Two-Parts of Unlabeled Tournament Numbers

S. C. Cater and R. W. Robinson Computer Science Department 415 GSRC University of Georgia Athens, GA 30602

Abstract

Let t(n) be the number of unlabeled tournaments on n nodes, let $v_2(i)$ denote the 2-part of i, and let $E(n) = v_2(t(n)) - \lfloor n/2 \rfloor$. In a previous paper the authors showed that E(n) = 0 for all odd n, proved that $E(n) \geq 0$ for all even $n \geq 4$, and characterized even n for which E(n) = 0. In the present paper the values of even n for which E(n) = 1, 2 and 3 are characterized. The characterizations lead to randomized algorithms for determining when E(n) = 0, 1, 2, and 3 which are sublinear in time complexity as a function of n. Also a deterministic algorithm is presented for computing E(n) whenever $E(n) \leq k$, for which the running time is polynomial in n provided k is fixed as $n \to \infty$.

1 Introduction

Let t(n) be the number of unlabeled tournaments on n nodes, let $\varphi(n)$ denote the Euler totient function, and let $v_2(n)$ be the 2-part of n, i.e., the exponent of the longest power of 2 which divides n exactly. Let

$$E(n) = v_2(t(n)) - |n/2|,$$

which we term the excess 2-part (for tournament numbers) at n. In [2] it is shown that $E(n) \geq 0$ for $n \geq 3$, with equality if, and only if, either n is odd, or else n is even and $\varphi(n)/2$ is odd. In the same paper a similar result is obtained for the numbers of unlabeled graphs.

In the present paper our attention is restricted to tournament numbers and even $n \geq 4$. We will characterize the values of n for which E(n) = 1, 2, and 3. We will also discuss the derivation of algorithms for computing E(n) which have allowed most values for n up to 7680 to be determined. The data are consistent with the hypothesis that E(n) is bounded, and in fact with $E(n) \leq 16$; however there is no known theoretical justification for such a conjecture.

We repeat such notation and facts from [2] as is necessary for the presentation to be logically self-contained. We use $\sigma \vdash n$ to signify that σ is a numerical partition of n. Two conventions are needed for specifying partitions. One is to simply list the parts, as

$$\sigma = [s_1, s_2, \dots, s_k].$$

Here the order in which the parts are listed is immaterial, $s_i \geq 0$ for each i = 1, ..., k, and if $\sigma \vdash n$ then the parts sum to n, i.e., $n = \sum_{i=1}^{k} s_i$. Also $k = k(\sigma)$ denotes the number of parts in σ from now on. The other convention is to list in order the number of parts of each size, as

$$\sigma = \langle \sigma_1, \sigma_2, \dots, \sigma_n \rangle.$$

Here σ_i denotes the number of parts which are equal to i, for i = 1, ..., n. Thus $\sigma_i \geq 0$ for each i = 1, ..., n and if $\sigma \vdash n$ then $n = \sum_{i=1}^{n} i\sigma_i$. For tournaments we can restrict attention to odd partitions, that is, partitions in which every part is odd. We use $\sigma \models n$ to signify that σ is an odd partition of n. Then t(n) can be expressed as

$$t(n) = 2^{n/2} \sum_{\sigma \models n} \Delta(\sigma), \tag{1}$$

where

$$\Delta(\sigma) = 2^{\Lambda(\sigma)}/\Omega(\sigma),$$

$$\Lambda(\sigma) = -\frac{k}{2} + \sum_{1 \le i < j \le k} (s_i, s_j),$$

$$\Omega(\sigma) = \prod_{i=1}^{n} \sigma_i! i^{\sigma_i},$$
(2)

and (s_i, s_j) denotes the greatest common divisor (g.c.d.) of s_i and s_j . As explained in [2], the formula for t(n) was first published by Davis [3], and can also be found in [5, §5.2] or [7, §29]. In (2) we have made use of a minor simplification in expressing $\Lambda(\sigma)$ using $k = k(\sigma)$, as was done in [2, §1]. The only difference is that the term n/2 has been removed from $\Lambda(\sigma)$ in the present paper.

