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Abstract

Recursive equations are derived for the exact number t, of nonisomorphic free trees
which have some rooting as a binary tree of height h. Numerical results are calculated

using these formul ae.

1. Introduction

A binary tree T can be defined as a rooted tree in which each node has degree at
most 3, except that the root has degree at most 2. The height of T is the maximum
distance from the root node to an endnode. Binary trees are much used in theoretical
computer science, with height often being a key parameter directly related to the
efficiency of associated algorithms. A free binary tree F is an unrooted tree which has a
node u (not necessarily unique) such that F is a binary tree when rooted at u. Our
purpose is to derive formulae for the number of unlabeled free binary trees which have a
rooting that produces a binary tree of height h; we say that such a tree admits height h.
In general our terminology follows [3]. Unlabeled counting does not distinguish between

versions of atree which differ only in the assignment of 1abels to the nodes.

A 3-tree has maximum degree at most 3. It is convenient for our purpose of counting
free binary trees by admissible height to consider 3-trees first. Obviously every free
binary tree is a 3-tree, and conversely since any node of degree 1 or 2 could serve as the
root. Figure 1 shows a free binary tree F which has four distinct binary rootings.
Rooting F at node 5 or 6 gives one binary tree of height 5; at 7 gives height 4; at 3 gives
height 3; finally, rooting F at 8 or 9 gives a second binary tree of height 5. Thus F admits

height 3, 4, and 5. In the total of free binary trees of order a admitting height 5, for



instance, F will be counted just once.
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FIGURE 1. A free binary tree which has four binary rootings

Both rooted and unrooted 3-trees have been counted by Cayley and Otter; see [4] for

amodern exposition.



2. Planted 3-trees of given height

In aplanted tree, the root is an endnode. Let P, be the number of planted 3-trees of
height h, and let gy, be the number of height less than h, including for convenience the

empty one with no nodes and no edges.

Thenp; = g1 = 1, whileforalh > 1,

Oh+1 = On * Pn (1)

{Hzph} * Pnh0h (2

Note that the numbers pp, were known to Etherington [2]; they are sequence number

Ph+1

718 in Sloane’ s book, [6].

To justify (2), we observe that a planted tree of height h+1 has two major subtrees,

one of height h and the other of height h or less. For both to have height h, there are

1+ e : : :
{ th ] possibilities since we need to select two trees (which may be isomorphic) from

among the P of height h, and their order is immaterial. For the case when one major
subtree has height h and the other less, the possibilities are enumerated by pp gy since
the two branches cannot be confused with one another. The empty case admitted by
(1 = 1 corresponds to the possibility that the node adjacent to the root has degree 2, so

that thereisreally only one major subtree.

In order to allow for the analysis of free 3-trees, it will be necessary to determine the
number dj, i of planted 3-trees of height h which have no nodes of degree 1 or 2 at level

i (distance i from the root). Of course all 3-trees of height h have one or more nodes of



degree 1 at level h and no nodes at any level greater than h, so dh,h =0 ad
dnj = pp forali > h. Infact, our interest will be in the number (o, — dy, ;) of
3-trees of height h which do have a node of degree 1 or 2 at level i, for 1 < i < h.
However the defining equations are more direct when written in terms of dy, j. It will

also be convenient to identify the quantity

i =1+ dii . 3
. lsz<h I )

which bears the same relation to dy, j that Qy bears to py,. One can then write the

recursively defining equations as

1+d, ;
Oheti+1 = { zh"} + dpjen (4)

eh+1i = €nji * O (5)
for h > 1 = 1. These pardlel precisely equations (1) and (2). For boundary

conditions we have

dh+11 = Pr+1 ~ Pn >
(6)

€h+1,1 = Pn
foral h = 1. Thisisbecauseif a planted tree of height h + 1 has a node of degree 1 or
2 adjacent to the root, that node must have degree 2 since h = 1. By suppressing this

node, one obtains atree of height h in a1-1 fashion, so that

Pn+1 — dh411 = Pn -

Now



€hs11 = 1 4+ % dg1 =1+dgq+ % (Px — Pk-1)
1<k<h 2<k<h
=1+dig+py - P1
= Pn

sincep; = landdyq = O.

3. Free 3-treesby admissible height

It does not appear possible to apply the principle of Otter’s dissimilarity characteristic
[4, p.56] to obtain the number ty, of free 3-trees which have some rooting as a binary tree
of height h. Instead, we will make use of the fact that every tree has a unique center
consisting of a single node or two adjacent nodes. The possibilities for binary rootings of
various heights are enumerated separately for these two cases. This approach was used

by Cayley [1] when he first counted trees.

Casel Thecenterisasingle node.

Assuming a nontrivial tree T, the diameter is 2h for some h = 1. Then some two
branches at the center must have height h and the third branch (if there is one) must have

height at most h. The number of ways to choose these branchesis

2 1
anh = {Jrgph} + {Jrzph]% : (7)

The first term counts the number of ways to choose all three branches to have height h,
and the second gives the number with two branches of height h and either no third branch

or else athird branch having some height k, 1L < k < h.



