ V2, E). The bipar-
tite graph is complete, i.e., there exists an edge eij ∈ E between
each vertex pair (vi, vj) where vi ∈ V1 and vj ∈ V2. The weight wij of
edge eij is chosen to be the Euclidean distance between the cor-
responding vertices vi ∈ V1 and vj ∈ V2 where i = 1, 2, . . . , n1, j =
1, 2, . . . , n2, n1 = |V1| and n2 = |V2|. The vertex set with lower car-
dinality is termed the sample set and that with the higher cardinality
is termed the model set. The goal is to compute the closest set,
i.e., a maximal subset of the model set wherein each point cor-
responds to a unique point in the sample set such that all points
in the sample set are exhausted (principle of maximum cardinal-
ity) and simultaneously the sum of the edge weights between all
pairs of corresponding points (i.e.,

∑
wij) is minimized (principle

of minimum weight). This procedure is performed in each itera-
tion of the ICP algorithm. In case of small or moderate translational
or rotational displacements of the broken bone fragments, typical
for a craniofacial injury, this graph theoretic optimization proce-
dure, with an objective function that is formulated as the sum of the
Euclidean distances between all the pairs of matched points, correctly
matches a sample point with a model point without distorting
the shape of the fracture surfaces. A greedy approach [27], based
on the minimum Euclidean distance between individual pairs of
points considered one at a time, on the other hand, would map
more than one sample point to a single model point and dis-
tort the fracture surface shape. Our problem formulation maps to
the following well-known Maximum Cardinality Minimum Weight
(MCMW) Bipartite Graph Matching Problem in graph theory, i.e.,
given a weighted complete bipartite graph G = (V1 ∪ V2, E) with
edge-weights wij ≥ 0, determine a pairing of the vertices between
sets V1 and V2 such that the vertex set with smaller cardinality is
completely exhausted and the total cost of the pairings is minimum.
By virtue of its construction the proposed bipartite graph is com-
plete with E = V1 × V2 where |V1| ≤ |V2|, so a maximum cardinality
matching must contain n1 edges. From Theorem 3, the MCMW algo-
rithm runs in O(n3) time for a bipartite graph with two vertex sets
of equal cardinality n. In our case we take n = max(n1, n2). Thus, the
proposed solution clearly runs in polynomial time.

7. Shape monitoring of the reconstructed mandible

Note that we have so far used (a) a score matrix that is for-
mulated in a manner that is favorable to an optimal solution and

(b) a non-greedy MWGM algorithm to solve the problem of multi-
fracture reconstruction. In this section, we exploit the knowledge
of the global shape of a human mandible to monitor and verify the
reconstruction process at each step. The literature on automated
jigsaw puzzle assembly includes such a verification or validation
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Table 1
Extreme score parameter values.

MWGM algorithm demonstrates that effective reconstruction can
be obtained by exploring just two solutions. On a 1.73 GHz Pen-
tium machine, generation of the solution sets (representing various
opposable fracture surface pairs as shown in Table 2) takes much

Table 2
A.S. Chowdhury et al. / Computerized Med

rocedure. For example, Burdea and Wolfson [29] discuss robotic
erification of a jigsaw puzzle assembly following the machine
ision and the combinatorial optimization algorithms. Our over-
ll strategy in solving the multi-fracture reconstruction problem
s along similar lines. Using the MWGM algorithm in the manner
escribed in Section 5.2, we can generate multiple solution sets
here each solution set is a collection of fracture surface pairs. The

verall approach is to start with the best solution set and perform
hape checking after every additional fracture surface pair is regis-
ered. At any stage in the reconstruction procedure if the shape

atching constraint(s) is(are) violated, we abandon the current
olution and restart the registration procedure with the next best
mongst the orthogonal solutions produced by the MWGM algo-
ithm. Since the desired outcome of the reconstruction is known a
riori, we can actually use the desired outcome or a close approx-
mation thereof as a reference. We use an unbroken human jaw
s a reference shape for this purpose. We compare the partially
econstructed jaw at every stage of the reconstruction procedure
ith the unbroken reference jaw. There are several shape matching

lgorithms described in the computer vision literature [30,31]. We
mploy two constraints based on the Tanimoto coefficient [32] in
he context of volumetric shape matching. The Tanimoto coefficient
Cf,g between two volumetric shapes f and g is defined as follows
32]:

