Two-Parts of Unlabeled Tournament Numbers

S. C. Cater and R. W. Robinson
Computer Science Department
415 GSRC

University of Georgia
Athens, GA 30602

Abstract

Let t(n) be the number of unlabeled tournaments on n nodes, let wvy(7)
denote the 2-part of ¢, and let E(n) = va(t(n)) — |n/2|. In a previous paper
the authors showed that E(n) = 0 for all odd n, proved that E(n) > 0 for
all even n > 4, and characterized even n for which £(n) = 0. In the present
paper the values of even n for which F(n) = 1,2 and 3 are characterized. The
characterizations lead to randomized algorithms for determining when E(n) =
0,1,2, and 3 which are sublinear in time complexity as a function of n. Also a
deterministic algorithm is presented for computing F(n) whenever E(n) < k,
for which the running time is polynomial in n provided k is fixed as n — oo.

1 Introduction

Let ¢(n) be the number of unlabeled tournaments on n nodes, let ¢(n) denote
the Euler totient function, and let vy(n) be the 2-part of n, i.e., the exponent of the
longest power of 2 which divides n exactly. Let

E(n) = va(t(n)) — [n/2],

which we term the excess 2-part (for tournament numbers) at n. In [2] it is shown
that E(n) > 0 for n > 3, with equality if, and only if, either n is odd, or else n is even
and p(n)/2 is odd. In the same paper a similar result is obtained for the numbers of
unlabeled graphs.

In the present paper our attention is restricted to tournament numbers and
even n > 4. We will characterize the values of n for which F(n) = 1,2, and 3. We
will also discuss the derivation of algorithms for computing £(n) which have allowed
most values for n up to 7680 to be determined. The data are consistent with the
hypothesis that E(n) is bounded, and in fact with F(n) < 16; however there is no
known theoretical justification for such a conjecture.

We repeat such notation and facts from [2] as is necessary for the presentation to
be logically self-contained. We use o F n to signify that o is a numerical partition
of n. Two conventions are needed for specifying partitions. One is to simply list the
parts, as

o= [s1,82,...,8k|
Here the order in which the parts are listed is immaterial, s; > 0 foreach ¢t = 1,..., k,
and if o F n then the parts sum to n, i.e., n = S¥s;. Also k = k(o) denotes the
number of parts in ¢ from now on. The other convention is to list in order the number
of parts of each size, as

0 ={01,09,...,0n).
Here o; denotes the number of parts which are equal to 7, for ¢ = 1,...,n. Thus
o, > 0 foreachs=1,...,n and if o = n then n = } 7 10;,. For tournaments we can

restrict attention to odd partitions, that is, partitions in which every part is odd. We
use 0 = n to signify that o is an odd partition of n. Then #(n) can be expressed as

t(n) = 2'/2 'XE: A(o), (1)

where

A(e) = 2)/0(0),

k
Alo) = -5t > (s685), (2)
1<i<j<k
Qo) = H o7,
1=1

and (s;,s;) denotes the greatest common divisor (g.c.d.) of s; and s;. As explained
in [2], the formula for ¢(n) was first published by Davis [3], and can also be found in
[5, §5.2] or [7, §29]. In (2) we have made use of a minor simplification in expressing
A(o) using k = k(0), as was done in [2, §1]. The only difference is that the term n/2
has been removed from A(o) in the present paper.

2 Polynomial Algorithm for Bounded Excess
2-Part

Fix M > 0, and consider the problem of computing the function Ej; defined by

Eni(n) :{ E(n) if E(n) <M,

M+1 if E(n) > M.

This is equivalent to computing excess 2-parts for tournament numbers which are
bounded by M. We will show that for fixed M, Fp(n) can be computed in time
polynomial in n. We will first derive a crude bound from which this follows. We
will then refine the bounds with a view to improving computational efficiency and to
paving the way for a sublinear (in n) algorithm for Fj.

The key to efficient computation of Ej; is to limit attention to only those odd
partitions of n which might affect the result. ;From [2] we know that E(n) = Eym(n) =
0 whenever n is odd, so from now on we restrict consideration to even n. If n is even
and o = n we define the excess 2-part of o to be

E(o) = '02(2”/2A(0)) — — =uy(A(0)).

n
2
Then from (1) we have

B =7 3 aw).)

