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It is shown that for each r > 3, a random r-regular graph on 2n vertices is

equivalent in a certain sense to a set of r randomly chosen disjoint perfect matchings

of the 2n vertices, as n — oo. This equivalence of two sequences of probabilistic

spaces, called contiguity, occurs when all events almost sure in one sequence of

spaces are almost sure in the other, and vice versa. The corresponding statement is

also shown for bipartite graphs, and from this it is shown that a random r-regular

simple digraph is almost surely strongly r-connected for all » > 2.
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1 Introduction

Turn the set of labelled r-regular graphs on 2n vertices into a probability space Qg ,
with the uniform distribution. It was recently shown by the second two authors [12],
[13] that for r > 3 the probability of a random graph in Qj,, , being hamiltonian tends
to 1 as n — oo. The proof given there has a simple corollary in terms of a type of
asymptotic equivalence of two sequences of spaces called contiguity (defined below). In
this paper we distil the essence of the proof technique in [12], [13] as it relates to this
asymptotic equivalence, and apply it to a related situation. As a result we conclude a

quantitive similarity between a random graph in €, , and a random regular graph in
+

onr generated by randomly choosing r disjoint perfect matchings. A similar

the space Q2
result is also obtained for bipartite graphs.

Given two sequences < A, > and < A/ > of probability spaces where A, and A/,
have the same underlying sets, A,, and A/, are said to be contiguous when every event is
almost sure in A,, iff it is almost sure in A/, (see for example, [8] or [14]). Here “almost
sure” refers to n — oo. The proof of Theorem 2 in [13] immediately implies that for
r > 3, {9, is contiguous to the probability space with the same domain as 3,, in
which each graph occurs with probability proportional to the number of ways in which
its edge set can be partitioned into the edges of a k-regular graph and r — k 1-factors,
for any 2 < k < r — 1. (Actually, only the cases r > 4 and £ = r — 1 were treated
there explicitly, but the argument covers the case r = 3 = k + 1 implicitly, and this case

is also treated independently in [10] from the point of view of 2-factors. All the other

cases then follow by an easy observation using transitivity of the contiguity relation.)
_I_

onr With

It is natural to ask whether €, , is also contiguous to the probability space €2
again the same domain, in which each graph occurs with probability proportional to the
number of ways that its edge set can be partitioned into the edges of r ordered 1-factors.
In this paper we show that this is true for » > 3. Janson [7] has independently given
a development of contiguity in this combinatorial context, and an examination of the
method introduced in [12] and [13]. Amongst other things, he has obtained the main
results of Sections 2 and 3 in the present paper.

The first two authors have independently shown that €2, , is contiguous to the
probability space with the same domain, in which each graph occurs with probability
proportional to the number of ways in which its edge set can be partitioned into the
edges of a 2-factor, and an (r — 2)—factor. (See [10].) This, along with the results of
[13] and this paper, implies that for every partition r1 + 7o+ ...+ 14 =7 > 3, Qg is
contiguous to the probability space with the same domain where each member occurs

with probability proportional to the number of ways that its edge set can be partitioned



into the edges of an ry-factor, an ry-factor, ..., and an ri-factor (where the factors may
be taken as ordered).

In the remainder of this introduction we give a theorem which abstracts the main
outlines of the approaches taken in [12] and [13]. Then in Section 2 we take the main step

in the proof of our new result for graphs, showing that Qy,, , and QF  are contiguous for

2n,r
r = 3. The case of r > 3 will then follow from the results in [13] (Section 3). Analogous
results for bipartite graphs are given in Section 4.

Throughout this paper, asymptotics are for n — oo, unless otherwise specified.

Let Y, X1, X5,... be non-negative integer random variables defined on a sequence
{A,} of probability spaces. The following theorem applies analysis of variance to Y as
conditioned by specified values of Xy, X5,..., X in order to derive sufficient conditions
for Y’s value to be asymptotically almost surely close (in ratio) to its conditional expec-
tation. For the applications in [12], [13] and the present paper, A,, is a space of r-regular
graphs on 2n nodes and X; is the number of (i 4+ 2)-cycles in a graph. In these same
applications, Y is respectively the number of hamilton cycles, the number of perfect
matchings, and the number of ordered disjoint pairs of perfect matchings.

The expectation operator for A, is denoted E,, or more usually just as E since n
is only significant asymptotically. Similarly, P, or P denotes probability over A,. In

what follows, [n], denotes the falling factorial
n(n—1)---(n—r+1).

There are two sequences of constants, {A;};=1,2,...and {f;}i=1,2,.., which will depend on
the particular application.

