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Abstract A boolean function of n boolean variables is correlation-immune of order k
if the function value is uncorrelated with the values of any k of the arguments. Such
functions are of considerable interest due to their cryptographic properties, and
are also related to the orthogonal arrays of statistics and the balanced hypercube
colourings of combinatorics. The weight of a boolean function is the number of
argument values that produce a function value of 1. If this is exactly half the
argument values, that is, 2n−1 values, a correlation-immune function is called resilient.
An asymptotic estimate of the number N(n, k) of n-variable correlation-immune
boolean functions of order k was obtained in 1992 by Denisov for constant k. Denisov
repudiated that estimate in 2000, but we show that the repudiation was a mistake.
The main contribution of this paper is an asymptotic estimate of N(n, k) which holds
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if k increases with n within generous limits and specialises to functions with a given
weight, including the resilient functions. In the case of k = 1, our estimates are valid
for all weights.

Keywords Boolean function · Correlation-immune · Resilient ·
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1 Introduction

Let n, k, q be integers satisfying 1 ≤ k ≤ n and 0 ≤ 2kq ≤ 2n, and define λ = 2kq/2n.
A correlation-immune boolean function of n variables, order k and weight 2kq is a
boolean-valued function of n boolean variables with this property: if any k arguments
are given arbitrary values, exactly the fraction λ of the 2n−k possible assignments to
the remaining arguments give a function value of 1. (See for example [10, 15, 17]
and [6, Chapter 4].) Let N(n, k, q) denote the number of such functions. An im-
portant special case is the resilient functions, which have λ = 1

2 . Correlation-immune
functions, and in particular the resilient functions, have desirable cryptographic
properties: see for example [3]. In this paper we will derive an asymptotic estimate of
N(n, k, q) for a wide range of k and q values, and deduce an asymptotic formula
for the sum N(n, k) =∑q N(n, k, q), which is the number of correlation-immune
boolean functions of n variables and order k.

An n-variable boolean function can be represented as a matrix of n columns over
{0, 1} whose rows consist of those argument lists which give the function value 1. A
correlation-immune boolean function of n variables, order k and weight 2kq gives rise
to a matrix with 2kq distinct rows and n columns, such that in any set of k columns
each of the 2k possible 0–1 patterns appears exactly q times. In statistics, such a matrix
is called an orthogonal array of 2 levels, n variables, 2kq runs, and strength k; see [9]
for a detailed exposition. Since the 2kq rows are by definition distinct, and permuting
the rows does not change the associated function, there is an uninteresting ratio of
(2kq)! between the number of matrices and the number of functions. We will work
with functions rather than matrices.

The special case k = 1 has also been studied under the name of balanced colour-
ings of a hypercube. These are placements of equal weights on some of the vertices
of a hypercube such that the centroid is at the center of the hypercube. Exact
enumerations have been found in this case [13, 23], but they do not appear suitable
for asymptotics.

Early papers on the number of correlation-immune functions focussed on the case
k = 1. Upper and lower bounds for N(n, 1) were given in [10, 12, 14, 22] but these do
not appear as sharp as the bounds given by Bach [2]. Maitra and Sarkar [11] showed
that N(n, 1, q) is unimodal in q.

The case of general k was first considered by Schneider [17], who gave upper
bounds for N(n, k, q) as well as for N(n, k). For large k an improved upper bound
is given by Carlet and Klapper [5], both for N(n, k) and for the resilient functions
of order k. Carlet and Gouget [4] gave an upper bound for the number of resilient
functions of order k, which improves upon Schneider’s bound for k > n/2 − 1 and
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which partially improves upon the upper bound of [5]. Tarannikov [18] proved that
when c is a fixed positive integer, the function N(n, n − c) is bounded above by a
polynomial in n. Exact expressions for N(n, n − c) when c = 1, 2, 3 are also given
in [18, Theorem 3]. (See also [19].)

The first asymptotic enumeration of correlation-immune functions was achieved
by Denisov. Define

M =
k∑

j=0

(
n
j

)

and Q =
k∑

j=1

j
(

n
j

)

.

