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Abstract

The results of exhaustive analysis of the game digraphs for triangle
avoidance on n < 12 nodes are reported. The outcome for n = 12 is
the first counterexample to a conjecture that would have provided a
solution for all n. Computational methods and related games are also
discussed.
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1 Introduction

A triangle is a 3-cycle of a graph. The one-color triangle achievement game
on n nodes starts with n isolated nodes. There are two players A and B; the
first move is always made by A who chooses any two of the nodes and joins
them by an edge. Then B draws another edge using the same color, after
which A draws a third edge of the same color, and so forth. The player who
first completes a triangle wins the game. Since all edges have the same color,
the triangle can be formed from edges contributed by both players, as in [4].

We call the player who has a winning strategy the Winner. Then for
one-color triangle achievement, as noted by Seress [6], we have

A is the Winner for n = 2 or 3 (mod 4), and

B is the Winner for n = 0 or 1 (mod 4).

Obviously triangle achievement has the same Winner as the game of avoiding
two adjacent edges, i.e., the path Ps;. Hence the players draw independent
edges as long as possible, giving the outcome above.

We concentrate henceforth on the triangle avoidance game, which is
highly nontrivial. In one-color triangle avoidance, the players and moves
are the same. The only difference is that now the first player who completes
a triangle loses the game!

Any avoidance game can be expressed as another, entirely equivalent,
achievement game. In this case, the goal becomes to achieve a mazximal
triangle-free graph, that is, a triangle-free graph with the property that the
addition of any new edge creates a triangle. In general, for given n it is an
unsolved problem as to whether it is A or B who has the winning strategy
for the n-node game.

In Section 2 we describe the game acyclic digraph (alas, sometimes called
a ‘DAG’) for triangle avoidance, and in Section 3 we report on computational
results which extend our knowledge of the Winners to n = 12. (The Winners
for n < 9 were reported by Seress [6].) Related games are discussed in the
following section, and some of the computational considerations are described
in the final section.

An introduction to the terminology and basic results of combinatorial
game theory is given in [1]. For graph theory we refer to [3], with the proviso
that the terminology is modernized to node in place of vertex or point, edge



for an undirected line, and are for a directed line. After { moves in one-color
triangle avoidance, the state of the game will be some triangle-free graph G
on n nodes with ¢ edges. A legal move will add another edge to GG to obtain
a triangle-free graph ', which is called a child of G

We illustrate these concepts by showing in Figure 1 the game digraph for
n = 4 nodes. At the top of Figure 1, the graph with no edges is the start
of the game. Up to isomorphism, there is only one first move for player A;
call this Al. Now for move Bl there are two possibilities as shown. Thus
the graph with just one edge has two children, shown in Figure 1 by small
arrows. As can be seen from the position P;, a child can have more than one
parent. The two graphs in Figure 1 having no children are both complete
bipartite, and hence maximal triangle-free.

Starting with n = 5, there is a maximal triangle-free graph which is not
bipartite, namely the 5-cycle, C5. Further, for all n > 5, there exists a
maximal triangle-free graph of order n that is not bipartite. As n grows, the
proportion of maximal triangle free graphs on n nodes which are not bipartite
seems to tend to 1. This phenomenon offers an intuitive explanation of the
apparent difficulty of determining the Winner of triangle avoidance for an
arbitrary number n of nodes.

It should be noted that what we have called the game digraph has tradi-
tionally been presented as a game tree by providing separate labeled copies
of a game position for each distinct sequence of moves which reaches it. Since
we are concerned with computational efficiency, we provide no duplicate po-
sitions. Thus the game positions and the single moves from one to another
form a digraph. For one-color triangle avoidance this game digraph is acyclic,
as detailed at the start of Section 3.

For further efficiency we identify any two positions which are isomorphic
since the Winner is obviously preserved by graph isomorphism. The gen-
eral graph isomorphisim problem is widely believed to be computationally
intractable, but for small graphs it has been solved very efficiently by B. D.
McKay’s software package nauty [5]. Isomorphism classes of graphs are also
known as unlabeled graphs. Henceforth, by the game digraph (for some order
n) we mean the digraph in which the nodes are unlabeled triangle-free graphs
of order n and the arcs join pairs related by adding one new edge and are
oriented toward the larger graph.



2 Local and global winners

Following Fraenkel’s notation, we partition the set S of all triangle-free graphs
into sets V and P, N standing for next and P for previous, as follows. When
the graph G has the property that the next player to move has a winning
strategy (no matter what moves the other player may make), we put graph
G into set V. Otherwise, we put (& into set P, since then the previous player
has a winning strategy.

As mentioned in the introduction, either A or B is the winner for each n;
we call them the global winners. On the other hand, at each game position
(for example, those in Figure 1), either the next player, N, or the previous
player, P, is the Winner from that position; they are called local winners.
It is computationally convenient to determine the local winner at each game
position. Then the global Winner is A if, and only if, the local Winner at
the initial position is N. Equivalently, the global Winner is B if, and only
if, the local Winner at the initial position i1s P.