The hypotheses for Theorem 1 are:

E,Y > 0 for all n; (1.1)
EX; — X for7 > 1; (1.2)
for any fixed £ > 1
X1, Xg,..., X are asymptotically independent Poisson variables; (1.3)
E(Y[X1];, - -
L ~TI s+ my) (14)
=1
for any £ > 1 and #1,...,1x > 0;
Ey2 0 ,u2
— . ; 1.5
Ey)r P ( Az) (1.5)



A; > max{0, —p;} for all i > 1; (1.6)

Zexp (—a/\}/g) < oo for any a > 0; (1.7)
1 k

z Z|,ui|—>0ask—>oo; (1.8)
=1

E AT < (1.9)

k
P
— =L —0ask —0. 1.10
anuf/Ai (1.10)
>k
Theorem 1. Given (1.1) - (1.10),

Y 1
li lim P, —— =1.
i, {m o (< g7 <)}
In particular, P, (Y > 0) — 1 as n — oc.

Theorem 1 yields the following useful corollary.

Corollary 1 Given (1.1) - (1.10), A,, is contiguous with the probability space with the
same domain as A,, in which each element w occurs with probability proportional to

Y(w).

The proof of this corollary will follow the proof of Theorem 1. We provide one
application of this corollary in Section 5 of the present paper. For other applications,
see [5], [9] and [6].

Proof of Theorem 1. We use the techniques introduced in [12] and [13].

For any k, and any k-tuple of positive integers @ = (aq,...,ax), we define 7, to be

the event X; = a;, 1 = 1,...,k, and we set 7, = P(7,). We also define the conditional

mean and variance:

E. = E(Y|T)
Vo = V(Y|7,).

Note that
VY = > m Vot Y mE}—(EY)? (1.11)
aeNFk aeNFk
We will concentrate our attention on k-tuples for which each a; is not too much bigger

than A;, so we define



S(y,k)={a]0<q; < /\Z'—}—y/\?/3 fori=1,....k}.

Fixing y, k, we set 7 = Uags(y,k) Zas and T = P(7).

The essence of our proof lies in the following two lemmas. Lemma 1 shows that (a)
7 is small, and (b) if a € S(k,y) then F, is large. Lemma 2 shows that most of the
variance can be explained by the variance between groups, i.e. for each a € S(y, k), V,
is small, and so conditional on 7,, Y is concentrated around F,. The proof then follows

by taking y, k — oc.

Set x(k) = Y0y pil, p(k) = 2282441 7/ Ni and 9(k) = max{exp(—k), p(k)}. Then
conditions (1.8) and (1.10) are equivalent to x(k) = o(k) and x(k) = o(ln ¢(k)), as

k — .
Lemma 1 If y is sufficiently large then

(a) T < e”®Y for some absolute constant a > 0, and

(b) a € S(y, k) implies E, > e~ WXENEY | for some absolute constant v > 0.

Lemma 2 If y is sufficiently large then

S mV2E < (89(k) + o(1))(EY)?,

a€S(y,k)

for some absolute constant & > 0, where the o(1) term is taken as n — oc.

Upon proving these two lemmas, the rest follows from an application of Chebychev’s

inequality. Define the random variable Y by
Y = E, if 7, holds.

For any ¢ > 0,

P(Y V| >1) < B(Y - V)
E oV /12

a€NFk
< (89(k) +o(1))(EY)? /1%,

by Lemma 2. Now, setting ¢t = %e_(w‘*X(k)) exp Y, where v is from Lemma 1, we obtain



P(Y<t) < 74+P(lY =Y|>1)
€™ 4 4(83(k) + o(1))e 2 0v X,

A

Since exp(x(k)) = o(In(¥(k))) as k — oo, we can choose k(y) large enough that
489 (k) 4 o(1))e=20w+x(R) < g=coy,
Thus, for any ¢,¢ > 0, we can choose y, k large enough that

lim P(Y < ¢EY) < €,

n—od

and so
lim { lim P, (€< L)} = 1.
e—t0 (n—oo EY
The other part of Theorem 1 follows from a straightforward application of Markov’s
inequality.
It only remains to prove Lemmas 1 and 2. First, we need a somewhat more general

lemma to replace Lemma 3 of [12, 13].

Lemma 3 Let ny,12,...> 0 be given such that for any a > 0

Then uniformly over x > 1,

R =3 S ul/(tlexp(n)) = Ofexp(—cor))

=1 t>n;+yi

/3

where y; = .rn? and ¢y > 0 is independent of x.

Proof. If we simply follow the proof of Lemma 3 in [12], the result above is obtained
with the constant

2/3
i

1
co = Zmin{n;/?’,n te > 1}

The bounded summation hypothesis implies 7; — oo as ¢ — 0. With n; > 0 for all « > 1,
this implies that the minimum in the definition of ¢y exists and is strictly positive. This

proves the lemma. 1

Proof of Lemma 1
(a) This is our analog of (2.1) of [12] (see also (2.4) of [13]). As in [12], it follows

immediately from Lemma 3 and hypothesis (1.3) of Theorem 1.



(b) We first state an analog of Lemma 2 of [12] and [13] (the proof being identical
to the proof found there, after applying hypotheses (1.4) and (1.6) of Theorem 1, where
(1.4) is our analog of (2.8) in [12], and (1.6) ensures A; 4+ g; > 0 for each j):

k a;
Hi ™
E, ~EY 14+ — e 1.12
Z»:]'_‘E ( * /\i) ‘ (1-12)
Now, it is sufficient to bound Hle (1 + %) Y e—ni appropriately, for all a € S(y, k).

