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Abstract. Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. Combinatorial
reductions are used to derive a second order, linear homogeneous differential equation with polyno-
mial coefficients whose power series solution is the exponential generating function for {Hn}. This
leads to a recurrence relation for Hn which shows {Hn} to be P -recursive and which enables the
sequence to be computed efficiently. Thus the enumeration of labeled claw-free cubic graphs can be
added to the handful of known counting problems for regular graphs with restrictions which have
been proved P -recursive.
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1. Introduction. The problem of generating cubic graphs, i.e., 3-regular graphs,
has been studied for over 100 years using combinatorial reductions [6]. Read applied
combinatorial reductions to the derivation of an efficient recurrence relation for count-
ing the number of labeled connected cubic graphs on 2n nodes [12], in which the nodes
are labeled but not the edges. He observed that expressing the recurrence relations
in terms of an exponential generating function (EGF) resulted in substantial simpli-
fications. This allowed him to derive a second order linear differential equation for
the EGF of all labeled cubic graphs (not necessarily connected). Later, Wormald [16]
incorporated EGFs directly into the reduction approach in order to obtain differential
equations for the EGFs of cubic graphs of given k-connectivity (k = 0, 1, 2, and 3).
He derived recurrence relations only at the end of the process. In the present paper
we will follow this pattern in deriving a recurrence relation for the exact number Hn

of labeled claw-free cubic graphs on 2n nodes. A graph is claw-free if and only if it
contains no induced subgraph isomorphic to K1,3. In a cubic graph, this is equivalent
to the condition that every vertex lies on a triangle, i.e., on a 3-cycle.

Claw-free graphs have been studied in relation to independent sets, perfect graphs,
Hamiltonicity, reconstruction, and matchings. References may be found in the intro-
duction of [10]. In particular, claw-free graphs which are 3-regular or 4-regular have
been amenable to analysis of extendibility of matchings [9]. Related questions and
conjectures on Hamiltonicity arising from this work are presented in [11]. For cu-
bic claw-free graphs, Plummer asks for the probabilistic behavior of Hamiltonicity in
cubic claw-free graphs, in the planar case, and in general. The latter question was
answered in [13] where it was determined that almost all claw-free cubic graphs are
Hamiltonian. For 4-connected 4-regular claw-free graphs, Plummer conjectures that
all are Hamiltonian [11, Conjecture 3.8]. The asymptotic behavior of the sequence
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{Hn} was determined in [8], the results of which were essential for the Hamiltonic-
ity result of [13] cited above. The enumeration of claw-free cubic graphs with given
connectivity is treated in [1]. The method requires enumeration results for labeled
general cubic graphs [2].

The recurrence relation obtained in section 3 for Hn allows the n numbers H1, . . . ,
Hn to be calculated with O(n) arithmetic operations. It is a linear homogeneous re-
currence of order 12 in which the coefficients are polynomials in n. These polynomials
range in degree up to 23 and all have integer coefficients. This recurrence shows that
{Hn} belongs to the class of P -recursive sequences, first defined by Stanley [14]. It was
later shown that a number of labeled graph enumeration problems, including cubic
graphs, are P -recursive [5]. Gessel generalized those results considerably and showed
that for any fixed r the number of labeled r-regular graphs is P -recursive [4]. How-
ever, Gessell commented on the lack of general methods for proving P -recursiveness
of the number of r-regular graphs subject to restrictions on connectivity, girth, and
the like. For restricted labeled cubic graphs there are two examples of P -recursive
counting problems provided by Wormald; those rooted at a triangle [15], and those
containing no triangle [17]. To these we can now add the enumeration of labeled
claw-free cubic graphs. However, for labeled cubic and claw-free cubic graphs which
are k-connected for k = 1, 2, or 3 the question of P -recursiveness is open, as the
enumerations provided in [16] and [1] do not provide linear recurrences.

For general graph theoretic terminology and notation we follow [7], except for
adopting the more modern names nodes and edges in place of points and lines. In
particular, we assume a basic knowledge of labeled enumeration techniques using
EGFs, such as is provided by Chapter 1 of [7].

