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Methods are developed for finding the number of unlabeled bridgeless or 2-line- 
connected graphs of any order. These methods are based on cycle index sums, but 
it is shown how to avoid explicit compution with cycle index sums by using 
suitable inversion techniques. Similar results are obtained for unlabeled bridgeless 
graphs by numbers of points and lines, and connected graphs by numbers of points 
and bridges. Corresponding results for labeled graphs are found as corollaries. 
When lines or bridges are required as enumeration parameters in the labeled case it 
is also shown how to obtain improved recurrence relations. The latter appear to 
have no analog for unlabeled graphs. 

INTRODUCTION 

A graph is k-line-connected if and only if the removal of any set of fewer 
than k lines leaves a connected graph. Thus a graph is l-line-connected if 
and only if it is connected. A bridge in a graph G is a line whose removal 
increases the number of connected components of G. Thus a graph is 2-line- 
connected if and only if it is connected and contains no bridges. Our object 
is to count the unlabeled 2-line-connected graphs by number of points. In 
doing so we also count bridgeless graphs. Counting either variety as labeled 
graphs is easier, and is deduced as a corollary to the unlabeled counting 
results. It is also shown how to accomplish these enumerations by number of 
lines or bridges as well as number of points, in principle a straightforward 
matter. 

By graph we mean a simple undirected graph with no loops or multiple 
lines. The basic facts and definitions concerning connectivity are set out in 
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19, Chaps. 3 and 51. Recall that a point in a graph G is a cutpoint if its 
removal increases the number of connected components of G, and a graph is 
nonseparable if it is connected and has no cutpoints. Thus nonseparable 
graphs are the point-deletion analog of 2-line-connected graphs. The blocks 
of a graph are its maximal nonseparable subgraphs. The lines of any graph 
are partitioned by its blocks. In [ 171 it was shown how to count unlabeled 
nonseparable graphs. The idea was to use cycle index sums instead of 
ordinary generating functions. By lifting to cycle index sums the known 
methods for counting graphs with given blocks, and also the known methods 
for counting all graphs, a relation was obtained which could be solved for 
the cycle index sum (and hence the numbers) of all nonseparable graphs. 

Now, a graph is bridgeless if and only if it does not contain the single line 
K, as a block. Thus the method of [ 171 already offers a method of counting 
bridgeless graphs. One first finds the cycle index sum for all blocks, 
subtracts the terms corresponding to K,, and then counts the graphs having 
the remainder as blocks. This approach is very indirect, and involves much 
explicit computation with cycle index sums. 

In this paper a more direct method of counting bridgeless graphs is 
developed. In a sense it is parallel to, rather than building from, the 
enumeration of nonseparable graphs. A maximal 2-line-connected subgraph 
of a graph G is called a lump. (There seems to be no previously established 
terminology for this.) Clearly the lumps of G partition the points, and a line 
is not contained in some lump just if it is a bridge. We show how to find the 
cycle index sum for all graphs with given lumps. Comparison with the cycle 
index sum of all graphs gives a relation which can be solved for the cycle 
index sum of all 2-line-connected graphs. An inversion device is then applied 
which allows the solution to be obtained without explicit cycle index sum 
computations. This device is also applicable to the counting of nonseparable 
graphs and graphs without points of degree 1 or 2. 

Section 1 contains a review of the cycle index sum methods which are 
required later, along with a development of the inversion procedure. In deter- 
mining the cycle index of all graphs with given lumps, we start in Section 2 
with the rooted case. Then in Section 3 the unrooted case is derived by an 
approach similar to that which Otter [ 131 perfected for trees. The essential 
structural fact relied on is the tree-like structure of the lumps within any 
connected graph. This was implicit in [I]. However, in the latter paper the 
attempt was made to avoid the rooted case entirely, and the enumeration 
method arrived at was not successful. In Section 4 the results of the previous 
sections are applied to obtain a relation between all connected graphs and all 
connected bridgless graphs. Inverting this relation gives our enumeration of 
unlabeled bridgeless graphs. In Section 5 the methods are extended to include 
lines or bridges as enumeration parameters. In particular it is shown how to 
count unlabeled graphs or connected graphs by numbers of points and 



278 HANLON AND ROBINSON 

bridges without recourse to explicit computation with cycle index sums. The 
labeled analogs of all the unlabeled counting results are derived as 
corollaries in Section 6. It is also shown how to derive more efficient 
equations when lines or bridges are required, by methods which do not apply 
in the unlabeled case. In Section 8 some related results and open questions 
are discussed. 

1. CYCLE INDEX SUM METHODS 

If r is a finite group represented (faithfully or not) as permutations on a 
finite set, then the cycle index Z(r) is the polynomial 

Here x, , x2 ,... are distinct commuting variables and j(i, a) is the number of i- 
cycles in the disjoint cycle decomposition of o. For a graph G let T(G) 
denote the automorphism group acting on the point set, and let Z(G) denote 
the cycle index of T(G). For instance, when G is the graph K, - e depicted in 
Fig. 1, we have Z(K, - e) = ix: + ixix, + ix:. 

For a set S of graphs, let Z(S) denote the cycle index sum 

Z(S) = -i- Z(G). 
GTS 

This will be used for sets of unlabeled graphs, in which there are no repeats, 
so that even when S is infinite the cycle index sum Z(S) is a well-defined 
member of the power series ring Q[xi, x2, x3,...] over the field Q of 
rationals. The substitution of xi for xi, i = 1, 2, 3,..., is indicated by the 
notation [xi&xi]. Thus Z(K,-e)[xicxi]=~x4+~x4+~x4=x4. In 
general, we say that a monomial ZZu, jCi) has weight xi ij(i). Then if G has p 
points and u E T(G), every monomial in Z(G) has weight p and so 
Z(G)[xpx’] =x p. For a set S of unlabeled graphs, then, we have 

S(x) = Z(S)[x, +-xi] 

izl 
FIG. 1. K, -e. 
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for the ordinary generating function in which the coeflicient of xp is the 
number of graphs in S having exactly p points. 

For each result in the classical Pblya theory of enumeration there is a 
corresponding generalization in which power series are replaced by cycle 
index sums. Polya’s Hauptsatz rests on the fact that the number of orbits of 
a finite permutation group is the average over the group of the number of 
fixed points. This fact is usually called Burnside’s lemma [ 11, p. 391. Polya 
applied Burnside’s lemma to functions in Yx which are inequivalent under 
the action of a group r on X. We suppose that the range elements in Y are 
assigned nonnegative integer weights, and that their generating function by 
weight is F(x). Then the generating function by total weight of the I-- 
inequivalent functions is obtained from Z(T) by replacing each variable xi by 
F(x’); see [ 14 or 11, p. 421. The result of this operation on Z(T) and F(x) is 
denoted Z(T)[F(x)]. 