Theorem 1.1 (Denisov [7]) If k ≥ 1 is a constant integer then, as n → ∞,

N(n, k) ∼ 22n+Q−k(2n−1π)−(M−1)/2.

Denisov’s formula for N(n, 1) was refined by Bach [2], who showed that an
asymptotic expansion for N(n, 1) exists and calculated the first few terms of it.

In a later paper [8], Denisov repudiated Theorem 1.1 and proposed a different
value. However, we will show that Denisov’s repudiation was a mistake, and Theo-
rem 1.1 is correct. More discussion of [8] is given in Section 8.

We now state our results. Define

A = λ(1 − λ).

In addition to common asymptotic notations like O(·), we use ω( f (n)) to represent
any function g(n) such that g(n)/ f (n) → ∞ as n → ∞.

Theorem 1.2 Consider an inf inite sequence of triples (n, k, q) of positive integers
which satisfy these conditions

ω
(
25kn6k+3 M3) ≤ q ≤ 2n−k − ω

(
25kn6k+3 M3) (1.1)

as n → ∞. Then

N(n, k, q) = 2Q (λλ(1 − λ)1−λ
)−2n (

π A 2n+1)−M/2 (1 + O(η(n, k, q))
)
, (1.2)

where η(n, k, q) = 2−n/2+3kn3k+3/2 M3/2λ−1/2(1−λ)−1/2 = o(1).

Remark 1.1 The o(1) assertion for η(n, k, q) follows from the assumptions (1.1) and
the definition M =∑k

j=0

(n
j

)
.

Remark 1.2 Given a function g in the class counted by N(n, k, q), we can form
another, namely 1 − g, counted by N(n, k, 2n−k−q). This complementation operation
is a bijection which exchanges q with 2n−k−q and λ with 1−λ. This means, for
example, that we can assume λ ≤ 1

2 in our proof when it is convenient.

Remark 1.3 By Stirling’s formula, log M = o(n) whenever k = O(n/ log n). From this
it follows that (1.1) is non-vacuous whenever

1 ≤ k ≤
(

log 2
6

− ε

)
n

log n
(1.3)

for some ε > 0.
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Corollary 1.1 If k = k(n) satisf ies (1.3) then, as n → ∞, the number of k-resilient
boolean functions of n variables is

22n+Q(2n−1π)−M/2(1 + O(2−n/2+3kn3k+3/2 M3/2)
) ∼ 22n+Q(2n−1π)−M/2.

Corollary 1.2 If k = k(n) satisf ies (1.3) then, as n → ∞, the number of order k
correlation-immune boolean functions of n variables is

N(n, k) = 22n+Q−k(2n−1π)−(M−1)/2(1 + O(2−n/2+3kn3k+3/2 M3/2)
)

∼ 22n+Q−k(2n−1π)−(M−1)/2. (1.4)

Corollary 1.2 shows that Denisov’s result Theorem 1.1 is true, despite his later
retraction.

In Section 2, we write N(n, k, q) as an integral in many complex dimensions. In
Section 3 we identify the points where the integrand has maximum magnitude and
define a region R+C consisting of a small hypercuboid surrounding each of those
points. The integral is then bounded outside R+C in Section 4 and estimated inside
R+C in Section 5. The proof of Theorem 1.2 is completed in Section 6 where we also
prove Corollaries 1.1 and 1.2. In the final sections we consider some additional topics
including a closer look at the case k = 1 and a connection with Hadamard matrices.

2 The desired quantity as a complex integral

Define [n] = {1, 2, . . . , n} and Ik = {S ∈ 2[n] : |S| ≤ k}. We will identify N(n, k, q) as
the constant term in a generating function over the M variables {xS : S ∈ Ik}. Let x
denote a vector of all these variables, in arbitrary order. For D = λ/(1 − λ), define
the rational function F(x) by

F(x) =
∏

α∈{±1}n

(

1 + D
∏

S∈Ik

xαS
S

)

,

where

αS =
∏

j∈S

α j

for each S (including the case α∅ = 1). The value of D is determined by a saddle point
condition, as will become apparent in Section 5.