2. Structural properties. All graphs to be considered will have nodes labeled
but not edges. A claw-free graph is one with no induced subgraph isomorphic to K1,3.
We will deal exclusively with cubic graphs, i.e., 3-regular graphs. For cubic graphs,
the claw-free condition is equivalent to requiring that every node should belong to a
triangle. We will count the number Hn of labeled claw-free cubic graphs on 2n nodes.

In any cubic graph, the maximum number of triangles in which a node may lie
is 3, and this can occur only in a component isomorphic to K4. In our counting, we
will account for such components at the end. A node may lie in exactly two triangles
precisely if it is one of the nodes of degree 3 in an induced subgraph isomorphic to
K4 − e; we call such a subgraph a diamond. A maximal set of diamonds which are
adjacent in series is called a string of diamonds. A connected graph in which every
node is contained in a diamond is called a ring of diamonds. For the purposes of
counting, we consider a single edge to be a trivial string of diamonds, provided it is
not incident to a diamond. However, a ring of diamonds must contain at least two
diamonds. Like copies of K4, rings of diamonds will be accounted for explicitly at the
end of the process.

Denote by reduction the operation of replacing each string of diamonds by a
single edge. For any claw-free cubic graph with no component isomorphic to K4 or
a ring of diamonds, the reduced graph must be a cubic multigraph in which every
node is contained in exactly one triangle (defined as a set of three mutually adjacent
nodes). Clearly, none of the edges in these remaining disjoint triangles resulted from
the reduction of a nontrivial string of diamonds unless it belongs to a double edge,
the nodes of which are mutually adjacent to a third node. Such a configuration is
termed a trumpet. In the double edge of a trumpet, exactly one of the two edges must
have resulted from the reduction of a nontrivial string of diamonds. Since our edges
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are not labeled, for counting purposes it does not matter which edge is which in the
double. Denote by expansion the operation which is inverse to reduction.

Now, in a reduced graph we can contract each of the disjoint triangles to a single
node; denote this operation by contraction and its inverse by dilation. The contraction
of a trumpet will be a loop. The contraction of a reduced graph is an arbitrary cubic
general graph. We could, if we wished, contract an unreduced graph by contracting
just those triangles which do not overlap any other triangle. Then reduction and
contraction are easily seen to be commutative operations.

The approach that we will take to counting claw-free cubic graphs is to start
with cubic general graphs, dilate and expand them, and then add in components
isomorphic to K4 or a ring of diamonds.

3. Labeled cubic general graphs. Let gs,d,l be the number of labeled cubic
general graphs without triple edges having exactly s single edges, d double edges, and
l loops. Note that the number 2n of nodes is just

2n =
2s+ 4d+ 2l

3
.

It is the nodes that are labeled. Also, trumpets are not distinguished from other
double edges in this treatment. The graphs are not necessarily connected, so we let
g0,0,0 = 1.

Now let G(x, y, w) be the exponential generating function

G(x, y, w) =
∑
s,d,l

gs,d,lx
sydwl/(2n)! .

The partial derivations with respect to x, y, and w will be denoted Gx, Gy, and Gw,
and similarly for higher order derivatives. Clearly Gx is the exponential generating
function for labeled cubic general graphs without triple edges which are rooted at
a single edge, except that the root edge is not represented by a factor of x. The
other first order partial derivatives have like interpretations, as do the higher order
derivatives. To derive an expression for Gx, we can imagine removing a single edge
from a general cubic graph, leaving two nodes of degree 2. These are then smoothed
over, leaving edges which we think of as root edges. The possibilities for the latter are
counted by appropriate partial derivatives of G, in general, depending upon whether
the root edges are singles, doubles, triples, ordinary loops, or nodeless loops. The
latter occurs when an edge incident to a loop is removed. One must also multiply by
a monomial which accounts for the various edges which were deleted after the original
root edge was removed.

If a cubic graph is originally rooted at a single edge, then after deleting the root
we have 17 possibilities for the two new root edges, as shown in Table 1 along with
the corresponding exponential generating function.