E(o) <M
where T3(¢) = min{vs(¢), M + 1} for all 7. This is because the addition of terms with
excess 2-part greater than M can have no effect on the excess 2-part of the sum if

the latter is not greater than M.
Since n is even and o is an odd partition of n, the number k = k(o) of parts

of o is even. Also n > 2, so k > 2. For an odd partition the powers in (o) do not
contribute to the 2-part, so from (2) we have

E(o) = Z (8i,8;) — 5 Z va(oy!). (4)

An obvious lower bound for the sum over the g.c.d.’s in (4) is k(k — 1)/2, since
each g.c.d. is at least 1. For bounding the other sum in (4), it will be helpful to note
that va(p!) < p—1forall p > 1, and that vy(p!) < p—2 for all odd p > 3. These follow
immediately from the more general fact that vy(p!) is p — ¢(p) for all integers p > 0,
where ¢(p) is the number of 1’s in the binary representation of p. Since Y- o; = k, this

Z va(oy!) < k— 1. (5)

1<i<n

Thus in all (4) gives the bound

gives the crude bound

where

Now for any M let k(M) be given by
k(M)=min{k:k>2&kiseven & f(k+2) > M}.

Since f(k) is monotone increasing for k£ > 2, and only even values of k can occur, we

know that E(c) > M whenever k(o) > k(M). Thus from (3) we have the following

Theorem 1 For even n > 2 and M > 0,

En(n) = U—z(IZ:] A(J)).
< k(M)

k(o)

The theorem gives an algorithm of time complexity O(n*™)=1) for computing
Ey(n), or of time complexity O(n*™)) for computing the full sequence of values
(Ear(2i) 11 <4 < n/2). The reason is that there are O(n*~1) partitions of n into at
most k parts for any & > 1, and the same is true for partitions into odd parts (with
smaller implied constant corresponding to O). To see this in a completely elementary
n+k—1

k—1

into k£ parts. On the one hand, this is an upper bound for the number of unordered

partitions which occur in Theorem 1. On the other hand, for fixed & this bound is
O(n*1).

way, recall that there are exactly ordered numerical partitions of n

In order to refine our bounds and improve our algorithm for computing Fy;, we
will consider the number of different parts sizes s(o) in a partition o. We let

S(o)={i:0; >0},

4

so that s(o) = |S(0)|. If s(0) = s and k(o) = k then in the sum 3 vy(0y!) there are
s occurrences of the bound vy(0;) < o; — 1, one for each ¢ in S(o). Thus

n

ng(al!) <k-s (7)

=1

can replace (5). Our object is to improve the lower bound for E(c) to f(k)+3, which
we obtain at once from (7) when s(o) > 4.

To attain the improved lower bound for E (o) in case s(o) < 3, we will need to
exclude a class A,, of odd partitions of n, which will need to be considered separately
as special cases. For even n > 2, let

A, ={oEn : (Slo)={1})or(S(o)={l,n—k+1} & o1 =k(o)—1)
or (S(o)={1,a,b} & 01 = k(o) =2 & (a,b) = 1)}.

Then for o ¢ A, we can replace k(M) with k(M — 3) in Theorem 1, leading to the

following refinement.

Theorem 2 For even n > 2 and M > 0,

Baln) = % (Z 'A<a>)

=30

where Y denotes the restriction to {o:0 € A, or k(o) < k(M — 3)}.

To finish verifying Theorem 2, we need to show that A(c) has no effect on
Ey(n) when s(o) =1,2,0r 3, 0 € A, and k(o) > k(M — 3).

Case 1. s(o) = 1.

Since S(o) # {1}, we have S(o) = {a} for some a > 3. Since k(o) > k(M — 3)
(where k = k(0)), we have f(k)+3 > M. Each of the g.c.d.’sin (4) is a, and therefore
is at least 3. So (4) gives

o) > PEZDE g = g

where

3k2

It is readily verified that g(k) > f(k)+3 for all integers k > 2. But k > k(M —3) > 2,
so in fact K(o) > M.

Case 2. s(o) = 2.

By (7) we can improve (6) to F(o) > f(k)+ 1 in this case, using only that each
g.c.d. in (4) is at least 1. Since k is even and k > k(M) > 2, we have k > 4. And
since o € A, it must be the case that o, > 2 for some ¢ > 1. Since a is odd, a > 3.
We now have at least 2 parts of size a, giving a g.c.d. of a instead of 1. Therefore
we can increase our lower bound by a — 1 > 2, so that E(o) > f(k) + 3. But then
E(o) > M follows as in Case 1.

Case 3. s(o) = 3.