Lemma 2.1 N(n, k, q) is the constant term of (Dx∅)−2kq F(x).

Proof For a boolean function g(y1, . . . , yn), the Walsh transform of g is the real-
valued function ĝ over {0, 1}n defined by

ĝ(w1, . . . , wn) =
∑

(y1,...,yn)∈{0,1}n

g(y1, . . . , yn) (−1)w1 y1+···+wn yn .

Given α ∈ {±1}n, form ᾱ ∈ {0, 1}n from α by changing each 1 entry into 0 and each
−1 entry into 1.
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For S ∈ Ik, let wS ∈ {0, 1}n be the characteristic vector of S. Then, given a vector
α ∈ {±1}n and any S ∈ Ik, we have

αS = (−1)ᾱ·wS .

We can view F(x) as the sum of 22n
terms, with one term for each boolean

function g of n variables. Specifically, the term corresponding to a boolean function
g : {0, 1}n → {0, 1} is exactly

∏

α∈{±1}n
g(ᾱ)=1

(

D
∏

S∈Ik

xαS
S

)

= Dĝ(w∅)
∏

S∈Ik

xĝ(wS)

S .

By the spectral characterisation of correlation-immune functions [16, 21], the
boolean function g is correlation-immune of order k if and only if ĝ(wS) = 0 for
all S ∈ Ik \ {∅}. Moreover, the functions counted by N(n, k, q) have ĝ(w∅) = 2kq.

Therefore the coefficient of the monomial x2kq
∅ in F(x) is exactly D2kq N(n, k, q). 	


By Cauchy’s integral formula, (see [1]), it follows from Lemma 2.1 that

N(n, k, q) = 1
(2π i)M D2kq

∮

· · ·
∮

F(x)

x2kq
∅
∏

S∈Ik
xS

dx,

where each xS is integrated anticlockwise around a circle of radius 1 centred at the
origin. Now introduce variables θS (S ∈ Ik) and the M-dimensional vector θ of the θS

variables in arbitrary order. Change variables from x to θ using xS = eiθS for each S.
Then

N(n, k, q) = (1 + D)2n

(2π)M D2kq
I(n, k, q), (2.1)

where

I(n, k, q) =
∫ π

−π

· · ·
∫ π

−π

G(θ) dθ,

G(θ) = e−i2kqθ∅
∏

α∈{±1}n

1 + Deifα(θ)

1 + D
, (2.2)

and

fα(θ) =
∑

S∈Ik

αSθS. (2.3)

The elements of θ belong to the set R2π of real numbers modulo 2π . In this set,
addition, and multiplication by integers, have their usual meanings. We use ≡ to
indicate equality in R2π . For example, θ ≡ 0 means that θ is the element of R2π

corresponding to the real number 2π t for any integer t. Also let

z : R2π → (−π, π ]
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be the standard mapping of R2π onto the real interval (−π, π ] and define the absolute
value d(θ) = |z(θ)| for any θ ∈ R2π . Clearly d(·) satisfies the triangle inequality:
d(θ + θ ′) ≤ d(θ) + d(θ ′).

3 Analysis of the domain of integration

The integrand G(θ) defined in (2.2) has modulus at most 1. We will later show that
the value of the integral I(n, k, q) comes mostly from the near vicinity of those points
where equality occurs, so our next task will be to identify those points. Define

C = { θ ∈ R
M
2π : |G(θ)| = 1

}
.

Lemma 3.1

C =
⎧
⎨

⎩
θ ∈ R

M
2π : 2|S| ∑

T∈Ik,T⊇S

θT ≡ 0 for each S ∈ Ik

⎫
⎬

⎭
, (3.1)

and moreover |C| = 2Q.

Proof Throughout the proof we work in R2π . For 1 ≤ j ≤ n, define the linear
difference operator δ j by

δ j f(α1,...,α j,...,αn) = f(α1,...,α j,...,αn) − f(α1,...,α j−1,−α j,α j+1,...,αn).