Now if the members of Y are graphs with order as the weight, then F(x) 
can be replaced by the cycle index sum Z(Y). The replacement xi t F(x’) 
generalizes to xi c Z(Y)[xj t xii], and the latter is abbreviated to [Z(Y)]. We 
can then state the following generalization of Polya’s Hauptsatz, which is 
[17, Eq. P)l- 

COMPOSITION THEOREM. The cycle index sum of the r-inequivalent 
functions in Yx is Z(T)[Z( Y)]. 

Here the automorphism group of a function in Yx is a generalized wreath 
product of its stabilizer in r over the automorphism groups of its values in Y. 
This turns out to be the natural definition in a number of applications. 

The development of [ 171 was based on [ 161, in which a weighted form of 
Burnside’s lemma was proved in order to obtain a cycle index sum for super- 
positions of two sets. The main result is called the composition theorem in 
the exposition of [ 11, Chap. 81. An equivalent to the composition theorem 
was also proved independently in [3]. 

Let r = T(G) be the automorphism group of a graph G in the composition 
theorem. Then the cycle index sum for functions from V(G) to Y which are 
inequivalent under all automorphisms of G is 

Z(G)[Z(Y)l. 

Now if (1.1) is summed over all graphs G in a set B we find 

(1.1) 

c Z(G)[W’Il = WO[Z(Y)I. 
GEE 

(1.2) 

The equality in (1.2) follows because the map from Q[x,, x2,...] + 
QKXl 3 x2 ,-*a ]I obtained by evaluating xj at Z(Y)[x, c xij] is a ring 
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homomorphism. In our applications of the composition theorem, expressions 
of form (1.2) yield equations of the form 

-WI = W)[w?l~ (1.3) 

where A, B, and Y are sets of graphs, and where Z(A) and Z(Y) are known. 
In this situation we will want to compute B(x) and we will have that Z(Y) = 
x, + Z,(Y), where Z,(Y) contains only terms of weight 2 or greater. 

From Eq. (1.3) it is possible to recover Z(B) by a simple comparison of 
coefficients. This yields B(x) by the equation B(x) = Z(B)[x]. 
Computationally, this method of finding B(x) is very clumsy since cycle 
index sums must be stored during the computation and since we actually 
compute Z(B) when only B(x) is desired. To avoid these inefficiencies we 
refine an idea used by Read to enumerate labeled graphs without endpoints 
[ 151. We invert Eq. (1.3) to an equation of the form 

Z(A)bu(x)l = B(x). (1.4) 

To do so, first solve for the unique generating function p(x) of the form 
p(x) = x + Crz2 u,x” which satisfies 

w%4x>l =x- (l-5) 

Such a generating function exists because Z(Y) decomposes as Z(Y) = 
x, + Z,(Y). Using this decomposition in (1.5) we have 

Xl W>l =x - z*m4x)l~ 

But x, [p(x)] = p(x) so we have 

x + 1 24,x” =x - Z,(y)[p(x)]. 
n=2 

(1.6) 

Now suppose that the first n coefftcients 1, u, ,..., u, of p(x) are known. Then 
the coefftcient of x”+’ in x - Z,(Y)[,u(x)] is determined since each term of 
Z,(Y) has weight 2 or more. So u, + , is given recursively by Eq. (1.6). Thus 
we can solve for a unique generating function ,u(x). 

Once p(x) is known, we compose p(x) into both sides of Eq. (1.3). We 
obtain 

WN~u(x)l = MBP(Y)~NP~(~)~~ (1.7) 

Define homomorphisms p,: Qux,,x, ,... j+Q[xl,x2 ,... 1 and to,: 
QUx, , x2 ,...lj + O[x] by 

%(Xj) = wxx, + xi,1 and V2Cxj> =Pu(x’>* 
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As composition of homomorphisms is associative we have 

P&,(w))) = hcpl) zm 

or equivalently 

w~w(Y)IMx)l = -ww~Y)M411. 
Combining (1.8), (1.7), and (1.5) we obtain 

Z(~Mx)l = W)bl =BW 

(1.8) 

and this completes the inversion of (1.3) to (1.4). When we compute B(x) 
from Eq. (1.4) instead of indirectly from Eq. (1.3), we replace the recursive 
solution of Z(B) from (1.3) by the solution of p(x) using (1.6). The recursive 
solution of p(x) is much easier than the recursive solution of Z(E) because 
all computations are done with ordinary generating functions instead of with 
cycle index sums. The inversion of an equation of form (1.3) to form (1.4) 
will play an important role in Sections 4 and 5. 

A roofed graph G’ is a graph in which one vertex (called the root) is 
designated as special. When a rooted graph is drawn, its root will be circled. 
Underlying each rooted graph G’ is a unique unrooted graph u(G’) which is 
obtained from G’ by unrooting the root point. If S is a set of graphs, S’ 
denotes the set of all rooted graphs G’ with the property that u(G’) is in S. 
The following result due to Ford relates the cycle index sum of the set S’ to 
the cycle index sum of the set S. 

FORD'S THEOREM. Let S be a set of graphs. Then 

Z(S’) = x1 -& Z(S). 
1 

Ford’s theorem can be proved using the weighted form of Burnside’s lemma 
(see [ 17, Theorem 1; 11, Sect. 8.51). As an example of Ford’s theorem, let S 
be the one element set containing the graph K, - e of Fig. 1. Earlier we saw 
that Z(S) = ix’: + +x:x2 + axi. The set S’ contains the two graphs in Fig. 2. 

FIG. 2. The set S’. 
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Each graph in S’ has cycle index fx: + +x:x, and so Z(S’) =x; + x:x* = 
-q(W,) Z(S). 

2. ROOTED CONNECTED GRAPHS WITH GIVEN LUMPS 

Our object is to count rooted, connected graphs with given lumps in terms 
of the numbers of rooted lumps. First we give a recursive structural charac- 
terization of the former which translates into a functional equation. The 
equation for the unlabeled case is given in terms of cycle index sums, as 
these are needed in Section 4 when solving for the total number of bridgeless 
graphs. 

Fix a set of lumps M, let K be the set of connected graphs with lumps 
from the set M and let K’ be the set of rooted, connected graphs with lumps 
from the set M. We examine the structure of a graph G from the set K’. As 
the lumps of a graph partition its point set, the root point of G must lie in a 
unique lump which will be called the rooted lump of G and will be 
denoted r(G). 

Let u be a point in r(G) and let u be a point adjacent to u but not in r(G). 
As u and u lie in distinct lumps, there exists a line e whose removal leaves u 
and u in different connected components of G - e. Obviously, that line must 
be (u, u) and so points in r(G) are joined to points not in r(G) by bridges. 

Consider the connected component of G - e containing U. This graph is 
connected, and contains lumps from our set M, so when it is rooted at a, it is 
also in the set K’. Let be the set of configurations consisting of a rooted 
point to which is attached some number n of bridges (for n > 0) each of 
which has a graph from the set K’ at the other end. Then the original graph 
G is obtained by taking a lump from the set M, rooting that lump and 
attaching to each of its points a conliguration from the set g. Here we attach 
a configuration to a point u by identifying the root point of the configuration 
with U. The rooted or unrooted status of u is unchanged in the attachment 
process. 