Suppose now that one of the branches at the center of T has a node of degree 1 or 2 at
level i,1 = 1. Then T would have height h + i if rooted at such a node, since any path
of maximum length must pass through the center. The number of ways that T could fall

to contain such anode is exactly

2 i 1 i
{@“"] + {@“"}eh,i - ®

Thisisjust asfor (7) except that every branch must fail to have anode of degree 1 or 2 at
level i. Subtracting (8) from (7) will then give the number of 3-trees of diameter 2h

which have abinary rooting of heighth +1,1<i <h.

There remains the possibility of rooting at the central node. The center has degree at
most 2 exactly when there are just two branches. In that case the tree has height h when

rooted at the center, so we have exactly

1
{ +2I0h } )

3-trees of diameter 2h which have a binary rooting of height h.

Case2 The center consists of two adjacent nodes.

The diameter is2h — 1 for some h = 1, and we can obtain any such tree in a unique
fashion by joining two trees of height h at the root, then smoothing out the root node.
We refer to these two trees as the branches at the bicenter. Of course their order is

unimportant, and they may be isomorphic. Hence there are exactly

1
by, = { +2ph} (10)



3-trees of diameter 2h — 1.

In this case a node of level i on one of the branches at the bicenter gives a rooting of
height h +1 — 1. The number of 3-trees of diameter 2h — 1 having no node of level i

of degree 1 or 2 on either branch at the center isjust

{“gh | ] . (11)

Subtracting (11) from (10) then gives the number of 3-trees of diameter 2h — 1 which

have a binary rooting of height h +i — 1.

The total number t;, of free 3-trees with a binary rooting is just the sum of the
numbers obtained in Cases 1 and 2, for the appropriate values of h and i. More

explicitly, for h = 1 we have

+ L(h:g/ZJ {bh—i +1 ~ {1+dh2_i L }} . (12

4. Numerical results.

Table | lists pp, for h < 11. Equations (1) and (2) enable us to calculate the

sequence P, P2, ..., Pn iN O(N) time.

Table Il gives the values of t, for h < 10. Note that pp+7 = t,. Thisis because
any tree with a binary rooting of height h corresponds to a planted 3-tree of height
h + 1. This correspondence is obtained by adding a new root of degree one adjacent to

the original root node. In general there are trees with more than one binary rooting of



-10-

height h, so that equality does not hold. (An example is provided by the tree F of Figure
1, which has two different binary rootings of height 5.) However, it is apparent that
Ph+1 — 1 issmall compared to ty, as h increases, so that multiple rootings of the same

height are relatively rare.
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TABLE | The number of planted 3-trees by height

>

Pn

1

2

7

56

2212

2595782

3374959180831

5695183504489239067484387
16217557574922386301420531277071365103168734284282

13150458684 7961235687181874578063117114329409897598970946516793776
220805297959867258692249572750581

86467281810264896026104065371583186 70928372786 73702464113037906939
422113848975628994429633085310830824182159666913797168694932947833
666153033443005805197333617729392377202761080179484074 7988177012
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In general, the method employed enables one to compute the values t 1,t 5,...,t,; with
o(n 2) integer arithmetic operations and storage of O(n) integers. This analysis of
complexity takes no account of the rapid increase in the size of the numbersinvolved. It

is clear that log t,, = O(n2), so this has a significant effect.

First, (1) and (2) are applied to compute p, and gy, for h < n. Simultaneously (7)
and (10) are applied to determine @, and by, for h < n, and these values are stored. At
the same time, (5) and (6) are used to find dy, 1 and €y, 1 for h < n, and these too are
stored. The calculation proceeds by inductiononi,i = 1, - -, L(n +1)/2J. As the
numbers dy, ; and €, j are computed and stored, their contributionsto t1,...,t,; as given

in (12) are accummulated. First dy, j 41 for h < n isgiven by (3), and then & j 41 for
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h < n isdetermined from (4).

By computing the values of dj, i Indescending order of h, one can overwrite the dh i
array by the dy, j +1. Using (4) one calculates the €y, j 11 in ascending order, but the €y,
are not needed and so can be overwritten too. In order to avoid separately storing the

values € 11 needed to start with (4), note that for i = 2 we have

€+ = 6€i-1 1 Pi-1

and

Pi-1 = Giji-1.
Now d}; j _1 should still be available due to the fact that dy, ; only needed computing for
h>i. Thisishecause d; ; = O (so can be handled separately) and dy, j forh <'i is
not called for in (12). For the same reasons € j -1 should also still be available. Findly,
the trees counted by d; j _1 can be obtained in a 1-1 fashion from those of height i — 1
by joining two new endnodes to each old endnode. Each new tree then has height i but

has only nodes of degree 3 at level i — 1. Hencepj_1 = d; j_1 asclaimed above.
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TABLE Il The number of free binary trees by height

52

2133

2590407

3374951541062

5695183504479116640376509
16217557574922386301420514191523784895639577710480

13150458684 7961235687181874578063117114329409897550318273792033024
340388219235081096658023517076950

864672818102648960261040653715831867092837278673702464113037906939
422113848975628994429633085310791372806105278543091014135638261111
3325681250718311629163466222152852597067554256522520919973090955
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