2 Polynomial Algorithm for Bounded Excess 2-Part

Fix $M \geq 0$, and consider the problem of computing the function E_M defined by

$$E_M(n) = \begin{cases} E(n) & \text{if } E(n) \leq M, \\ M+1 & \text{if } E(n) > M. \end{cases}$$

This is equivalent to computing excess 2-parts for tournament numbers which are bounded by M. We will show that for fixed M, $E_M(n)$ can be computed in time polynomial in n. We will first derive a crude bound from which this follows. We will then refine the bounds with a view to improving computational efficiency and to paving the way for a sublinear (in n) algorithm for E_3 .

The key to efficient computation of E_M is to limit attention to only those odd partitions of n which might affect the result. From [2] we know that $E(n) = E_M(n) = 0$ whenever n is odd, so from now on we restrict consideration to even n. If n is even and $\sigma \models n$ we define the excess 2-part of σ to be

$$E(\sigma) = v_2(2^{n/2}\Delta(\sigma)) - \frac{n}{2} = v_2(\Delta(\sigma)).$$

Then from (1) we have

$$E_M(n) = \overline{v_2} \left(\sum_{\substack{\sigma \mid= n \\ E(\sigma) \leq M}} \Delta(\sigma) \right), \tag{3}$$

where $\overline{v_2}(i) = \min\{v_2(i), M+1\}$ for all i. This is because the addition of terms with excess 2-part greater than M can have no effect on the excess 2-part of the sum if the latter is not greater than M.

Since n is even and σ is an odd partition of n, the number $k = k(\sigma)$ of parts of σ is even. Also $n \geq 2$, so $k \geq 2$. For an odd partition the powers in $\Omega(\sigma)$ do not contribute to the 2-part, so from (2) we have

$$E(\sigma) = \sum_{1 \le i < j \le k} (s_i, s_j) - \frac{k}{2} - \sum_{1 \le l \le n} v_2(\sigma_l!).$$
 (4)

An obvious lower bound for the sum over the g.c.d.'s in (4) is k(k-1)/2, since each g.c.d. is at least 1. For bounding the other sum in (4), it will be helpful to note that $v_2(p!) \leq p-1$ for all $p \geq 1$, and that $v_2(p!) \leq p-2$ for all odd $p \geq 3$. These follow immediately from the more general fact that $v_2(p!)$ is p-c(p) for all integers $p \geq 0$, where c(p) is the number of 1's in the binary representation of p. Since $\sum \sigma_l = k$, this gives the crude bound

$$\sum_{1 \le l \le n} v_2(\sigma_l!) \le k - 1. \tag{5}$$

Thus in all (4) gives the bound

$$E(\sigma) \ge \frac{k(k-1)}{2} - \frac{k}{2} - (k-1) = f(k) \tag{6}$$

where

$$f(k) = \frac{k^2}{2} - 2k + 1.$$

Now for any M let k(M) be given by

$$k(M) = \min \{ k : k \ge 2 \& k \text{ is even } \& f(k+2) > M \}.$$

Since f(k) is monotone increasing for k > 2, and only even values of k can occur, we know that $E(\sigma) > M$ whenever $k(\sigma) > k(M)$. Thus from (3) we have the following

Theorem 1 For even $n \geq 2$ and $M \geq 0$,

$$E_M(n) = \overline{v_2} \bigg(\sum_{\substack{\sigma \models n \\ k(\sigma) < k(M)}} \Delta(\sigma) \bigg).$$

The theorem gives an algorithm of time complexity $O(n^{k(M)-1})$ for computing $E_M(n)$, or of time complexity $O(n^{k(M)})$ for computing the full sequence of values $\langle E_M(2i) : 1 \leq i \leq n/2 \rangle$. The reason is that there are $O(n^{k-1})$ partitions of n into at most k parts for any $k \geq 1$, and the same is true for partitions into odd parts (with smaller implied constant corresponding to O). To see this in a completely elementary way, recall that there are exactly $\binom{n+k-1}{k-1}$ ordered numerical partitions of n into k parts. On the one hand, this is an upper bound for the number of unordered partitions which occur in Theorem 1. On the other hand, for fixed k this bound is $O(n^{k-1})$.