This construction gives a structural characterization of the set K’, since 
any graph obtained in this way is in K’. Thus the graphs in K’ are built up 
recursively from rooted lumps in M, and smaller graphs in K’. In Fig. 3 we 
see an example of this decomposition in the case that M contains only the 
graph K,. The rooted lump r(G) of G is the triangle which contains the root 
point. The decomposition of G into r(G) and three configurations in %? is 
shown on the right. 

We now translate this structural characterization of the set K’ into a 
functional relation on the appropriate cycle index sums. First, consider the 
cycle index sum of the set Q. Each configuration in Q is either the trivial 
rooted graph K, , or else has n > 1 bridges attached to the root. In the former 
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FIG. 3. Obtaining a graph in K’ from a graph in M’ and configurations in Q. 

case the cycle index is xi. In the latter case, since no ordering is imposed on 
the n bridges the cycle index sum is x,(Z(S,)[Z(K’)]) by the composition 
theorem. Here the factor of xi takes account of the root point, which is 
always fixed. The sum over n can be accomplished using the identity 

9 Z(S,)=exp 5 :, 
ZO i=l 

(2.1) 

which has long been known in the theory of symmetric functions [ 12, p. 71. 
Here Z(S,) = 1, a convention which matches our requirements exactly when 
n = 0. Thus over all n > 0 the sum is 

Z(C) =x1 
( 
exp 2 2 [Z(K)]). 

i=l l 

Use has been made of the fact that the substitution represented by [Z(K’)] is 
a ring homomorphism on cycle index sums. 

Given a rooted lump /i in M’, the composition theorem gives the cycle 
index sum of all graphs in K' having A as the rooted lump as Z(A)[Z(‘Z)]. 
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Summing over all /i in M’ leads to 

Z(F) = Z(A4’) [ Z(%Y)]. (2.3) 

Using (2.2) gives the desired relation 

Z(F) = Z(M’) 
[ ( x, exp F ? [Z(K’)] 

iYl 11 
. (2.4) 

For example, if M is the one element set containing only the single point 
graph, then K is the set of all unlabeled trees. Thus Z(K’) is the cycle index 
sum for the set T of rooted trees and Eq. (2.4) becomes 

Z(T) =x, exp 5 + [Z(T)]. 

The same equation for rooted trees was derived from a different point of 
view in [ 17, p. 3441. Replacing xi by xi in (2.5) gives the well-known 
functional equation 

T(x) = x exp f f T(x’). 
i=l 

3. UNROOTED CONNECTED GRAPHS WITH GIVEN LUMPS 

For a labeled graph on p points there are always p different ways to root 
it. However, the number of ways to root an unlabeled graph is the number of 
dissimilar points, which varies in general from 1 to p among the graphs on p 
points. This is taken into account by a dissimilarity characteristic equation 
which will enable the cycle index sum for unrooted connected graphs with 
given lumps to be expressed in terms of the cycle index sum for the given 
lumps together with the cycle index sum for the rooted connected graphs 
with the given lumps. 

The original dissimilarity characteristic equation for trees was discovered 
by Otter [ 131. It was considerably generalized by Harary and Norman [lo], 
and in this form was used to count graphs with given blocks, as reported by 
Ford et al. [5]. A cycle index sum version of this was obtained by one of the 
authors [ 17, Theorem 71 indirectly using calculus. That sort of derivation 
could be used here, but is avoided in favor of the dissimilarity characteristic 
approach. The latter is based on the same structural considerations and leads 
more directly to the desired equation of cycle index sums. 

It can be seen that a connected graph must have at least one lump which 
is adjacent to at most one bridge. Such lumps are called end lumps of the 
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graph. If there were no end lumps we could find an endless chain of lumps 
connected by bridges. In a finite graph this would contain a circuit, which is 
impossible because its bridge could not disconnect the graph. 

The end lumps of a connected graph can be removed in successive layers. 
It is clear that removal of the end lumps cannot leave a graph with more 
than one connected component, so at each stage the resulting graph is 
connected until the empty graph is reached. If at the stage immediately prior 
to the empty graph we have a single lump, we call this the central lump. If at 
that stage there are two lumps joined by a bridge, we call this bridge the 
central bridge. Every connected graph must contain either a central lump or 
a central bridge. For a connected graph is nonempty, and therefore contains 
at least one lump to begin with. If every lump is an end lump then there can 
not be more than two lumps, and of course if there are two lumps there is 
just one bridge joining them. 

Let G be a connected graph. Two lumps (or two bridges) of G are similar 
if some automorphism of G maps one to the other. If/i is a lump of G, then 
G, is the lump-rooted graph which results from distinguishing/i. Thus the 
automorphisms of G, consist of the automorphisms of G which map /i to 
itself. Similarly if b is a bridge of G, then G, is the bridge-rooted graph 
which results from distinguishing b, and, automorphisms of G, must fix b. A 
symmetry bridge of G is a bridge the endpoints of which are reversed by 
some automorphism of G. We can now state our dissimilarity characteristic 
equation. 

THEOREM 1. If G is a connected graph, then 

Z(G) = c Z(G,,) - c Z(G,) + c Z(G,), A b s 
(3.1) 

where A ranges over dissimilar lumps of G, b ranges over dissimilar bridges 
of G (including symmetry bridges, in which case automorphisms of G, must 
Jix both endpoints of b), and s ranges over symmetry bridges of G (here 
automorphisms reversing the endpoints of s are included). 

ProoJ The sum over dissimilar lumps of G is well defined, for Z(G,) = 
Z(G,,) if A and /i’ are similar lumps of G, the automorphism groups of G, 
and G,, being conjugate subgroups of the full automorphism group of G. For 
analogous reasons the other two sums are also well defined. We call a lump 
of G invariant if it is similar to no other lump of G. The details of the proof 
depend on whether G contains an invariant lump. 

Case 1. G contains an invariant lump. 
Let Q, be an invariant lump of G. For a lump A of G other than 4, let b(A) 

be the bridge adjacent to A which a path from II to @ must traverse. Clearly 
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this bridge is unique, for if not, then some pair of bridges adjacent to A 
would be contained in a circuit, contrary to the fact that a bridge must 
separate G. The function associating b(A) to A is one to one, since A is 
adjacent to two lumps and A is not associated with the lump containing 
interior points of a path from A to @. Of course A is associated with the 
lump containing the initial point of such a path, so the map is onto. 
Moreover, because this function is defined structurally with reference to the 
invariant lump @ it respects similarity. That is, A and A’ are similar if and 
only if b(A) and b(A ‘) are similar. By the same reasoning G, and Gbo, are 
seen to have the same automorphism groups, A being mapped to a different 
lump just if b(A) is mapped to a different bridge. 