Hence we have

Gx =

(
w2

2
+

x5

4
+

x2yw

2
+

x4y2

8

)
G+

(
x2w +

x4y

2

)
Gx

+

(
x4

2
+ x3w +

x5y

2

)
Gy +

(
yw +

x2y2

2

)
Gw(1)

+
x4

2
Gxx + x5Gxy + x2yGxw +

x6

2
Gyy + x3yGyw +

y2

2
Gww .
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Table 1
Terms contributing to Gx.

EGF Root edges

w2

2
G two nodeless loops

x5

4
G belong to same triple edge

x2yw
2

G triple edge and nodeless loop

x4y2

8
G two triple edges

x2wGx single edge and nodeless loop

x4y
2

Gx single edge and triple edge

x4

2
Gy belong to same double edge

x3wGy double edge and nodeless loop

x5y
2

Gy double edge and triple edge

ywGw ordinary loop and nodeless loop
x2y2

2
Gw ordinary loop and triple edge

x4

2
Gxx two single edges

x5Gxy single edge and double edge

x2yGxw single edge and ordinary loop
x6

2
Gyy two double edges

x3yGyw ordinary loop and double edge
y2

2
Gww two ordinary loops

If we wished a recurrence relation capable of determining all of the numbers gs,d,l
starting with the initial condition g0,0,0 = 1, we would need only extract the coefficient
of xs−1ydwl from both sides of (1) and set the values equal. This is because every
nonempty cubic general graph without triple edges must contain at least one single
edge. However, to compute the numbers corresponding to all such graphs on up to
2n nodes by way of this recurrence would require O(n3) arithmetic operations. As we
shall see, the number of claw-free cubic graphs is P -recursive as a function of n and
can therefore be calculated in O(n) operations. This will require the use of separate
equations for Gy, Gw, and each of the second order partial derivatives except for Gxx.

To obtain an equation for Gy similar to (1) for Gx, consider a cubic general graph
rooted at a double edge. We then remove the double edge and splice the two edges
which were adjacent to the root together into a new edge which we designate as the
root for the reduced graph. The latter cannot form a nodeless loop, since the original
root was not part of a triple edge. However, it can belong to a triple edge, be a single
edge, belong to a double edge, or be an ordinary loop. These possibilities give, in
order, the four terms on the right side of the next equation:

Gy =
x2y

2
G+ x2Gx + x3Gy +

x2

2
Gw .(2)

Finally, a cubic general graph rooted at a loop can be reduced by removing the
loop and its adjacent edge. This leaves a vertex of degree 2, which we remove and
splice the two incident edges into a new edge. The latter becomes the root of the
reduced graph; the root can be a nodeless loop, belong to a triple edge, be a single
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edge, belong to a double edge, or be a loop. These possibilities correspond in that
order to the five terms on the right side of this equation:

Gw =

(
xw +

x3y

2

)
G+ x3Gx + x4Gy + xyGw .(3)

Finally, the differentiation of (2) and (3) with respect to x, y, and w is straight-
forward. Making use of the fact that the order of differentiation is immaterial, we
obtain the following equations for the second order partial derivatives:

Gyw =
x2y

2
Gw + x2Gxw + x3Gyw +

x2

2
Gww ,(4)

Gxy = xyG+

(
2x+

x2y

2

)
Gx + 3x

2Gy + xGw + x2Gxx + x3Gxy +
x2

2
Gxw ,(5)

Gxw =

(
w +

3x2y

2

)
G+

(
3x2 + xw +

x3y

2

)
Gx + 4x

3Gy + yGw(6)

+ x3Gxx + x4Gxy + xyGxw ,

Gyy =
x2

2
G+

x2y

2
Gy + x2Gxy + x3Gyy +

x2

2
Gyw ,(7)

Gww = xG+

(
xw +

x3y

2

)
Gw + x3Gxw + x4Gyw + xyGww .(8)

4. Claw-free cubic graphs. Let H(z2) be the exponential generating function
for counting all labeled claw-free cubic graphs so that

H(z) =
∞∑

n=0

Hnz
n

(2n)!
.