In order to refine our bounds and improve our algorithm for computing E_M , we will consider the number of different parts sizes $s(\sigma)$ in a partition σ . We let

$$S(\sigma) = \{i : \sigma_i > 0\},\$$

so that $s(\sigma) = |S(\sigma)|$. If $s(\sigma) = s$ and $k(\sigma) = k$ then in the sum $\sum v_2(\sigma_i!)$ there are s occurrences of the bound $v_2(\sigma_i) \leq \sigma_i - 1$, one for each i in $S(\sigma)$. Thus

$$\sum_{l=1}^{n} v_2(\sigma_l!) \le k - s \tag{7}$$

can replace (5). Our object is to improve the lower bound for $E(\sigma)$ to f(k)+3, which we obtain at once from (7) when $s(\sigma) \geq 4$.

To attain the improved lower bound for $E(\sigma)$ in case $s(\sigma) \leq 3$, we will need to exclude a class A_n of odd partitions of n, which will need to be considered separately as special cases. For even $n \geq 2$, let

$$A_n = \{ \sigma \models n : (S(\sigma) = \{1\}) \text{ or } (S(\sigma) = \{1, n - k + 1\} \& \sigma_1 = k(\sigma) - 1)$$

or $(S(\sigma) = \{1, a, b\} \& \sigma_1 = k(\sigma) - 2 \& (a, b) = 1) \}.$

Then for $\sigma \notin A_n$, we can replace k(M) with k(M-3) in Theorem 1, leading to the following refinement.

Theorem 2 For even $n \geq 2$ and $M \geq 0$,

$$E_M(n) = \overline{v_2} \left(\sum_{\sigma \models n} {}' \Delta(\sigma) \right)$$

where \sum' denotes the restriction to $\{\sigma : \sigma \in A_n \text{ or } k(\sigma) \leq k(M-3)\}$.

To finish verifying Theorem 2, we need to show that $\Delta(\sigma)$ has no effect on $E_M(n)$ when $s(\sigma) = 1, 2$, or 3, $\sigma \notin A_n$, and $k(\sigma) > k(M-3)$.

Case 1. $s(\sigma) = 1$.

Since $S(\sigma) \neq \{1\}$, we have $S(\sigma) = \{a\}$ for some $a \geq 3$. Since $k(\sigma) > k(M-3)$ (where $k = k(\sigma)$), we have f(k) + 3 > M. Each of the g.c.d.'s in (4) is a, and therefore is at least 3. So (4) gives

$$E(\sigma) \ge \frac{3k(k-1)}{2} - \frac{k}{2} - (k-1) = g(k)$$

where

$$g(k) = \frac{3k^2}{2} - 3k + 1.$$

It is readily verified that $g(k) \ge f(k) + 3$ for all integers k > 2. But $k > k(M-3) \ge 2$, so in fact $E(\sigma) > M$.

Case 2. $s(\sigma) = 2$.

By (7) we can improve (6) to $E(\sigma) \ge f(k) + 1$ in this case, using only that each g.c.d. in (4) is at least 1. Since k is even and $k > k'(M) \ge 2$, we have $k \ge 4$. And since $\sigma \notin A_n$, it must be the case that $\sigma_a \ge 2$ for some a > 1. Since a is odd, $a \ge 3$. We now have at least 2 parts of size a, giving a g.c.d. of a instead of 1. Therefore we can increase our lower bound by $a - 1 \ge 2$, so that $E(\sigma) \ge f(k) + 3$. But then $E(\sigma) > M$ follows as in Case 1.