For S ∈ Ik, define δS =∏ j∈S δ j, noting that the product is commutative. From the
definition of fα(θ) we can easily prove by induction on |S| that

δS fα(θ) = 2|S| ∑

T∈Ik,T⊇S

αTθT . (3.2)

Since
∣
∣
∣
∣
1 + Deix

1 + D

∣
∣
∣
∣ =

√
1 + 2D cos(x) + D2

1 + D
≤ 1,

a necessary and sufficient condition for θ ∈ C is that fα(θ) ≡ 0 for all α ∈ {±1}n.
Suppose that θ ∈ C. Then, since fα(θ) ≡ 0 for all α, the difference δS fα0(θ) satisfies

δS fα0(θ) ≡ 0 for all S ∈ Ik, where α0 = (1, 1, . . . , 1). By (3.2) we conclude that θ lies
in the set C∗ given by the right hand side of (3.1), and hence C ⊆ C∗. Conversely, if
θ ∈ C∗ then every fα(θ) ≡ 0 since

fα(θ) ≡
(∏

{ j:α j=−1}(1 − δ j)
)

fα0(θ).

Therefore, C = C∗.
Since the set of equations in (3.1) is triangular, we can find all solutions by

choosing each θS in order of decreasing |S|. There are exactly 2|S| choices for θS,
so the total number of solutions is |C| = 2Q. 	


As noted in Remark 1.2, we will assume that λ ≤ 1
2 without losing generality. Let


 be the positive number defined by


 = 2−n/2+k+3λ−1/2nk+1/2 M1/2.
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The left side of (1.1) is equivalent to


 = o
(
2−2kn−2k−1 M−1). (3.3)

Let R be the subset of R
M
2π defined by

R = { θ ∈ R
M
2π : d(θS) ≤ 
(2n)−|S| for all S ∈ Ik

}
.

This is a hypercuboid centred at the origin. Denote the union of 2Q copies of R
centred at the points in C by

R+C =
⋃

θ∗∈C
{R + θ∗} ⊆ R

M
2π .

Since all the elements of vectors in C are integer multiples of 2π/2k, it follows
from (3.3) that these copies are disjoint. The region R+C includes all the points
where |G(θ)| is maximal; we will prove in the following sections that in fact it includes
all the points which contribute substantially to I(n, k, q).

4 The integral outside the critical region

Lemma 4.1 If the conditions of Theorem 1.2 are satisf ied and λ ≤ 1
2 then

∫

(R+C)c
|G(θ)| dθ < (2π)M exp

(− 4
5 nM

)
,

where (R+C)c = R
M
2π \ (R+C).

Proof Fix θ ∈ (R+C)c. First we show that there exists some set S0 = S0(θ) ∈ Ik such
that

d(δS0 fα(θ)) > (2 − e1/2)
n−|S0| (4.1)

for all α ∈ {±1}n. Define θ∗ = θ∗(θ) ∈ C recursively, as follows: starting with sets
S ∈ Ik with |S| = k, and then proceeding to smaller k, choose θ∗

S ∈ R2π such that
2|S|∑

T∈Ik,T⊇S θ∗
T ≡ 0 and d(θS − θ∗

S) is minimal over all such choices of θ∗
S . (Break

ties arbitrarily.) Since θ /∈ R+C, there is a set S0 ∈ Ik of maximum cardinality such
that

d(θS0 − θ∗
S0

) > (2n)−|S0|
. (4.2)

By the maximality of S0 we have

∑

T∈Ik,T⊃S0

d(θT − θ∗
T) ≤

∑

j≥1

(
n
j

)


(2n)−|S0|− j

≤ 
(2n)−|S0|∑

j≥1

2− j

j!

= (e1/2 − 1
)

(2n)−|S0|. (4.3)
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Now take any α ∈ {±1}n and write, using (3.2),

δS0 fα(θ) ≡ 2|S0| ∑

T∈Ik,T⊇S0

αTθT ≡ �1 + �2 + U

where

�1 ≡ 2|S0| ∑

T∈Ik,T⊇S0

αTθ∗
T ,

�2 ≡ 2|S0| ∑

T∈Ik,T⊃S0

αT(θT − θ∗
T),

U ≡ 2|S0|αS0(θS0 − θ∗
S0

).