By (7) we can improve (6) to E(o) > f(k) + 2 in this case, using only that
each g.c.d. in (4) is at least 1. As in Case 2 we have k > 4, so some part occurs
at least twice. Also as in Case 2 we have F(o) > M if some part ¢ > 1 occurs at
least twice, so we may assume that only the part 1 is repeated. Thus o € A,, unless
S(o) = {1,a,b} where (a,b) # 1. But then again (a,b) > 3 since a and b are odd,
and our lower bound can be increased by (a,b) — 1 > 2. Thus E(c) > f(k)+4 > M.

3 Sublinear Algorithm for Fjs

We will characterize the values of n for which E(rn) = 0,1,2 and 3 (individually)
in terms of the function vy(p(n)/2). We will denote the latter by v (n) since it occurs
so often. These characterizations will give an algorithm for F3 which has the same
order of time-complexity as ¢(n). Note that we consider complexity as a function of
n, rather than logn.

Theorem 3 For even n > 4,
E(n)=1iff (n) =1, fort =0,1, and 2, and

{ Yp(n)=3 and ¥(n—2) >0
E(n) =3 iff or
Y(n) >3 and ¥(n—2)=0.

Proof In [2] we showed that F(n) = 0if, and only if, ¢»(n) = 0. As(4) =0 = (6),
we assume n > 8 for the rest of the proof. In order to treat F(n) = for ¢ = 1,2, and
3 we will need the following fact, which has been proved by Andrew J. Granville [4].

Lemma 1 For even n > 4 let

1

1<a<n/2 a(n—a);
(a,n) =1

R(n) =

then va(R(n)) = ¥(n).

Note that the bound on k used in Theorem 2, k(M — 3), takes the value 2
for M < 3. Thus apart from partitions in the class A,, we only need consider the
contributions to #(n)27"/% in equation (1) which arise from partitions of n into two
odd parts, say o = [a,n — a]. Since (a,n —a) = (a,n) we can express the total of
these contributions as W(n) 4+ U(n), where

2(a,n)—1
WQ(n) = 1§a<% a(n_a)7
a odd
0 if n/2 is even,
U(n = nf2-1 . P
(n) { ZZ(HT)Q if n/2 is odd.

The term U(n) is the contribution of the partition [n/2,n/2]. When U(n) # 0,
v2(U(n)) = n/2 — 2 and so U(n) will not affect Es(n) as long as n > 12. But 8/2 is
even, and we shall see later that £(10) = 1, so in fact, we can disregard U(n) over
the whole range of values under consideration.

The value of (a,n) must be an odd divisor of n. Collecting terms with equal
g.c.d.’s, we have

i1 241 R(n/d)
Wy(n) = %] 1ga§<]n/2 = d§|] 2 (8)
d odd (a,n) =d d odd

If /2 is odd, the term R(2) corresponding to d = n/2 is zero. For odd d < n/2 we
have va(R(n/d)) = ¥ (n/d) by Granville’s Lemma, so the 2-part of the corresponding
summand in (8) is d — 1 + ¥(n/d). For n > 8, R(n) > 0 and we have

va(Ws(n)) = ¥(n). (9)

That is, the summand for d = 1 is positive and its 2-part determines the 2-part of
the whole sum. To see that the summand for odd d in the range 1 < d < n/2 cannot
alter the 2-part of the sum, note that ¥(n) —¥(n/d) < va(p(d)) <log,(d—1) < d—1,
so (n) <d—1+(n/d).

Returning to o € A,,, the proof of Theorem 1 shows that E(c) > 3 whenever
k(o) > k(3) = 4. Thus we only need consider o € A, with k(o) = 4, as the cases
when k(o) = 2 are already taken account of in (8). Now the first option in A,, that
S(o) = {1}, implies that o = [1, 1, 1, 1], contradicting our assumptions that o F n and
n > 8. The second and third options give o = [1,1,1,n—3] and 0 = [1,1,a,n—2—al,
where 1 < a < (n —2)/2 and (a,n —2) = 1. In either case, E(c) = 3. In all there
are precisely @(n — 2)/2 of these terms, which is an odd number if, and only if,
(n —2) = 0. Letting

Wiln) = Y7 Alo)

okEn
where ¥ denotes the restriction to {0 : 0 € A, & k(o) = 4}, we thus have

| =3if¢(n—2) =0,
v2(Wa(n)) { > 3 if ih(n —2) >0,

for n > 8.

In extracting all terms of possible significance to F5 using Theorems 1 and 2,
we have shown that

t(n)ZZ_”/2 = Ws(n) + Wa(n) + X(n)
where v3(X(n)) > 4. Thus for n > 8,

Es(n) = 0;(Wa(n) + Wa(n)),

where T3(7) = min{z,4}. Further, since vo(Wy(n)) > 3, Fz(n) is determined just by
va(W3(n)), which is ¢»(n) by (9). This proves the theorem when ¢ < 2.