It can now be seen that on the right side of (3.1) the sum over A other 
than @, and the sum over b add to zero, since they can be rearranged as 

x Z(G,) - .W&,). 
A#@ 

The third sum is empty, so the total on the right side is just Z(G,). 
However, @ is invariant under all automorphisms of G, so Z(G,) = Z(G). 

Case 2. G contains no invariant lump. 
If G contained a central lump, that lump would be invariant. Thus G must 

instead contain a central bridge s, which is invariant under every 
automorphism of G. If no automorphism reversed the endpoints of s, then 
both lumps adjacent to s would be invariant. Thus s must be a symmetry 
bridge of G. It is easily seen that G can contain no other symmetry bridge, so 
the third sum gives just Z(G,) = Z(G). The first two sums total zero much as 
in Case 1, as each lump is associated with a unique bridge adjacent to it on a 
path to s, and this association preserves stabilizer subgroups of T(G), taking 
into consideration that in the second sum the stabilizer of s consists of 
automorphism of G which fix each of the endpoints of s. 1 

We now make use of the dissimilarity characteristic theorem to express 
the cycle index sum Z(K) of all connected graphs with lumps in M in terms 
of the cycle index sum Z(M) for the lumps in A4, and the cycle index sum 
Z(K’) for all rooted connected graphs with lumps in M. This involves 
summing (3.1) over all G in K, and then rearranging a few of the terms on 
the right. 

THEOREM 3.2. 

Z(K) = Z(M) 5 % [Z(K’)] 
[=I l )I 

- +- Z(K’)’ + +x,[Z(K’)]. (3.2) 

ProoJ: From the first term on the right of (3.1) we obtain 
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CGEX C,, Z(G,), which can be rearranged according to the isomorphism 
type of A to obtain 

C C c Z(G,). 

For a given x in A4 we can view a graph in K which is lump-rooted at a copy 
of x as being obtained by attaching connected graphs with lumps in K by 
bridges to the points ofx. This allows the use of the composition theorem to 
express the cycle index sum of these graphs as 

Z(j) x, exp 5 % [Z(P)] , 
i=l t I 

which is analogous to (2.4). Summing over all x in A4 gives the first term on 
the right of (3.2). 

From the second term on the right of (3.1) we obtain CGEK Cb Z(G,). 
This can be viewed as the sum of cycle indices over configurations obtained 
by attaching rooted connected graphs with lumps in A4 to the ends of a 
specified line where we allow no automorphisms of the resulting graph which 
interchange the ends of the line. The cycle index sum of such configurations 
is 

f s Z(R,) Z(R,) + c Z(R)‘. (3.3) 
R,.R2=K’ REK’ 

RL+Rz 

Note that (3.3) can be rewritten as 

fZ(K’)* + 4 c Z(R)*. 
REX’ 

(3.4) 

From the third term on the right of (3.1) we obtain CCEK Cs Z(G,). This 
can be viewed as the sum of the cycle indices of contigurations obtained 
from two copies of the same rooted connected graph R (in K’) joined by a 
bridge between the root points. Such a contiguration has 

&z(R)* + $*[Z(R)] (3.5) 

as the cycle index of its automorphism group, which is obtained by 
composing Z(S,) over Z(R). Summing (3.5) over all R in K’ we obtain 

4 c Z(R)2 + $x2[Z(K’)]. 

Subtracting (3.4) from (3.6) yields 

-+Z(K’)* + &[Z(K’)]. 

This accounts for the last two terms in (3.2) and proves the theorem. 1 
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4. UNLABELED BRIDGELESS GRAPHS 

In this section the ordinary generating function for the set L of all 
connected bridgeless graphs will be derived from cycle index sum identities. 
These identities are obtained from results of Section 3 by using the fact that 
the set of all connected graphs with lumps in L is just the set C of all 
connected graphs. Once the ordinary generating function L(x) is determined, 
it is straightforward to find the numbers of all bridgeless graphs [ll, 
Sect. 4.31. This is because a graph is bridgeless just if all of its connected 
components are bridgeless. 

From Theorem 3.2 we have 

Z(C) = Z(L) x, 
[ ( 

exp f ? ’ [Z(C 11) ] - + Z(C)’ + +x2[z(c1)]. (4.1) 
i=l 

This relation can be inverted as outlined in Section 1. Let ,4(x) be the unique 
solution to the equation 

x= x ( 1 (exp 2 ? [Z(CrIl)) P(x)1 i=l l (4.2) 

having A(0) = 0. Composing A(x) into (4.1) and simplifying, we find 

z(cw(x)l = L(x) - sw’)Pw2 + ww’cwll. (4.3) 

Relation (4.3) has the advantage of giving L(x) in terms of operations on 
the ordinary generating function A(x) instead of requiring operations on 
cycle index sums. It is still necessary in principle to substitute into Z(C), but 
we will show how to determine Z(C)[A(x)] and Z(C’)[A(x)] without having 
direct recourse to Z(C). This will further facilitate the computation of L(x). 

Let D(x) = Z(C’)[A(x)]; then (4.2) takes the form 

A(x)=xexp 
( 
- 2 1Wi) . 

i=l i ) 

By separately exponentiating the terms in the coefficients D,, D2,... of x, 
X2,... in D(x) one finds 

A(x) = x fi (1 - .+% (4.4) 
i=l 

If H is the set of all graphs, then Z(C) is determined from Z(H) by 

Z(H) = exp g : [Z(C)]. 
i=l 

(4.5) 
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This follows from the composition theorem and identity (2.1); see [ 11, 
Eq. (8.4.5); 17, Eq. (lo)]. The empty graph is deemed to contribute the 
constant term 1 to Z(H), but it is not connected and so the constant term in 
Z(C) is 0. On differentiating one obtains 

x, g Z(H) = Z(H) Xl -&Z(C), 
1 1 

which by Ford’s theorem gives 

Z(W) = Z(H) Z(C’). (4.6) 

On substituting over ,4(x) this becomes 

ZW’)Mx)l = ww(-41 m4. (4.7) 

The cycle index sum Z(H) for all graphs is easy to compute directly, by a 
weighted version of Burnside’s lemma, as shown in [ 11, Eq. (7.2.18); 17, 
Theorem 21. The necessary relation can be written 

with 

Z(H)= c ph.%...) n (pa,!)-’ XT’ 
o,,o*.... i 

(4.8) 

Here (i, j) denotes the greatest common divisor of i and j and the first 
summation is over sequences of nonnegative integers u,, u2,... such that only 
finitely many are nonzero. Again differentiating and applying Ford’s 
theorem, we have 

Z(H’) = C 0, 2A(u13a2*...) fl (i”lQi!)-l xpi (4.9) 
o,,q.... i 

It can now be seen how to determine successively higher coefficients of 
D(x) and ,4(x) in a recursive manner. Let (D(x)), denote D(x) modulo x”, 
the terms of D(x) having order less than n, and likewise for any power series. 
Initially, (D(x)), = 0. Once (D(x)), is known, the product in (4.4) can be 
expanded completely modulo x”. The leading factor of x then gives 
Mx))n+~- In turn, (4.8) and (4.9) enable the compositions (Z(H)[A(x)]), + , 
and GW’%Wl),+~ to be calculated by using (A(x)), + i in place of A(x) 
and restricting the sums to sequences satisfying C iu, < n. Finally, these 
results determine (D(x)),,+, by (4.7). 