Since θ∗ ∈ C, (3.1) implies that �1 ≡ 0. Next, since d(αTθT) = d(θT), (4.3) implies that

d(�2) ≤ (e1/2 − 1)
n−|S0|.

Finally,

d(U) > 
n−|S0|,

by (4.2) and the fact that d(θS0 − θ∗
S0

) < 2−|S0|π . Therefore, using the triangle
inequality,

d(δS0 fα(θ)) = d(U + �2) ≥ d(U) − d(�2) > (2 − e1/2)
n−|S0|.

Since α ∈ {±1}n was arbitrary, this establishes the existence of the desired set S0.
Next, partition the set {±1}n into 2n−|S0| parts, each of size 2|S0|, such that two

vectors α, α′ belong to the same part if and only if they agree in every coordinate
j �∈ S0. Let P be an arbitrary part of the partition. For any α ∈ P, the difference
δS0 fα(θ) is a linear combination, with coefficients ±1, of the elements of the set
{ fα′(θ) : α′ ∈ P}. Therefore, by (4.1) and using the triangle inequality,

(2 − e1/2)
n−|S0| < d(δS0 fα(θ)) ≤
∑

α′∈P

d( fα′(θ)). (4.4)

As 1 − cos x ≥ 2x2/π2 for −π ≤ x ≤ π , we find that for all x ∈ R,

∣
∣
∣
∣
1 + Deix

1 + D

∣
∣
∣
∣

2

= 1 − 2D(1 − cos x)

(1 + D)2

≤ exp
(
− 4D d(x)2

(1 + D)2π2

)

= exp
(
−4λ(1 − λ)

π2 d(x)2
)

≤ exp
(
− 2λ

π2 d(x)2
)
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using the assumption λ ≤ 1
2 for the last inequality. Thus, using the Cauchy–Schwarz

inequality and (4.4),

∏

α∈P

∣
∣
∣
∣
1 + Deifα(θ)

1 + D

∣
∣
∣
∣ ≤ exp

(

− λ

π2

∑

α∈P

d( fα(θ))2
)

≤ exp
(

− λ

π2|P|
(∑

α∈P

d( fα(θ))

)2 )

≤ exp
(

− λ

π2 2−|S0| ((2 − e1/2)
n−|S0|)2
)

.

Since there are 2n−|S0| parts in the partition, taking the product over all parts and
applying the definition of 
 gives

|G(θ)| ≤ exp
(−(2 − e1/2)2π−222k−2|S0|+6n2k−2|S0|+1 M

)

≤ exp
(−26 (2 − e1/2)2π−2nM

)
,

as |S0| ≤ k. Finally we note that 26 (2 − e1/2)2 π−2 > 4
5 , so we have

|G(θ)| < exp
(− 4

5 nM
)
.

As this inequality holds for any θ /∈ R+C and the volume of (R+C)c is at most (2π)M,
the proof is complete. 	


5 The integral inside the critical region

Lemma 5.1 If the conditions of Theorem 1.2 are satisf ied and λ ≤ 1
2 then

∫

R
G(θ) dθ =

(
2π

λ(1 − λ)2n

)M/2(
1 + O(25k/2n3k+3/2 M3/2q−1/2)

)
.

Proof Let θ = (θS)S∈Ik ∈ R. In this section we perform expansions that are valid in
R rather than R2π , so we identify θ with

(
z(θS)

)
S∈Ik

. Since

exp
(

i
∑

S∈Ik

αSθS

)

= exp
(

i
∑

S∈Ik

αSz(θS)

)

,

this identification has no effect on G(θ). Also note that

| fα(θ)| =
∣
∣
∣
∣

∑

S∈Ik

αSz(θS)

∣
∣
∣
∣ ≤ 


k∑

j=0

(
n
j

)

(2n)− j ≤ e1/2
. (5.1)
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Define

h(x) = log
(

1 + Deix

1 + D

)

.