Cf,g = Of,g

If + Ig − Of,g
(12)

here

f =
∫ ∫ ∫

f 2(x̂, ŷ, ẑ)dxdydz (13)

g =
∫ ∫ ∫

g2(x̃, ỹ, z̃)dxdydz (14)

f,g = 2

∫ ∫ ∫
f (x̂, ŷ, ẑ)g(x̃, ỹ, z̃)dxdydz (15)

ere (x̂, ŷ, ẑ) = (x − xRC, y − yRC, z − zRC ) and (x̃, ỹ, z̃) =
x − xSC, y − ySC, z − zSC ) respectively represent the points of
he reference mandible R and the reconstructed mandible S with
espect to their individual centroids denoted by (xRC, yRC, zRC ) and
xSC, ySC, zSC ). Here f and g denote the characteristic functions of R
nd S, i.e.,

(x̂, ŷ, ẑ) =
{

1 if(x̂, ŷ, ẑ) ∈ R
0 otherwise

(16)

(x̃, ỹ, z̃) =
{

1 if(x̃, ỹ, z̃) ∈ S
0 otherwise

(17)

ow, we state and justify the following claim about the constraints
ased on volumetric matching derived from the Eqs. (12)–(17).

laim 3. The following two shape constraints based on volumetric
atching are sufficient to determine the correctness of the reconstruc-

ion procedure at any stage:

(a) TCf,g is monotonically non-decreasing.
b) 2Ig − Of,g ≤ 2qIg where q is a small positive number (chosen as

0.01 for the present problem).

Justification: At each stage of the reconstruction procedure,

n additional bone fragment is added to the partially recon-
tructed mandible thus far. Ideally (if S is contained in R) then
dding a fragment to S increases the numerator in the defin-
ng Eq. (12) and decreases the denominator. So, if TCf,g decreases

hen a fragment is added that’s compelling evidence that the
Score parameter extremes Value Fracture surface pair

Min. overall score 1 (4, 9)
Max. overall score 1362 (1, 4)

solution set we are working with is wrong and should be aban-
doned. This justifies the constraint (a). Note that the reference
mandible remains the same throughout the reconstruction proce-
dure, whereas the reconstructed mandible increases in volume in
successive stages of reconstruction. Furthermore, note that both,
the reference mandible and the reconstructed mandible under con-
sideration, are binary objects. It is quite evident from the Eqs.
(12)–(17) that at any stage, the extent of the volumetric overlap Ofg

should be exactly twice the reconstructed volume Ig , but again only
in the ideal case. So, for a satisfactory solution set, we expect that
the inequality should hold for a small value of q (chosen as 0.01 for
the present problem). Thus, we obtain 1 − Ofg/2Ig < q. Multiplying
both sides by 2Ig , we get the desired result (b).

8. Analysis of experimental results

The crux of the virtual multi-fracture reconstruction problem
is its combinatorial pattern matching aspect. Our main emphasis
in this work is to show how the MWGM algorithm can efficiently
solve this pattern matching problem. It is relevant to mention
that segmentation of broken fragments in more complex multi-
fracture situations represents an important though independent
problem that is beyond the purview of this paper. For the pur-
pose of illustration, we show here the experimental results on a
typical multi-fracture CT image sequence with 6 broken fragments
and 10 fracture surfaces altogether (please see Fig. 2). After the ini-
tial image processing tasks of thresholding, connected component
labeling and area-based filtering are performed, six broken frag-
ments are separated (see Figs. 3 and 4). The two fracture surfaces
belonging to the terminal fragments are numbered 1 and 10 and the
remaining eight fracture surfaces of the non-terminal fragments are
numbered from 2 to 9 as shown in Fig. 5.

Table 1 shows the extreme values of the matching score amongst
all possible fracture surface pairs. The higher the value, the better is
the compatibility for matching. Thus, fracture surfaces 1 and 4 are
excellent candidates for registration while it is highly unlikely that
fracture surfaces 4 and 9 would be matched together.