Let F(x) denote Z(H)[A(x)], and note that (F(x))~+, is determined in the 
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course of computing (D(x)), + , . Substituting A(x) into both sides of (4.5), 
we have 

F(x) = exp c T [Z(C)[A(x)]]. 
iY1 

In the usual way one can apply Mobius inversion to the logarithm (Cadogan 
[4]), obtaining 

Z(C)[A(x)] = g f$ log F(x’). 
[=I l 

(4.10) 

(See [7] for a derivation in a very general setting.) To be explicit, let F,, 
F 2 ,... denote the coefficients of x, x2 ,... in F(x), and similarly U,, U, ,... for 
x(log F(x))’ = U(x) and V,, V,,... for Z(C)[A(x)] = V(x). Since xF’(x) = 
F(x) U(x) and F(0) = 1 we find that F,, = 1 and, by comparing the coef- 
ficients of x” on both sides for n > 1, 

n-1 

U,,=nF”- z U,F,-,. (4.11) 
i=l 

Then comparison of coefficients in (4.10) gives 

(4.12) 

for n > 1. (These two equations are a slight variant of [ 11, Eqs. (4.2.6) and 
(4.2.9)], with 1 + g(x) replaced by F(x) and c(x) by V(x).) Thus from 
(F(x)), + 1 we can compute (V(x)), + , by using recurrences (4.11) and (4.12). 
Finally, in terms of D(x) and V(x), (4.3) can be solved for L(x), resulting in 

L(x) = V(x) + f@(X)* - D(x2)). (4.13) 

Thus Wx)),+ I is determined at once from (V(x)),+, and (D(x)), . 
We illustrate the calculation, starting with (D(x))~ =x+x3 + 4x4. By 

(4.4) we have 

(A(x)), = (x( 1 - x)( 1 - x3)( 1 - x”)“)5 = x - x2 - x4 - 3x5. 

From (4.8) the terms of weight 45 in Z(H) are 

1+x,+x:+x2+~x:+2x,x2++x, 

++x:+4x:x2+~x,x,+2x:+x4 

+ +x; + %x:x, + +x:x, + 8x,x: + 2x, x4 + +x2x3 + -$x5. 
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Then MWWl)s is computed by replacing x, by (A(x)), , x2 by 
(A(x*))~ , etc., and truncating all products to preserve only terms of order 
<5. The result is 

(Z(H)[A(X)])s = 1 +x + x2 + 2x3 + 4x4 + 1 1x5. 

Similarly, the terms of weight <5 in Z(W) are 

x1 + 2x: + 4x: t 2x, x2 + TX’: + 8x:x, + 4x1 x3 

t yx; t 32x:x, + qx;x, t 8x:x, t 2x1x4, 

from which one calculates that 

(Z(H')[A(x)])5=xtx2 +2x3 t 7x4 t 33xs. 

Now (4.7) requires 

x+x2+2x3 +7x4 +33x5 

= (( 1 + x + x2 + 2x3 + 4x4 + 1 1x5)(x t x3 t 4x4)), + D, x5, 

so D, = 33 - (4 + 1 t 4) = 24. That is, we now know (D(x))) =x + x3 + 
4x4 + 24x5, which completes one step in the determination of A(x) and D(x). 

The subsequent calculation of (L(x))~ is straightforward. We found 
(F(x)), = 1 + x + x2 + 2x3 + 4x4 + 1 lx’; applying (4.11) one computes 
(U(x)), = x + ix’ + $x3 + ox” + TX’, and then from (4.12) one has 
(P’(x)), = x t x3 t 2x4 + 7x5. Finally (4.13) is evaluated, yielding 

(L(x))5 =x+x3 t 2x4 + 7x5 t f((xtx' +4x4)* -(x2& 

=x+x3+2x4+7x5+x4+4x5 

=x+x3 +3x4 + 11x5 -I- ***. 

It should be noted that (Z(H’)[A(x)]),+ 1 and (Z(H)[A(x)]),+ , are very 
conveniently computed together, since the terms contributing to the former 
are a subset of the terms contributing to the latter with the rational weight 
multiplied by u, . In practice, of course, one does not store terms in Z(H) but 
simply runs through the partitions of the numbers up to n, for each partition 
computing the polynomial contribution and adding it to a running total. 

In turns out that the generating function D(x), which was introduced for 
convenience in describing how to calculate L(x), has a natural combinatorial 
interpretation. In the case being considered, using all bridgeless connected 
graphs as lumps so that all connected graphs are obtained, Eq. (2.4) becomes 

Z(C) = Z(L’) 
[ 
xexp 5 + [Z(C’)] . 

i=l z I 

502b/33/3-1 
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Composing both sides over A(x), the defining relation (4.2) for A(x) 
simplifies the right-hand side, leaving 

D(x) = Z(L’)[x]. (4.14) 

That is, D(x) is the ordinary generating function for rooted lumps. Together 
with (4.4) this gives A(x) in an explicit form. It should be noted that the 
main result of [6] is a combinatorial evaluation of generating functions 
defined by inversion in a general setting, from which (4.4) and (4.14) follow 
as a special case. 

5. LINES OR BRIDGES AS PARAMETERS 

In principle, calculating the number L,,, of unlabeled connected bridgeless 
graphs with p points and q lines is not much harder than calculating L,, 
where L, = C, L,,, . We simply work with Q(y], the ring of rational 
polynomials in y, in place of Q as the coefficient domain, and compute the 
ordinary generating function L(x, y) = C,,, L,,,xpyq from equations which 
parallel those used to determine L(x). In practice, of course, this increases 
the time and space requirements of the computation substantially. 

For cycle index sums, we can include lines as a parameter simply by 
supplying a factor of yq for each graph with q lines. Thus if S, denotes the 
set of graphs in S having exactly q lines. Thus if S, denotes the set of graphs 
in S having exactly q lines, then over Q[ y] let 

Z,(S) = 2 Y’ c Z(G). 
q=o GES, 

The ordinary generating function S(x, y) by points and lines is given by 

S@, Y) = zm4 

just as before. In general, the composition notation [Z(S)] will &note the 
replacement of xi by Z(S)[ y t y’, xJ +-+I. Then the composition theorem 
gives the cycle index sum of the r-inequivalent functions in YX by points and 
lines as Z(n[Z,(Y)]. 