By Taylor’s Theorem with the integral form of the remainder (which also holds for
complex-valued functions),

h( fα(θ)) = i
D

1 + D
fα(θ) − 1

2
D

(1 + D)2 fα(θ)2 + R( fα(θ))

where

R( fα(θ)) =
∫ fα(θ)

0

1
2 h′′′(t)( fα(θ) − t)2dt. (5.2)

Now cos(·) is unimodal on [−e1/2
, e1/2
] by (3.3). Therefore for |t| ≤ e1/2
 we have

|h′′′(t)| = D
√

1 − 2D cos(t) + D2

(1 + 2D cos(t) + D2)3/2 ≤ D ≤ 2λ

using the assumption that λ ≤ 1
2 . Hence by (5.1) and (5.2),

|R( fα(θ))| ≤ λ e3/2
3

3
≤ 2λ
3.

Then

G(θ) = exp
(

−i2kqθ∅ +
∑

α∈{±1}n

(

i
D

1 + D
fα(θ) − 1

2
D

(1 + D)2 fα(θ)2 + R( fα(θ))

))

= exp
( ∑

α∈{±1}n

(

−1
2

D
(1 + D)2 fα(θ)2 + R( fα(θ))

))

= exp(a(θ)) exp
(

−1
2 A

∑

α∈{±1}n

fα(θ)2
)

where

a(θ) =
∑

α∈{±1}n

R( fα(θ)).

The vanishing of the linear terms explains our choice of D. Note that a(θ) is a
complex number which is bounded in modulus by

|a(θ)| ≤ λ 2n+1
3. (5.3)

Next, note that the reflection θ �→ −θ preserves the region R and maps G(θ) to
its complex conjugate. It follows that

∫

R
G(θ) dθ
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is real, and therefore is equal to the integral of the real part of its integrand. Hence
∫

R
G(θ) dθ =

∫

R
Re(exp(a(θ))) exp

(

−1
2 A

∑

α∈{±1}n

fα(θ)2
)

dθ

= Re(exp(a(θ0)))

∫

R
exp
(

−1
2 A

∑

α∈{±1}n

fα(θ)2
)

dθ

for some θ0 ∈ R, using the Intermediate Value Theorem.
Since λ2n
3 = o(1) using (1.1), it follows from (5.3) that |a(θ0)| ≤ 1 when n is

sufficiently large. It is routine to check that for any complex number z with |z| ≤ 1,

exp(−|z|) ≤ Re(exp(z)) ≤ exp(|z|).
By (5.3) we can apply this with z = a(θ0) to find that

∫

R
G(θ) dθ = exp

(
O(λ 2n
3)

)
∫

R
exp
(

−1
2 A

∑

α∈{±1}n

fα(θ)2
)

dθ . (5.4)

Now we calculate that
∑

α∈{±1}n

fα(θ)2 = 2n
∑

S∈Ik

θ2
S.

Since this quantity is real and λ2n
3 = o(1), we have that
∫

R
G(θ) dθ = (1 + O(λ2n
3)

) ∏

S∈Ik

∫ 
(2n)−|S|

−
(2n)−|S|
exp
(−1

2λ(1 − λ)2nθ2
S

)
dθS.

Next we apply the well-known estimate
∫ xσ

−xσ

e−u2/(2σ 2) du = σ
√

2π
(
1 + o(e−x2/2)

)
for x → ∞,

with σ = (λ(1 − λ)2n)−1/2 and x = 
(2n)−|S|σ−1 >
√

32nM → ∞. This gives
∫

R
G(θ) dθ =

(
2π

λ(1 − λ)2n

)M/2(
1 + O(λ2n
3) + O(Me−16nM)

)
.

The lemma follows on noting that the second error term is subsumed by the first. 	


6 Proofs of Theorem 1.2 and its corollaries

The theory we have developed over the preceding sections allows us to complete the
proofs of our main results.

Proof of Theorem 1.2 By (2.1) we have that

N(n, k, q) = (1 + D)2n

(2π)M D2kq

(∫

R+C
G(θ) dθ +

∫

(R+C)c
G(θ) dθ

)

.