Case 3. $s(\sigma) = 3$.

By (7) we can improve (6) to $E(\sigma) \geq f(k) + 2$ in this case, using only that each g.c.d. in (4) is at least 1. As in Case 2 we have $k \geq 4$, so some part occurs at least twice. Also as in Case 2 we have $E(\sigma) > M$ if some part a > 1 occurs at least twice, so we may assume that only the part 1 is repeated. Thus $\sigma \in A_n$ unless $S(\sigma) = \{1, a, b\}$ where $(a, b) \neq 1$. But then again $(a, b) \geq 3$ since a and b are odd, and our lower bound can be increased by $(a, b) - 1 \geq 2$. Thus $E(\sigma) \geq f(k) + 4 > M$.

3 Sublinear Algorithm for E_3

We will characterize the values of n for which E(n) = 0, 1, 2 and 3 (individually) in terms of the function $v_2(\varphi(n)/2)$. We will denote the latter by $\psi(n)$ since it occurs so often. These characterizations will give an algorithm for E_3 which has the same order of time-complexity as $\psi(n)$. Note that we consider complexity as a function of n, rather than $\log n$.

Theorem 3 For even $n \geq 4$,

$$E(n) = i \text{ iff } \psi(n) = i, \text{ for } i = 0, 1, \text{ and } 2, \text{ and}$$

$$E(n) = 3 \text{ iff } \begin{cases} \psi(n) = 3 & \text{and } \psi(n-2) > 0 \\ & \text{or} \\ \psi(n) > 3 & \text{and } \psi(n-2) = 0. \end{cases}$$

Proof In [2] we showed that E(n) = 0 if, and only if, $\psi(n) = 0$. As $\psi(4) = 0 = \psi(6)$, we assume $n \ge 8$ for the rest of the proof. In order to treat E(n) = i for i = 1, 2, and 3 we will need the following fact, which has been proved by Andrew J. Granville [4].

Lemma 1 For even $n \ge 4$ let

$$R(n) = \sum_{\substack{1 \le a < n/2 \\ (a,n) = 1}} \frac{1}{a(n-a)};$$

then $v_2(R(n)) = \psi(n)$.

Note that the bound on k used in Theorem 2, k(M-3), takes the value 2 for $M \leq 3$. Thus apart from partitions in the class A_n , we only need consider the contributions to $t(n)2^{-n/2}$ in equation (1) which arise from partitions of n into two odd parts, say $\sigma = [a, n-a]$. Since (a, n-a) = (a, n) we can express the total of these contributions as $W_2(n) + U(n)$, where

$$W_2(n) = \sum_{\substack{1 \le a < \frac{n}{2} \\ a \text{ odd}}} \frac{2^{(a,n)-1}}{a(n-a)},$$

$$U(n) = \begin{cases} 0 & \text{if } n/2 \text{ is even,} \\ \frac{2^{n/2-1}}{2(n/2)^2} & \text{if } n/2 \text{ is odd.} \end{cases}$$

The term U(n) is the contribution of the partition [n/2, n/2]. When $U(n) \neq 0$, $v_2(U(n)) = n/2 - 2$ and so U(n) will not affect $E_3(n)$ as long as $n \geq 12$. But 8/2 is even, and we shall see later that E(10) = 1, so in fact, we can disregard U(n) over the whole range of values under consideration.