The development of the previous sections can now be followed with Z, in 
place of Z. The only other change required is to include appropriate powers 
of y where new lines are being introduced. Using (2.4e) to denote the 
analogue of (2.4) in which lines are included as a parameter, and so on, the 
following are obtained: 
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Z,W’) = Z,W) x, [ ( ev f ? bZ,W)l , 
i=l 1 )I 

Z,(K) = Z&f) x, [ ( exp 5 ? [Y&W’)] [cl l )I 
- fze(K’)2 + f x*[Z,(K~)l, 

Ze(C> = z,w> [x1 (ev f, : [ 5W31) ] 

-+z&y +fx,[z,(cy, 

293 

(2.4e) 

(3.2e) 

(4. le) 

x = x1 
( ( 

exp 5 +- 
i=l 1 We(Cr [4x9 AIT We) 

w, Y) = YZ,(C’)M-G Y)lT 
m <f> 

A(x, y) = x n n (1 - xiyi)Q, 
i=l j=O 

(4.4e) 

Yw--u~~(x9 Y)l = &WW(x9 Y)l WY Yh (4.7e) 

qu,, u,,...) = n (1 + y[idl)quJi.j) n (1 + ,i)i(“,i)+ l(i-1)P10i+~2i, 

i<j I 

Z,(H) = c P(u, ) u* ,...) n (i%, ! )  - ’ xp’, (4.8e) 
u,.(I*,... I 

Z,(H’) = C U* P(O, 3 U*,e**) I]1 (ioiUi !)-I XT’, (4.9e) 
o,(r,... 

F(x, Y) = wm4x~ Y)l, 

a, iu(i) Z,(C)[A(x, y)] = ]c 7 log w9 Y’h 
i=l 

(4. IOe) 

and 

L(X, y) = $ (D(x, ~7)’ - D(x2, Y’)) + 5 iuo log J@‘, ~‘1. (4.1 le> 
i=l l 

Here [i, j] denotes the least common multiple of i and j, so that ij = 
[i, j](i, j). As in Section 4, Eqs. (4.4e), (4.7e), (4.8e), and (4.9e) can be 
solved for A(x, y), D(x, y), and F(x, y). Then L(x, y) can be calculated from 
(4.1 le). This is the ordinary generating function for unlabeled connected 
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bridgeless graphs, by points and lines. The corresponding generating function 
for all unlabeled bridgeless graphs is exp Cz 1 (l/i) L(x’, y’). 

We now consider the problem of including the number of bridges (instead 
of the number of lines) as an enumeration parameter. To avoid confusion we 
take our coefftcients in Q[z] and let the power of z denote the number of 
bridges. In general, let Z,(S) denote the cycle index sum of the set S 
of graphs with the bridges accounted for in powers ofz. The same 
composition convention applies to Z,(S) as for Z,(S) with y replaced by z 
throughout. Equations (2.4e), (3.2e), and (4.le) can at once be converted to 
Eqs. (2.4b), (3.2b), and (4.lb) by replacing Z, by Z, and y by z. This is 
because all of the new lines in the former equations are bridges. However, 
the equations are now to be solved in the reverse direction, since Z,(H) is 
not known and Z,(L) = Z(L) can be found as in the previous section. In the 
context of all bridgeless connected graphs as lumps, Eq. (2.4b) takes the 
form 

Z,(C’) = Z(L’) x, 
[ ( 

exp 5 xi -5- [z,ol) J. i=l 1 

In principle, given Z(L) we can at once apply xr(8/~?x,) to compute Z(L’), 
and then find Z,(C’) and x,(exp Cz, (x,/i)[zZ,(C’)]) recursively using 
(5.1). These along with Z(L) could be combined according to (4.lb) to give 
Z,(C)- 

The last step can be simplified considerably if only the ordinary 
generating function C(x, z) of unlabeled connected graphs by points and 
bridges is desired. Let 

and 

D(x, z) = zZ,(C’)[x] 

V(x, z) = x exp f -$ D(x’, zi). 
i=, l 

Then composing both sides of (4.1 b) over [x] gives 

C(x, z) = Z(L)[ qx, z)] - ; (D(x, z)’ - D(x2, z’)). (5.2) 

Of course the ordinary generating function H(x, z) for all unlabeled graphs 
by numbers of points and bridges is given by 

23(x, z) = exp $J 4 C(x’, zi), 
i=l 1 
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as is immediate from (4Sb). The solution by recurrence relations obtained in 
(4.11) and (4.12) for solving ‘a similar equation can be imitated here with z 
as an additional variable. Setting U(x, z) = x 22 i (a/ax) C(X’, zi), one has 

‘P,9 = C : cpli,qli* 
il(p.9) l 

On applying ~(a/&) to both sides of (5.3) and equating coefficients of xpyp, 
we see that 

Hp,4 = L ‘?I ‘+ HisjUp-i,q-j 
P ,T’o ,z 

for p > 1. With the initial condition H(0, z) = 1, (5.4) and (5.5) determine 
H(x, z) from C(x, z) very efficiently. 

The calculation of C(x, z) can be simplified still further by applying the 
method of Section 4 to the computation of Z(L)[ V(x, z)]. To start, let 
A(x, z) be the unique solution of 

V(X, Z) = (Xi (exp ,$, ? [ZtC’)l) ) iACx~ z>l 

such that A(0, z) = 0. Setting 

q-G z) = Z(C’)[4-% z)], 

(5.6) can be rewritten in the form 

00 i-l 

A(x, z) = qx, z) n n (1 - XiZj)% 
i=l j=O 

(5.7) 

The other relation between A(x, z) and E(x, z) is 

Z(H’) [A (x, z)] = Z(H)[A (x, z)] E(x, z). (5.8) 

In computing A(x, z) and E(x, z) recursively from (5.7) and (5.8) we obtain 
Z(H)[A(x, z)] as a by-product. Finally, we have 

Z(L)[ V(x, z)] = +E(x, z)’ -+(x2, z”) + 5 ‘(i)log Z(H)[A(x, z)]. (5.9) 
i=l l 

Equations (5.6)-(5.9) are analogous to (4.2), (4.4), (4.7), and (4.13), respec- 
tively, and are derived and solved in exactly the same way. 

To complete the calculation of C(x, z) and H(x, z) without recourse to 
explicit manipulation of cycle index sums, it remains to determine V(X, z) in 
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some such manner. Composing (5.1) over [x] and multiplying by z, the 
definitions of V(x, z) and D(x, z) along with the associativity of composition 
give 

qx, z) = zZ(L’)[ V(x, z)]. (5.10) 

On the other hand, as a special case of (2.4) we have 

Z(C’) = Z(L’) kl (exp g : [Z(CrIl)]- 
i=l 

Composing both sides of this equation over A(x, z) and applying (5.6) yields 

Z(C’)Mx, z>l = ZW)[ w, z)]. 