Our objective is to derive a linear, homogeneous differential equation with coefficients
rational in z which is satisfied by H(z). This will imply that the coefficients form a
P -recursive sequence, and hence that the n numbers H1, . . . , Hn can be calculated in
O(n) operations.

The major portion of H(z) is accounted for by the expansion and dilation of the
triple-edge-free general cubic graphs counted by G(x, y, w). The strings of diamonds
which can reduce to a single edge are counted by

b(z) = (1− z2/2)−1 .(9)

We leave b = b(z) unexpanded as long as possible in order to simplify our equations.
Then to count the graphs resulting from expansion and dilation we simply perform
the substitutions

x = zb ,

y =
z2b2

2
,(10)

w =
z3b

4
.

Note that after substitution of z2 for z in the formula for w, the very first term is

180 z
6

6! . The exponent of z counts the two vertices of the trumpet horn and the four
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of the mandatory diamond. Since there are four automorphisms, the coefficient is
6!
4 = 180.
Now G(z2) counts everything inH(z2) except for components isomorphic toK4 or

a ring of diamonds, or which reduce to a triangular prism (since that contracts to a
triple edge). These are counted, respectively, by z2/24, −z2/4+ ln(

√
b), and z3b3/12.

The second of these may require explanation; a ring of m diamonds has 2m2m auto-
morphisms, so the counting series for these components is

∞∑
m=2

z2m

2m2m
= −z2

4
− 1
2
ln(1− z2/2) .

We then exponentiate to count all graphs consisting entirely of components of these
three types. Let ϕ(z2) be the resulting exponential generating function. Then

ϕ(z) =
√
b exp

(
−5z

2

24
+

z3b3

12

)
(11)

and

H(z) = ϕ(z)G(z) .(12)

The differential equation satisfied by H(z) is now determined by the set of equa-
tions (1)–(12). From (11) and (12) we have

H ′(z) =
ϕ′(z)
ϕ(z)

· ϕ(z)G(z) + x′(z) · ϕ(z)Gx(z)

+ y′(z) · ϕ(z)Gy(z) + w′(z) · ϕ(z)Gw(z) .(13)

Differentiating again with respect to z we find

H ′′(z) =
ϕ′′(z)
ϕ(z)

· ϕ(z)G(z) + 2x′(z)
ϕ′(z)
ϕ(z)

· ϕ(z)Gx(z)

+ 2y′(z)
ϕ′(z)
ϕ(z)

· ϕ(z)Gy(z) + 2w
′(z)

ϕ′(z)
ϕ(z)

· ϕ(z)Gw(z)

+ x′′(z) · ϕ(z)Gx(z) + y′′(z) · ϕ(z)Gy(z) + w′′(z) · ϕ(z)Gw(z)(14)

+ x′(z)2 · ϕ(z)Gxx(z) + 2x
′(z)y′(z) · ϕ(z)Gxy(z)

+ 2x′(z)w′(z) · ϕ(z)Gxw(z) + y′(z)2 · ϕ(z)Gyy(z)

+ 2y′(z)w′(z) · ϕ(z)Gyw(z) + w′(z)2 · ϕ(z)Gww(z) .

We now consider (13) and (14) as linear equations in the 12 unknown quantities
H ′′(z), H ′(z), H(z) = ϕ(z)G(z), ϕ(z)Gx(z), ϕ(z)Gy(z), ϕ(z)Gw(z), ϕ(z)Gxx(z),
ϕ(z)Gxy(z), ϕ(z)Gxw(z), ϕ(z)Gyy(z), ϕ(z)Gyw(z), and ϕ(z)Gww(z). The coefficients
are polynomials in z and b. To see this, note that b′(z) = zb2(z). Thus all derivatives
of x, y, and w can be expressed as polynomials in z and b. Moreover the ratios
ϕ′(z)/ϕ(z) and ϕ′′(z)/ϕ(z) are also polynomials in z and b. Equations (1)–(8) can all
be converted to the same format by applying the substitutions in (10) and multiplying
through by ϕ(z). Thus we have 10 linear equations in these 12 unknowns. With the
help of the symbolic Gaussian elimination procedure in Maple [3], we can eliminate
all of the unknown quantities except for H(z), H ′(z), and H ′′(z). This leads to the



COUNTING CLAW-FREE CUBIC GRAPHS 71

linear differential equation

0 = (144z8 + 288z7 − 576z4)H ′′(z)
+ (−36z10 − 96z9 + 24z8 + 144z7 + 576z6 + 384z5

− 576z4 − 2880z3 − 576z2 + 1152)H ′(z)(15)

+ (−15z11 − 74z10 − 130z9 − 96z8 + 144z7 + 368z6 + 336z5 − 288z4

− 240z3 − 288z2 − 96z)H(z) .