In Figure 1, the two childless game positions Cy and K; 3 are labeled P
since the next player must lose by creating a triangle. The parents of these
are labeled NV, since the next player can choose to move to a P position. Now
2K, is labeled P since its only child is an N position. The parent of 2K, is
then labeled NV, and the starting position is P. Thus player B is the Winner
of triangle avoidance on 4 nodes, as A is next to play at the start.

For arbitrary n we can follow the same procedure as above for n = 4,
starting with the maximal triangle-free graphs of order n, which are in P.
Working our way up from children to parents, we classify each game position
on n nodes as lying in P or N, finishing with the edgeless starting position.

For each triangle-free graph G, let C'h(() denote the set of all children
of G. Then we have the general classification rule

G € Piff Ch(G) C N,

or equivalently,

G € Niff Ch(G)N P # 0.

Figure 1 illustrates for four nodes the game digraph (which is not a tree) for
triangle avoidance. The nodes of the game digraph are the game positions,
with an arc from parent to child for each possible move.

We now describe briefly the winning strategy for B, the global Winner
for n = 4. This prunes Figure 1 down to the essentials. Let Al denote the
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first move by A, B1 the first move by B, etc. The move Al shown in Figure
2 is the edge 12 joining nodes 1 and 2, which gives the same game position
(up to isomorphism) as any other possible first move. Then B1, the edge
34, leaves A only one possible reply, again up to isomorphism of the game
position. The game ends when B2 completes a quadrilateral, leaving A with
no move to make which avoids creating a triangle. Hence A resigns.

3 How the winners were found

For each n > 3 the game digraph is a finite acyclic digraph. This is because
every move adds one edge to the game position, and there are only n(n—1)/2
possible edges. Recall that Turdn’s Theorem [3, p. 17] shows that a triangle-
free graph on n nodes has at most n?/4 edges, giving an upper bound on the
number of moves in any game of triangle avoidance.

It is clear that since the property of not containing a triangle is preserved
by graph isomorphism, we can work with the game digraph in which each
node is an unlabeled graph. For n = 4, Figure 1 shows the game digraph.
The seven unlabeled graphs correspond to a total of 41 different labeled
graphs on the fixed node set {1,2,3,4}. For larger n, the ratio of labeled to
unlabeled graphs tends to n!, so considerable computational saving is offered
by the game digraph.

In order to compute the Winner for n nodes using the game digraph,
one needs to calculate graph isomorphisms. For n of modest size, Bren-
dan McKay’s nauty software package [5] effectively solves this problem. The
phrase “no automorphisms, yes?” provides the acronymic name nauty, refer-
ring to the likelihood that no nontrivial automorphism will exist in a random
graph. One of the utilities in the package is makeg, which stands for “make
graphs”. We have used makeg to generate the unlabeled triangle-free graphs
on n nodes for n < 12. For each n we took the output from makeg to build a
representation of the game digraph for triangle avoidance on n nodes, then
applied the recursive method to determine membership in N or P for all
of the game positions back to the starting point. The Winners for n < 12
computed in this way are presented in Table 1. Some of the computational
details of the representation employed are discussed in Section 5.
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Table 1. The Winners of triangle avoidance for n < 12.
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For several years the authors had computed only the data for n < 11,
and so were tempted to conjecture that the Winner for triangle avoidance
on n nodes is A iff n = 2 (mod 4). Fortunately, a faster workstation with
more memory enabled us to extend the computation to n = 12, for which
that conjecture fails.

However we are still left with the obvious question:

Query: Is it true that for all but some finite exceptional values of n, the
Winner for triangle avoidance is A iff n =2 (mod 4)?

The results of Wanless [7, 8] encourage the conjecture that there will be
some periodic pattern with a finite number of exceptions. In the first of
these papers Wanless confirmed our conjecture to the effect that the Winner
of 4-cycle achievement is determined by the residue class of n modulo 7 for
all n > 4 except n = 8,13 and 25. He built on that in the second paper to
show that the game of achieving a path of length 6 has period 84.

4 Related games

The main result of [6] is the solution of the “connected version” of triangle
avoidance. In this variation, every edge played after the first move must be
adjacent to some previously played edge. It turns out that A is the Winner of
connected triangle avoidance if, and only if, n is even. A maximum/minimum
version of triangle avoidance is explored in [2].

Another natural related game is that of odd cycle avoidance, in which the
first player to complete a cycle of odd length loses the game.

Theorem 1. The Winner of odd cycle avoidance on n > 2 nodes is A if
and only if n =2 (mod 4).

Proof. It is well known that a graph G is free of odd cycles if and only
if G is bipartite. Thus we may assume that the game is played until the
position graph is maximal bipartite, i.e., a complete bipartite graph K(a,b)
with @,b > 1 and a 4+ b = n. Since K(a,b) has exactly ab edges, B wins the



game if a or b is even, and A wins if ¢ and b are both odd. If n is odd, one
of a,b must be even so B is the Winner.