By (5.10) and the definition of E(x, z), then, 

D(x, z) = zE(x, z). (5.11) 

This allows us to express the definition of V(x, z) in terms of E(x, z), and 
then combine with (5.7) to give A(x, z) directly from E(x, z). In the product 
formulation the relation is 

A(X, Z) =X fi fi (1 -xi$)EiJ-EIJ-te 
i=l j=fJ 

Now (5.8) and (5.12) can together be recursively solved for E(x, z) and 
A(x, z). In the process Z(H)[A(x, z)] will also be determined. Denoting this 
generating function by F(x, z), we then have 

Z(C)[A(x,z)J = 2 PologF(x’,z’) 
i=l l 

by analogy with (4.10). The latter can be combined with Eq. (5.2), (5.9), and 
(5.11) to give 

C(x, z) = q (E(x, z)” - E(x2, z’)) + f lu(i) log 10(x’, zi). (5.14) 
i=l l 

This relation finally allows the calculation of C(x, z) without manipulation 
cycle index sums. 

If desired, one can combine the methods of this section to give equations 
by which unlabeled graphs can be enumerated by points, lines and bridges. 
The details are omitted because they are entirely straightforward. 
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6. LABELED BFUDGELESS GRAPHS 

Relations among the exponential generating functions for labeled graphs 
can be deduced directly from relations among the cycle index sums for 
unlabeled graphs. The observations needed for this deduction are presented 
as three propositions. In these propositions let S, T, and U be sets of 
unlabeled graphs, let s, t, and u denote the sets of labeled graphs whose 
unlabeled versions lie in S, T, and U, and let S(X), t(x), and U(X) be the 
exponential generating functions for S, t, and U. 

PROPOSITION 6.1. 

s(x)=Z(S)[xp-x,x,+,cO]. 

ProoJ: Let G be a graph in S, with g labeled versions and p points. The 
contribution of the labeled versions of G to s(x) is just gxp/p!. The 
replacement of xi+ I by 0 for all i > 0 in Z(T(G)) leaves only the term 
xp/]T(G)] contributed by the identity of T(G), and the replacement of x, by x 
leaves x”/]T(G)] as the contribution of G to Z(S)[x, t x, xi+, t 01. Now g = 
p!/lT(G)( since there is obviously a l-l correspondence between labeled 
versions of G and left cosets of T(G) in the symmetric group S,. Thus the 
contributions of G to the two sides of the equation are equal. The result 
follows by summing over all G in S. I 

PROPOSITION 6.2. IfZ(S)= Z(T)[Z(U)], then s(x)= t(u(x)). 

Proof: Observe that the subscript of every variable in xi+ i [Z(U)] is a 
multiple of i + 1. Thus 

w-9[zwl)k +X,%+1 +-01 
=Z(T)[x,cZ(U)[xltx,xi+1tOl,xi+1tOl, 

and the result follows by Proposition 6.1. 1 

PROPOSITION 6.3. IfZ(S)=x,(8/8x,)Z(T), then s(x)=x(d/dx)t(x). 

ProoJ By the chain rule 

so again the result follows by Proposition 6.1. m 

Let c(x), c’(x), Z(x), and I’(x) be the exponential generating functions for 
labeled connected graphs which are unrestricted, rooted, bridgeless, and 
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rooted and bridgeless, respectively. Either directly, or else combining 
Proposition 6.3 with Ford’s theorem, we have c’(x) = x(d/dx) c(x) and 
Z’(x) = x(d/dx) Z(x). 

With I(0) = 0 it is easy to find l(x) from l’(x). Relation (2.4) in the case of 
all connected graphs and all connected bridgeless graphs can be reduced by 
using Propositions 6.1-6.3 to give 

c’(x) = Z’(x exp c’(x)). 

Now c(x) is easily found from the relation 

(6.1) 

c(x) = log f (2( 1 )x’/i!), 
i=O 

which results from (4.5) and Proposition 6.1. Then (6.1) can be solved for 
r’(x) by series reversion. Alternatively, we can obtain I(x) by reversion of 

Z(x exp c’(x)) = c(x) + fc’(x)*, (6.2) 

which is obtained from (4.1) in a similar manner. 
If lines or bridges are to be included as enumeration parameters, the same 

procedures can be applied to the results of the previous section. Here it is 
only the points which are treated in the exponential fashion, so that, for 
instance, the coefftcient of x”y”/p! in Z(x, y) is the number of labeled 
connected bridgeless graphs with exactly p points and q lines. Then c(x, y) is 
determined from 

c(x, y) = log 5 (( 1 + y)( 1 )x’/q, 
i=O 

which follows from (4.5e) and Proposition 6.1. In turn, I/(x, y) can be 
obtained by reversion from 

c/(x, Y) = l’(x exp(yc’(x, v)), .Y). (6.3) 

Again there is an alternative based on (4.le), to determine l(x, y) by solving 

Z(x exp( yc’(x, y)), Y) = c(x, Y) + $- c’(x~ Y)** (6.4) 

If bridges are to be included, then one first finds I’(x). From (5.1) and the 
Propositions 6.1-6.3 one has 

c’(x, z) = Z’(x exp(zc’(x, z))). (6.5) 

The latter is then solved for c’(x, z), and hence c(x, z). Of course the 
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exponential generating function h(x, z) of all labeled graphs by points and 
bridges is just given by 

h(x, z) = exp c(x, z). 

Finally, one can employ (5.2) in place of (5.1) to find the relation 

Z(x exp(zxcJx, z))) = c(x, z) + +- x’(c,(x, 2))‘. (6.6) 

Here c,.(x, z) is the partial derivative of c(x, z) with respect to x. Knowing 
Z(x), Eq. (6.6) can be solved for c(x, z) and c,(x, z). 

An improved equation, implicit in [ 191, is obtained by combining the two. 
Differentiating both sides of (6.6) with respect to z gives 

4x, z) = Lb exPWx(xv z)))( x ex PC xzc,(x, z)>>(xc,(x, z> + zxc,,(x, z)) 

- ; (c,(x, z))’ - zx2c,(x, z> c,,(x, z). (6.7) 

Using Eq. (6.5) we can rewrite this as 

c,(x, z) = xc+, z)(xc,(x, z) + zxc,,(x, z)) -; (c,(x, z))2 

- zx2cx(x, z) c,.(x, z). (6.8) 

The latter simplifies considerably to the form 

CJX, z) = Qx2c,(x, z). (6.9) 

Along with the boundary condition c(x, 1) = c(x), the partial differential 
equation (6.9) determines c(x, z) in terms of c(x). The corresponding pair of 
recurrence relations for the coefficients of c(x, z) is presented in [ 191 along 
with an indication of a very direct combinatorial interpretation. 