Here the substitution (9) has been applied to express the coefficients as rational func-
tions of z, common factors have been removed from the three coefficients, and they
have been multiplied by a suitable polynomial so that the three coefficients have all
become polynomials in z with integer coefficients.

The power series H(z) is the Taylor series about z = 0 of the unique solution
to (15) which satisfies the initial conditions H(0) = 1 and H

′
(0) = 0.

A recurrence relation for the coefficients of H(z) is obtained by extracting the
coefficient of zn/(2n)! in (15); this must be equal to 0. The term 1152H ′(z) con-
tributes Hn+1/(4n + 2). This has the maximum index in H, so we solve for Hn+1

by equating it to −(2n + 1)/576 times the sum of the other terms. In general, the
term contributed by 2kH(z) is

(
2n
2k

)
(2k)!Hn−k, which upon multiplying by (2n + 1)

becomes
(
2n+1
2k+1

)
(2k + 1)!Hn−k. For k ≥ 1, the term contributed by (2n + 1)zkH ′(z)

is (n − k + 1)
(
2n+1
2k+1

)
(2k + 1)!Hn−k+1. Finally, for k ≥ 2 the term contributed by

(2n+1)zkH ′′(z) is (n− k+2)(n− k+1)
(
2n+1
2k+1

)
(2k+1)!Hn−k+2. In this way we find

the following relation, which is valid for n ≥ 1:

Hn+1 = (6n− 5)
(
2n+ 1
3

)
Hn−1 + 60(2n

2 − 7)
(
2n+ 1
5

)
Hn−2

+ 420(12n− 31)
(
2n+ 1
7

)
Hn−3 − 60480(4n− 19)

(
2n+ 1
9

)
Hn−4

− 3326400(6n2 − 54n+ 127)
(
2n+ 1
11

)
Hn−5

− 172972800(9n2 − 108n+ 347)
(
2n+ 1
13

)
Hn−6

− 54486432000(n− 1)
(
2n+ 1
15

)
Hn−7(16)

+ 59281238016000(n− 7)
(
2n+ 1
17

)
Hn−8

+ 422378820864000(18n− 97)
(
2n+ 1
19

)
Hn−9

+ 6563766876226560000

(
2n+ 1
21

)
Hn−10

+ 673229602575129600000

(
2n+ 1
23

)
Hn−11 .

Of course Hn−j is zero whenever j > n. With the initial conditions H0 = 1
and H1 = 0, (16) can be used to compute the values of H2, . . . , Hn+1 using just
O(n) arithmetic operations. In this way we computed the values shown in Table 2.
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Table 2
Numbers of labeled cubic claw-free graphs.

Hn n
1 2
60 3

2555 4
466200 5

62791575 6
14536021500 7

8381453705625 8
3284480337138000 9

1942832950684250625 10
2143745512307546647500 11

1743194710893176557891875 12
2022583790860881671548125000 13

3687297941048128552947911484375 14
5250396961636474882113432240187500 15

10270576798318031167485848746426640625 16
28247581137945084450497132391551830500000 17

63409618548369444745423852264233423897890625 18
189787893059957073451746036716319750214365937500 19

739731302424534941124199455315845613980976141796875 20
2436293022465856848407798760164672100623479345846875000 21

10433013033263780019056740194457690414996014419582021484375 22
55053013693844064927863480169144644331902982938883731835937500 23

252448493699621454815261719991354533831171674212674184547416015625 24
1472749695048011678818262827491781703308289147738221578121708593750000 25

10160314924243373000701474995668144304893902876648285295864422890087890625 26
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