First suppose that λ ≤ 1
2 . Then the first integral is 2Q

∫
R G, where

∫
R G has been

evaluated in Lemma 5.1, while the second integral is bounded in absolute value by
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Lemma 4.1 and hence is covered by the error term of Lemma 5.1. This completes the
proof when λ ≤ 1

2 , and the result follows for λ > 1
2 by Remark 1.2. 	


Corollary 1.1 follows from Theorem 1.2 by setting λ = 1
2 . Corollary 1.2 requires a

little more effort.

Proof of Corollary 1.2 We divide the interval of summation into five ranges. Define

q1 = �2n−k−1n−1�, q2 = �2n−k−1 − 2n/2−kn�, q3 = 2n−k − q2, q4 = 2n−k − q1.

Also define

W(λ) = W(λ, k, n) = 2Q(π A2n+1)−M/2(
λλ(1 − λ)1−λ

)−2n

,

which is the right side of (1.2) apart from the error term.
We start with the range q ∈ [q2, q3], for which λ = 1

2 + O(2−n/2n). By Taylor
expansion, we have for x = O(2−n/2n) that

W
( 1

2 + x
) = W

( 1
2

)
exp
(−(2n+1 − 2M)x2 + O(2−nn4)

)
. (6.1)

The error term in (6.1) is smaller than 2−n/2+3kn3k+3/2 M3/2 for any λ in this range so,
by Theorem 1.2,

q3∑

q=q2

N(n, k, q) = (1 + O(2−n/2+3kn3k+3/2 M3/2)
)
W
( 1

2

)
q3∑

q=q2

h(q),

where h(q) = exp
(−2−2n+2k+1(2n − M)(q − 2n−k−1)2

)
. By Euler–Maclaurin summa-

tion (see for example [20, p. 36]),

q3∑

q=q2

h(q) = O(e−n2
) + (1 + O(2−n)

)
∫ q3

q2

h(q) dq

= (1 + O(2−n)
)
π1/22n−k−1/2(2n − M)−1/2

= (1 + O(2−n M)
)
π1/22n/2−k−1/2.

This proves that
∑q3

q=q2
N(n, k, q) is given by an expression of the same form as the

right side of (1.4).
Next consider the range q ∈ [q1, q2), which is the mirror image of the range

q ∈ (q3, q4]. Then

d log W(λ)

dλ
= a1(λ)2n + a2(λ)

(
λ(1−λ)2n − M

)
, where

a1(λ) = log(λ−1 − 1) + λ − 1
2 and a2(λ) = 1 − 2λ

2λ(1−λ)
.
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For 1
2n ≤ λ ≤ 1 − 1

2n we find that λ(1−λ)2n > M, while a1(λ) and a2(λ) have the same
sign as 1

2 − λ. Therefore W(λ) is unimodal in this range. Since η(n, k, q) = o(1), we
have

q2−1∑

q=q1

N(n, k, q) = O(2n)W
( 1

2 − 2−n/2n
)

= O(2n) exp
(−(2 − o(1))n2)W

( 1
2

)

= e−O(n2) W
( 1

2

)

using (6.1). This shows that the sum over [q1, q2) is covered by the error term of the
corollary. By Remark 1.2 the same conclusion holds for the summation from q3 + 1
to q4.

Finally consider the range q ∈ [0, q1), which is the mirror image of the range
q ∈ (q4, 2n−k]. Here we use the trivial bound

q1−1∑

q=0

N(n, k, q) <
(
2n)2kq1 = 22n−1+O(n2k)

which also fits into the error term of the corollary. By Remark 1.2, the same
conclusion holds for the summation from q4 + 1 to 2n−k, which completes the proof.

	


7 More on the case k = 1

In the case of k = 1, which corresponds to the “balanced colourings” enumerated by
Palmer et al. [13], it is possible to fill in the range of very small or very large values
of q excluded by (1.1).

Lemma 7.1 If 0 ≤ q = o(2n/2) then

(2q)! N(n, 1, q) =
(

2q
q

)n(
1 + O(q2/2n)

)
.