If n i1s even, say n = 2m, then either player can ensure that the maximal
bipartite game position attained is isomorphic to K(m,m), so that A is the
Winner, if and only if, n = 2 (mod 4). The strategy for Winner is to manage
play so that each connected component of the game position is balanced in
the sense that the two partite classes are equal in cardinality. Of course in
a connected bipartite graph the partition of the node set into two partite
classes is unique.

It can be seen inductively that Winner can play so that after each of his
moves the balance condition is satisfied. Loser can only create an imbalanced
nontrivial component by joining an isolated node to a balanced component
B. Since the total number of nodes is even, there is another isolated node
remaining, which Winner joins by an edge to some vertex in the larger partite
class of B in order to reestablish balance. If Loser presents a balanced game
position, Winner preserves balance by joining two isolated nodes to form
a new nontrivial balanced component, joining two balanced components to
form one larger balanced component, or else adding an edge within an incom-
plete balanced component. To see that Winner can always do this, note that
all nontrivial components are of even order, so that the number of isolated
nodes is even. Then Winner would have no balance preserving move only in
case the game position graph consists of a single complete balanced bipartite
component, which must be isomorphic to K(m,m). But this is impossible as
Winner is precisely the player who makes the last of the m? moves to complete
K(m,m). O

5 Computational aspects

The basic idea for finding winners in the order n triangle avoidance game is
simple: first construct the game digraph for order n. Then, using a sweep
from the bottom up, label the nodes of the game digraph so as to indicate
who wins from that position. (This is the algorithm given in Section 2.)
However a naive implementation, using recursive functions in a high-level
language, tends to run slowly.

Since the nodes of this game digraph consist only of triangle-free graphs,
and since the game is over whenever a triangle must be formed, each game



digraph sink node must be edge maximal. This consideration led to the

following procedure for finding the Winner of the game for order n:

1.

Generate a list of the canonical forms of all of the triangle-free graphs of
order n. The canonical forms must have the property that lexicographic
order on canonical forms is non-decreasing with respect to the number
of edges.

Sort the canonical forms by lexicographic order. Associate with each
canonical form a character, initially U, which we call its mark. (U
stands for unmarked.)

For each canonical form, from last to first in lexicographic order, do
(a), (b), or (c) according to its mark.:

(a) If the mark is U, change it to P. We call this marking the graph
P. Generate each parent, locate its canonical form, and mark it
N . The current graph is maximal triangle-free.

b) If the mark is N, generate each parent and if marked U mark it P.
Y g p
¢) If the mark is P, generate each parent and mark it N.
Y g p

4. The Winner for order n is A or B depending on whether the first graph

(with 0 edges, the starting position) is marked N or P, respectively.

This procedure was implemented as follows:

1.

The file is generated by using makeg, from the nauty package. One
option to makeg creates only triangle-free graphs. The default is to use
nauty’s internal definition of canonical form. We supplied a special
output format for nauty to write our graphs in one text line, in row
major order, prefixed with edge count.

. The file was sorted using the Unix sort utility.

For the marking, we read the sorted list into an array of the proper
size, and had immediate access to the last graph on the list. Since
the entire array was in memory, we could perform parent lookup via a
binary search, which was done using the C library bsearch() function
call. Edge deletion was performed in row major order, and each parent
graph was transformed to canonical form using nauty.



The running time of our implementation was dominated by the sorting
routine. Both time and space posed barriers to extending the computations
to order n = 13. The numbers ¢,, of unlabeled triangle-free graphs of order
n as reported in [5] are listed in Table 2 for n < 15. The time and the space
requirements for our computational procedure for determining Winner for
order n both grow at least as fast as t,,.

n t, m, W,
2 2 1 1
3 3 1 1
4 7 2 1
5 14 3 2
6 38 4 3
7 107 6 4
8 410 10 4
9 1897 16 9
10 12172 31 21
11 105071 61 32
12 1262180 147 91

13 20797002
14 467871369
15 14232552452

Table 2. Numbers of triangle-free graphs

The size of a graph is the number of edges in it. One way to view the
one-color triangle avoidance game is that A’s objective is to reach a maximal
triangle-free graph of odd size, whereas B’s goal is to reach one of even size.
We call these sets of graphs the natural objectives of A and B. As noted earlier
in describing our computational procedure, maximal triangle-free graphs are
exactly those which still have a mark value of U when reached in the main
loop. In this way we have counted maximal triangle-free graphs in the course
of determining the Winners for n < 12. The number m,, of order n is listed
for those values of n in Table 2, along with the number w,, which are Winner’s
objective.

We attempted to gain insight into Winner’s strategy by modifying the
game so as to limit Winner’s objectives to some proper subset of her natural



objectives. For order 9, for instance, we identified a minimal subset of 5
of B’s natural objective graphs which enabled B to win. That is, B has a
strategy for reaching one of the five graphs, but not for reaching any fixed
subset of four of those graphs. While our experiments along these lines have
not yet yielded any general insights, this is still a promising direction for
future work toward understanding one-color triangle avoidance.
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Figure 1: The game digraph for triangle avoidance on four nodes. Here, B
wins by choosing the first of the two possible B1 moves.
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Figure 2: The winning strategy for n = 4
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