The value of (a, n) must be an odd divisor of n. Collecting terms with equal g.c.d.'s, we have

$$W_2(n) = \sum_{\substack{d \mid n \\ d \text{ odd}}} \sum_{\substack{1 \le a < n/2 \\ (a,n) = d}} \frac{2^{d-1}}{a(n-a)} = \sum_{\substack{d \mid n \\ d \text{ odd}}} \frac{2^{d-1}R(n/d)}{d^2}.$$
 (8)

If n/2 is odd, the term R(2) corresponding to d = n/2 is zero. For odd d < n/2 we have $v_2(R(n/d)) = \psi(n/d)$ by Granville's Lemma, so the 2-part of the corresponding summand in (8) is $d - 1 + \psi(n/d)$. For $n \ge 8$, R(n) > 0 and we have

$$v_2(W_2(n)) = \psi(n). \tag{9}$$

That is, the summand for d=1 is positive and its 2-part determines the 2-part of the whole sum. To see that the summand for odd d in the range 1 < d < n/2 cannot alter the 2-part of the sum, note that $\psi(n) - \psi(n/d) \le v_2(\varphi(d)) \le \log_2(d-1) < d-1$, so $\psi(n) < d-1 + \psi(n/d)$.

Returning to $\sigma \in A_n$, the proof of Theorem 1 shows that $E(\sigma) > 3$ whenever $k(\sigma) > k(3) = 4$. Thus we only need consider $\sigma \in A_n$ with $k(\sigma) = 4$, as the cases when $k(\sigma) = 2$ are already taken account of in (8). Now the first option in A_n , that $S(\sigma) = \{1\}$, implies that $\sigma = [1, 1, 1, 1]$, contradicting our assumptions that $\sigma \vdash n$ and $n \geq 8$. The second and third options give $\sigma = [1, 1, 1, n-3]$ and $\sigma = [1, 1, a, n-2-a]$, where 1 < a < (n-2)/2 and (a, n-2) = 1. In either case, $E(\sigma) = 3$. In all there are precisely $\varphi(n-2)/2$ of these terms, which is an odd number if, and only if, $\psi(n-2) = 0$. Letting

$$W_4(n) = \sum_{\sigma \models n} {}' \, \Delta(\sigma)$$

where Σ' denotes the restriction to $\{\sigma : \sigma \in A_n \& k(\sigma) = 4\}$, we thus have

$$v_2(W_4(n)) \begin{cases} = 3 \text{ if } \psi(n-2) = 0, \\ > 3 \text{ if } \psi(n-2) > 0, \end{cases}$$

for $n \geq 8$.

In extracting all terms of possible significance to E_3 using Theorems 1 and 2, we have shown that

$$t(n)2^{-n/2} = W_2(n) + W_4(n) + X(n)$$

where $v_2(X(n)) \geq 4$. Thus for $n \geq 8$,

$$E_3(n) = \overline{v_2}(W_2(n) + W_4(n)),$$

where $\overline{v_2}(i) = \min\{i, 4\}$. Further, since $v_2(W_4(n)) \geq 3$, $E_2(n)$ is determined just by $v_2(W_2(n))$, which is $\psi(n)$ by (9). This proves the theorem when $i \leq 2$.

Finally, suppose $E(n) \geq 3$. Then as we have just seen, $\psi(n) \geq 3$. We have $v_2(W_2(n)) = \psi(n) \geq 3$, and $v_2(W_4(n))$ either equal to 3 or greater than 3 according to whether $\psi(n-2)$ is equal to 0 or greater than 0. Thus $v_2(W_2(n) + W_4(n)) = 3$, and hence E(n) = 3, when precisely one of these two conditions is an equality. \square

Theorem 3 provides $E_3(n)$ in terms of $\psi(n)$ and possibly $\psi(n-2)$, so the order of the time complexity of computing $E_3(n)$ is bounded by that of $\psi(n)$. In turn, $\psi(n)$ is computed directly from $\varphi(n)$, and $\varphi(n)$ is readily determined from the prime factorization of n. Let

$$L(n) = e^{\sqrt{\log n \log \log n}}.$$

There is a randomized factoring algorithm with rigorous time complexity $L(n)^{\sqrt{4/3}+o(1)}$ which appeared recently [9], and this is improved to $L(n)^{1+o(1)}$ in a forthcoming paper [6]. As a function of n these complexity bounds are sublinear.