Table 2 shows the solution sets obtained from the MWGM algo-
rithm along with the sum of the edge weights for each solution set.
We choose p = 0.1, which, in this case, results in the termination
of the MWGM algorithm after obtaining two orthogonal solution
sets based on Eq. (10). As the score of the first solution is much
higher than that of the second, we cannot expect more competetive
solutions. The solution pattern clearly demonstrates the effective-
ness of the designed score matrix in being able to yield the optimal
solution.

Note that the number of reconstruction options for this image
sequence is known to be 384 (please see Section 5.1). The
The results from the Graph Matching algorithm.

Solution set Score of the solution set

((1,4), (2, 5), (3, 6), (7, 8), (9, 10)) 4987
((1,3), (2, 9), (4, 6), (5, 7), (8, 10)) 3123
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Fig. 6. Different stages of multi-fracture reconstru

ess than 1 min. Fig. 6 describes the various stages of the recon-
truction with the best solution set (obtained from row 1 of
able 2) using the improvised ICP algorithm described in Section
. The first row shows three successive images in the original CT

equence with six broken fragments or components (denoted by
right intensity values), obtained after preprocessing the original
T image sequence. Each of the later five rows shows the same
hree images with a new pair of fracture surfaces registered at each
tage.
for the three consecutive CT slices shown in Fig. 2.

Table 3 describes the results at the end of each step of the proce-
dure for shape monitoring of the partially reconstructed mandible
at various stages of reconstruction. At each stage, both shape con-
straints (defined in Claim 3 in Section 7) are satisfied with a choice

of q = 0.01 (constraint 2 in Claim 3). Thus, we proceed with the best
solution of the MWGM algorithm to complete the registration of all
five fracture surface pairs. Rows 2–4 of Table 3 show that the value
of TCf,g increases by a relatively small amount when a fragment,
which is relatively small in volume, is added to the partially recon-
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Table 3
The results of shape monitoring at various stages of the reconstruction process (A =
(2Ig − Of ,g )/2Ig ).

Various stages of reconstruction TCf,g A

(1, 4) registered 1.08 0
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(1, 4), (2, 5)) registered 1.47 0
(1, 4), (2, 5), (3, 6)) registered 1.57 0
(1,4), (2,5), (3,6), (7, 8)) registered 1.69 0
ll 5 fracture surface pairs registered 21.71 0.0003

tructed mandible. In the last step of the reconstruction, when a
erminal fragment with much larger volume is added to the par-
ially reconstructed mandible by registering the fracture surfaces 9
nd 10, the value of TCf,g increases significantly. This is also evident
rom Fig. 6. The MSE for registration of different pairs of fracture
urfaces are within 1–2 mm2.

. Conclusions and future directions

We have addressed an important surgical problem of virtual
raniofacial reconstruction in the area of biomedical pattern analy-
is. The problem is appealing from both, an application standpoint
nd a theoretical perspective. From the application standpoint,
e have achieved a fast and accurate reconstruction of a frac-

ured human mandible from several broken fragments, a situation
hich poses severe challenges for a practicing surgeon. Using our

pproach, the surgeon can easily identify the opposable fracture
urface pairs within a very short period of time. After the identifi-
ation of the opposable fracture surface pairs, the actual registration
f these surfaces can be performed. From a theoretical perspective,
n the other hand, the problem clearly resembles a 3D jigsaw puzzle
ssembly problem which entails significant combinatorial pattern
atching. We have employed computer vision and graph matching

lgorithms to solve this extremely challenging problem. A score
atrix is first constructed using a linear combination of inverse
ausdorff distance and a function based on contour curvature. A
WGM algorithm is used next to identify the opposable fracture

urface pairs. The individual fracture surface pairs are registered
sing an MCMW bipartite graph matching algorithm. Finally, the
verall reconstruction process is continuously monitored by shape
onstraints based on computation of the Tanimoto coefficient. The
roposed solution has the potential to reduce considerably the
perative time, operative cost and patient trauma during actual
econstructive craniofacial surgery.

One direction for future research is to extend the proposed
olution for virtual craniofacial reconstruction to other areas of
econstructive surgery involving multiple fractures such as ortho-
edic surgery. Issues related to the segmentation of bone fragments

n CT images exhibiting complex multiple fractures will also be
ddressed. We also intend to focus on computer vision-guided iden-
ification of fracture surfaces and subsequent extraction of fracture
urface data to make the proposed virtual reconstruction scheme
ully automated.
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