There is also a more direct method to compute the number of labeled 
bridgeless graphs by points and lines, based on a differential equation 
satisfied by I(x, v). To start, we need to derive a differential equation for 
cc? Y>* 

Let h(x, y) denote the exponential generating function for all graphs by 
numbers of points and lines, so that 

qx, y) = g ((1 + y)(; &!). 
n=o 

582b/33/3-8 
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Differentiating, we find 

h,(x, Y) = 441 + Y), Y> 

and 

h,(x, y) = 4x2h(x(l + VI’> Y>- 

As noted earlier c(x, y) = log h(x, Y), so one has 

c,(x, Y) = 
441 + Y), Y) 

W Y> 

c (x y) = x*&41 + ~1’7 Y> 
Y  ’ 

2h(x, Y) * 

(6.10) 

(6.11) 

Differentiating (6.10) with respect to x and simplifying by use of (6.10) and 
(6.11), we find 

; (c&9 Y) + CA-% Y)‘) = (1 + Y) cy(x, Y). (6.12) 

This equation appeared in [23], and the equivalent recurrence relation in 
[26, Eq. (3)]. In both cases the proof given was combinatorial. 

Letting u = x exp(xycX(x. y)), we can write (6.3) as 

xc, = uZ,(u). (6.13) 

Here l,(u) stands for I,(u, y) and c, for c,(x, y). In the same notation, (6.4) 
yields 

Differentiating with respect to y and using (6.13) to simplify, one finds 

c, = l,(u) + $4*l,(u)*. (6.14) 

Finally, differentiating (6.13) with respect to x and simplifying as before 
gives 

x2c,,(l - Ye(u) - Y~24,(uN 

= u2f&) + yu21x(u)2 + yu3Zx(u) l,,(u). (6.15) 

If we now multiply (6.12) through by (1 - yul,(u) - yu*l,,(u)), then 
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(6.13)-(6.15) can be used to express the result entirely in terms of y, u, I,,(U), 
IX(u), and IX,(u). It is then valid to replace u by x throughout, leading to 

I, = ; y2x31: + +x21,, - Yly + XY(l + Y) l,Ux + &J 

+ ; yx31x, I,( 1 + yxl,). (6.16) 

Comparing coefficients of xpyq/p! on both sides, one finds (q + 1) l,,q+, on 
the left in terms of numbers li, j on the right, where i < p and j < q. Given the 
obvious initial conditions I, ,0 = 1 and li,O = 0 for i > 1, the resulting 
recurrence can be used to solve for any 1,,9. 

It is not hard to see that when points and bridges are both required as 
enumeration parameters it is more efficient computationally to use (6.9) than 
either (6.5) or (6.6) to find c(x, z). Likewise, if lines are required as a 
parameter, then (6.16) is a better basis for computation than (6.3) or (6.4). 
Apparently the improvements offered by these differential equations are not 
available if only points are needed as a parameter. Moreover the method 
seems to have no application in the enumeration of unlabeled graphs. 

7. NUMERICAL RESULTS 

This section contains numerical results obtained by the authors from the 
equations in Section 4. The programming was done by Hanlon on an 
IBM370. The authors are indebted to the department of mathematics at 
Caltech for supporting the computing costs. 

TABLE I 

A(x) mod 12007 

n a, (mod 12007) 

0 0 

1 1 
2 -1 

3 0 
4 -1 
5 -3 
6 -20 
7 -169 

8 -2223 

9 -9445 

10 -3450 
11 -92 
12 -8268 
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TABLE II 

Rooted Unlabeled Bridgeless Graphs 

4 

1 
0 

1 
4 

24 

193 
2420 

47912 
1600524 

93253226 
9694177479 

1822463625183 

625829508087155 
395785845695978077 

464137111800208818956 
1015091598240432264958267 

4160447480034069826186309689 

32088552194861245127627790541334 
467409601117828706798569588745772153 

12899018653180446597120165915370010416191 

676315270437729957020074803660041084140580169 
67541678379430249600075434275751575939772386952165 

n 

1 
2 

3 
4 
5 

6 
7 

8 
9 

10 

11 
12 

13 
14 

15 
16 
17 

18 
19 
20 

21 
22 

The general algorithm was that outlined in Section 4. All computations 
were done modulo a prime and the actual numbers were recovered at the end 
using the Chinese remainder theorem. The modular arithmetic facilitated the 
programming as it avoided the necessity to build special packages to handle 
large integer computations. 

The series A(x) and F(x) were not needed explicitly, hence were only 
computed modulo primes. The series A(x) = C,“, a,x” modulo 12007 is 
given in Table I. The final numerical values for the coefficients of L(x) = 
C,“, Z,x” and D(x) = C,” I d,x” appear in Tables II and III (recall that I,, 
is the number of unlabeled bridgeless graphs with n points, and d,, is the 
number of unlabeled, rooted bridgeless graphs with n points). 

8. RELATED RESULTS AND PROBLEMS 

For labeled nonseparable graphs by numbers of points and lines there are 
differential equations along the lines of (6.16). These are derived in [23, 251 
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TABLE III 

Unlabeled Bridgeless Graphs 

4 n 

1 1 
0 2 
1 3 
3 4 

11 5 
60 6 

502 7 
7403 8 

197442 9 
9804368 10 

902818087 11 
153721215608 12 

48443044675155 13 
28363687700395422 14 

30996524108446916915 15 
63502033750022111383196 16 

244852545022627009655180986 17 
1783161611023802810566806448531 18 

24603891215865809635944516464394339 19 
644997736409807527763636776555094120938 20 

32206723222694820999428520409229664177815561 21 
307013779843.1519340432448500050636943Ci51710712237 22 

on the basis of a structuaral characterization of the graphs obtained by 
deleting a line from a nonseparable graph. For labeled 3-connected graphs 
by numbers of points and lines a similar analysis has been carried out in 
[23, 241, though in this case it is much more difficult. Enumerations of 3- 
connected graphs, and of nonseparable graphs with no points of degree two, 
have also been obtained in a more traditional manner which does not require 
the number of lines as a parameter, in [20, 211. 

The cycle index sum version techniques of this paper were developed 
originally to aid in counting unlabeled graphs without points of degree ,one 
or two, and unlabeled nonseparable graphs. Details and extensive numerical 
results will be available in [18]. These methods have also been applied by 
the authors to the enumeration of unlabeled graphs which are 3connected 
and 3-line-connected [LX]. 

It is well known that for fixed 4;’ most labeled graphs asymptotically are k- 
connected; see [2, Chap. 7; 191. The same is true for unlabeled graphs with p 
points as p+ co, asp shown. in 1221. The latter paper also. shows the 
surprising fact that for unlabeled graphs with no isolates on q lines, most are 
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connected but not 2-connected as q-+ 00. The same proof shows that most 
such graphs contain at least one bridge, and in fact at least one endpoint, as 
q- 03. 

An unsolved problem is to count k-connected or k-line-connected graphs 
for any k > 4. This appears to be very difficult, either for labeled or 
unlabeled graphs. 
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