We know of no way to compute E_3, E_2 , or E_1 in general without having to factor n. However, E_0 can be computed without factorization, in time $O(\log^c n)$ for some constant c. In this special case we are able to replace factorization by a test for primality. The well-known Solovay-Strassen test recognizes composite numbers in random time which is polynomial in $\log n$ [8]. More recently a complementary test has been devised which recognizes prime numbers and is in the same complexity class [1]. Taken together, these tests provide a randomized algorithm which will determine whether n be prime or composite in time $O(\log^c n)$ for a suitable fixed c.

Here is how to decide whether or not $\psi(n) = 0$ for even $n \geq 4$, based on primality determination. First, if $v_2(n) \geq 3$ then $\psi(n) \geq 1$. If $v_2(n) = 2$, then $\psi(n) = 0$ if, and only if, n = 4. If $v_2(n) = 1$, then n = 2q for odd q > 1 and $\psi(n) = v_2(\varphi(q)) - 1$. In this case, $v_2(\varphi(q)) = 1$ if, and only if, $q = p^u$ for some $u \geq 1$ and prime $p \equiv 3 \pmod{4}$. To test for this, we find the integer pair (x, t) with t as large as possible so that $x^t = q$. Since $x \geq 3$, $t \leq \log_3 q$, so there are only $O(\log n)$ powers to try. For each t it is straightforward to decide whether the real t-th root of q is an integer in time $O(\log^4 n)$ uniformly in t. We now check to see if $x \equiv 3 \pmod{4}$, and if so apply the randomized algorithm of [1] and [8] to determine whether x is prime.

4 Work in Progress and Open Problems

Based on the ideas presented in Section 2, algorithms have been developed for computing E(n) in a manner which is much more efficient than computing $t(n)2^{-n/2}$ and then extracting the 2-part. Whereas the authors were only able to report on E(n) for n < 100 based on the latter approach in [2], computations based on the efficiencies introduced in the present paper have allowed the determination of E(n) for all $n \le 7640$, except for the two values n = 5472 and 7590. The data are consistent with the hypothesis that $E(n) \le 16$ for all n. However it is an open problem to prove this, or indeed to prove that E(n) is bounded as $n \to \infty$.

In light of the sublinear algorithm for E_3 given in Section 3, it seems reasonable to seek an algorithm for E_4 which is not much harder. At present, however, the best algorithm known to the authors is the one provided by Theorem 2, which computes a single value $E_4(n)$ in time $O(n^3)$. It is an open problem to find an algorithm for E_4 which is asymptotically more efficient than that.

Acknowledgement: The authors thank Carl Pomerance for making a number of helpful suggestions.

References

- [1] L. Adleman and M.-D. A. Huang, Recognizing primes in random polynomial time, *Proc.* 19th ACM Symp. on Theory of Computing (1987) 462–469.
- [2] S. C. Cater and R. W. Robinson, Exponents of 2 in the numbers of unlabeled graphs and tournaments, *Congr. Numer.* **82** (1991) 139–155.
- [3] R. L. Davis, Structures of dominance relations, Bull. Math. Biophys. 16 (1954) 131–140.
- [4] A. J. Granville, private communication, 1991.
- [5] F. Harary and E. M. Palmer, Graphical Enumeration, Academic, New York, 1973.
- [6] H. W. Lenstra, Jr. and Carl Pomerance, A rigorous time bound for factoring integers, J. Amer. Math. Soc., to appear.
- [7] J. W. Moon, Topics on Tournaments, Holt, New York, 1968.
- [8] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977) 84-85; Erratum 7 (1978) 118.
- [9] B. Vallée, Generation of elements with small modular squares and provably fast factoring algorithms, *Math. Comp.* **56** (1991) 823–849.