Finally, suppose E(n) > 3. Then as we have just seen, ©(n) > 3. We have
vae(Wa(n)) = ¥(n) > 3, and vy(Wy(n)) either equal to 3 or greater than 3 according
to whether ¥(n — 2) is equal to 0 or greater than 0. Thus ve(W2(n) + Wy(n)) = 3,

and hence E(n) = 3, when precisely one of these two conditions is an equality. O

Theorem 3 provides Fs(n) in terms of ¢(n) and possibly ¢(n — 2), so the order
of the time complexity of computing Es(n) is bounded by that of ¢ (n). In turn,
¥(n) is computed directly from ¢(n), and ¢(n) is readily determined from the prime

L(n) — e\/lognloglogn]
3+o0(1)

There is a randomized factoring algorithm with rigorous time complexity L(n)V 4/
which appeared recently [9], and this is improved to L(n)'*°(") in a forthcoming paper

factorization of n. Let

[6]. As a function of n these complexity bounds are sublinear.

We know of no way to compute K3, Fy, or F; in general without having to
factor n. However, Ey can be computed without factorization, in time O(log®n) for
some constant ¢. In this special case we are able to replace factorization by a test
for primality. The well-known Solovay-Strassen test recognizes composite numbers in
random time which is polynomial in logr [8]. More recently a complementary test
has been devised which recognizes prime numbers and is in the same complexity class
[1]. Taken together, these tests provide a randomized algorithm which will determine
whether n be prime or composite in time O(log® n) for a suitable fixed c.

Here is how to decide whether or not 1(n) = 0 for evenn > 4, based on primality
determination. First, if va(n) > 3 then (n) > 1. If vy(n) = 2, then ¥(n) = 0 if, and
only if, n = 4. If va(n) = 1, then n = 2¢ for odd ¢ > 1 and ¥ (n) = va(e(q)) — 1.
In this case, va(p(q)) = 1 if, and only if, ¢ = p* for some u > 1 and prime p = 3
(mod 4). To test for this, we find the integer pair (z,?) with ¢ as large as possible so
that z' = ¢. Since x > 3, t < log, ¢, so there are only O(logn) powers to try. For
each t it is straightforward to decide whether the real ¢-th root of ¢ is an integer in
time O(log* n) uniformly in ¢. We now check to see if + =3 (mod 4), and if so apply
the randomized algorithm of [1] and [8] to determine whether x is prime.

4 Work in Progress and Open Problems

Based on the ideas presented in Section 2, algorithms have been developed for
computing F(n) in a manner which is much more efficient than computing #(n)2~"/2
and then extracting the 2-part. Whereas the authors were only able to report on
E(n) for n < 100 based on the latter approach in [2], computations based on the
efficiencies introduced in the present paper have allowed the determination of E(n)
for all n < 7640, except for the two values n = 5472 and 7590. The data are consistent
with the hypothesis that £(n) < 16 for all n. However it is an open problem to prove
this, or indeed to prove that £(n) is bounded as n — c.

In light of the sublinear algorithm for E5 given in Section 3, it seems reasonable
to seek an algorithm for F4 which is not much harder. At present, however, the best
algorithm known to the authors is the one provided by Theorem 2, which computes
a single value E4(n) in time O(r®). It is an open problem to find an algorithm for F,
which is asymptotically more efficient than that.

Acknowledgement: The authors thank Carl Pomerance for making a number of helpful
suggestions.

References

[1]

2]

L. Adleman and M.-D. A. Huang, Recognizing primes in random polynomial

time, Proc. 19th ACM Symp. on Theory of Computing (1987) 462-469.

S. C. Cater and R. W. Robinson, Exponents of 2 in the numbers of unlabeled
graphs and tournaments, Congr. Numer. 82 (1991) 139-155.

R. L. Davis, Structures of dominance relations, Bull. Math. Biophys. 16 (1954)
131-140.

A. J. Granville, private communication, 1991.

F. Harary and E. M. Palmer, Graphical Enumeration, Academic, New York,
1973.

H. W. Lenstra, Jr. and Carl Pomerance, A rigorous time bound for factoring
integers, J. Amer. Math. Soc., to appear.

J. W. Moon, Topics on Tournaments, Holt, New York, 1968.

R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J.
Comput. 6 (1977) 84-85; Erratum 7 (1978) 118.

B. Vallée, Generation of elements with small modular squares and provably fast

factoring algorithms, Math. Comp. 56 (1991) 823-849.

10