Proof Generate a 2q × n matrix by a random process: for each column indepen-
dently, randomly insert 0 in q rows and 1 in the other q. This matrix is one of those
counted by (2q)! N(n, 1, q) provided all the rows are different. (Recall that N(n, 1, q)

counts matrices up to row order.)
The probability that a specified pair of rows are equal is

2n
((

2q−2
q

)/(2q
q

))n

=
(

q − 1
2q − 1

)n

< 2−n,

so, by the Bonferroni inequality, the probability that no two rows are equal is
1 − O(q2/2n). This completes the proof. 	
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Theorem 7.1 Uniformly for 0 ≤ q ≤ 2n−1,

N(n, 1, q) =
(

2n

2q

)

⎛

⎜
⎜
⎜
⎝

(
2n−1

q

)2

(
2n

2q

)

⎞

⎟
⎟
⎟
⎠

n

(
1 + o(n52−n/5)

)
.

Proof We begin by motivating the given formula. Choose, uniformly at random, a
set of 2q distinct elements of {0, 1}n. The event that exactly q of these elements have
1 in some specified position has probability

(
2n−1

q

)2/(2n

2q

)

.

Therefore, the theorem is stating that these n events are very close to being
independent in some sense.

We can derive the theorem from Theorem 1.2 and Lemma 7.1. First consider the
case that 22n/5n12/5 ≤ q ≤ 2n−2. Then, by Stirling’s formula,

((
2n−1

q

)2/(2n

2q

))n

= (π A2n−1)−n/2(1 + O(n/q)
)

and
(

2n

2q

)

= (π A2n+1)−1/2 (λλ(1 − λ)1−λ)−2n
(1 + O(1/q))

and the theorem follows from Theorem 1.2.
In the case that 0 ≤ q ≤ 22n/5n12/5, we calculate that
(

2n−1

q

)2/(2n

2q

)

=
(

2q
q

)(
2n − 2q
2n−1 − q

)/( 2n

2n−1

)

=
(

2q
q

)

2−2q(1 + O(q/2n)
)
,

so the theorem follows from Lemma 7.1.
Finally, for 2n−2 ≤ q ≤ 2n−1, take the complement as in Remark 1.2, noting that

the binomial coefficients in the statement of the theorem are symmetric around
q = 2n−2. 	


8 Final remarks

As mentioned in Section 1, Denisov in [8] incorrectly repudiated the result from [7]
that we quoted as Theorem 1.1. Denisov’s mistake was due to the incorrect compu-
tation of the matrix inverse A−1 on page 95 of [8]. In fact the I, J element of A−1 is
(−1)|J|−|I|2|I| for I ⊆ J and 0 otherwise. Correcting the mistake shows that the critical
value z̄T Q−1z̄ on page 97 equals 22k−n+2 and not the value stated. Except for this
error, Denisov would have extended Theorem 1.1 to k = o(n1/2) and in fact would
have matched Theorem 1.2 (with a different vanishing error term) for k = o(n1/2)

and

|q − 2n−k−1| < ρ 2n/2−k n1/2
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for any positive constant ρ <

√
log 2

2 . Note that our coverage of both k and q is
considerably wider than that.

Finally we mention a connection between correlation-immune boolean functions
and Hadamard matrices. Recall that a Hadamard matrix of order n is an n × n matrix
over ±1 whose columns are pairwise orthogonal. Such matrices are known to exist for
n = 1, n = 2, and for infinitely many other n. If n > 2 then n ≡ 0 mod 4 is a necessary
condition for the existence of a Hadamard matrix of order n. It is a long-standing
open problem to show that this necessary condition is also sufficient. Let Hn be the
number of Hadamard matrices of order n. By a simple normalization, it can be seen
that Hn equals 2n times the number of Hadamard matrices whose leftmost column
equals all +1’s. If such a column is removed, and each −1 changed to 0, there remains
an n × (n−1) matrix of the sort counted (up to row permutation) by N(n−1, 2, n/4).
Hence, Hn = 2nn! N(n−1, 2, n/4) for n > 2. This connection raises the possibility
of proving the Hadamard conjecture by asymptotic methods. Unfortunately, the
coverage of Theorem 1.2 is inadequate for that purpose.
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