Note that \

I1 (1 + ﬂ) e~ > ABCY
L A
=1
where
A = H <1_|_ l;’l) e—ﬂz’
i <0 K
B = e ZM>° s
2/3
c = J] <1 + %)
©i <0 ¢
2
For any y,k, A > exp | —>_;2, 5}) which converges to a constant greater than 1

by hypothesis (1.5) of Theorem 1, and B > exp(—x(k)). Also,
€2 oxp [~ AT - 22ar ) s exp (<25
=1 2 =1
which converges to a constant greater than 0 by hypothesis (1.9) of Theorem 1, thus

establishing Lemma 1(b). 1

Proof of Lemma 2
The following is our analog of (2.4) of [12] (see also (2.7) of [13]). The proof is the
same the proof found there, after applying (1.12), and Lemma 3:

B(B(x,,..x,)° > (BY ) (exp (i ’;—)) (1= 0wk +o(1), (113

where the constant implicit in O(%(k)) is independent of k. Applying (1.11) and hy-

pothesis (1.5) of Theorem 1, we immediately obtain

EVix,...x,) = (BY)*(O(4(k)) + o(1)),

thus yielding Lemma 2. 1

Proof of Corollary 1. Denote the domain of A,, by Q and denote by A the probability

space with domain € in which each element w occurs with probability proportional to



Y (w); i.e., with probability Y (w)/(EY|Q[). In what follows, we use P and Pt to denote
probabilities taken in A,, and A} respectively.
Suppose that a property P occurs with probability p(n) = o(1) in A,,. From hypoth-

esis (1.5), we have

VY =( =exp ((i ’;—2 + 0(1)> — 1) (EY)? = O((EY)?).

Therefore, by Chebychev’s inequality, for each positive integer ¢, the number of
elements w €  for which Y (w) > {EY is at most Z%|Q| Thus, taking I = {i| Z_l_%|ﬂ| <

p(n)}, we have

PP < ==t Y (- )

p(n) iel [ 12

%) <M) + 3037

el
= 0(1)7

thus establishing one direction of the contiguity.
For the other direction, suppose that a property P holds with probability p(n) = o(1)
in Af.
Denote by Q* the set {w € Q| p(n)"/? < Y(w)/EY < p(n)~'/?}. By Chebychev’s
inequality, for sufficiently large n, PT(Q*) = 1—0(1), and so PT(P|Q*) = p(n)(1+0(1)).
Furthermore, by our bounds on Y, P+(P|2*) > p(n)?/*P(P|Q*). Therefore, P(P|Q*) <
p(n)/3(1 4 o(1)) = o(1), thus establishing the other direction of the contiguity. 1

2 Triple 1-factors in cubic graphs

A double 1-factor is an ordered pair of disjoint 1-factors. In this section we make
computations concerning the number of double 1-factors in a random graph in Qg 3.
(The expectation and variance of the number of 1-factors in €5, , was found by Bollobds
and McKay [3].) A double 1-factor in a cubic graph determines an ordered triple of
disjoint 1-factors, and the converse is also true. Thus, from Theorem 2 below and the
Corollary to Theorem 1, we conclude the contiguity of {23, 3 and Q;n,s-
The number M of labelled cubic graphs on 2n vertices is asymptotically
(6n)! N n3"3727/2
€%(3n)!32n25n edn+2

M ~ (2.1)

The calculations here resemble those in [11] and [12]. In the following theorem we

take 0° = 1.



Theorem 2. Let Y = Y, denote the number of double 1-factors in a random cubic

graph on 2n vertices, and let X; denote the number of cycles of length i (i > 3). Then

2n4+1,1/2
EY ~ 27‘37
3n
EY? 4
(Ey)z 65/4'

Furthermore, if we define A; = 21;1 and p; = =y for i > 3, then the hypotheses (1.1)

k3

- (1.10) of Theorem 1 all hold with the indices in X;, A\; and p; all shifted down by 2.

Proof. The number of perfect matchings of the vertices {1,2,...,2n} is (2n)!/(n!2").
By the main theorem in Bender and Canfield [2], the number of ways to choose a second
perfect matching, avoiding the edges in the first, is asymptotic to (2n)!/(n!2"y/e). This
gives the asymptotic number of double 1-factors. The number of ways to complete a
double 1-factor to a cubic graph is again given by the result of [2] to be asymptotic
to (2n)!/(n!2"%). We obtain the claimed value of EY by taking the product of these
numbers and dividing by M.

It will next be shown that

24n+4

EY? (2.2)

N Smarn
from which the second statement in the theorem follows. We do this by showing that
total number T of ordered pairs of distinct double 1-factors in all cubic graphs on 2n
vertices satisfies
n3n95n+9/2

T cnrori (23)
This is computed by counting cubic graphs once for every ordered pair (D, D3) of
distinct double 1-factors they contain. Then (2.2) follows by dividing by M and using
(2.1).

In [11], the last two authors made an analogous calculation by considering a Hamilton
cycle, placing another one in the same graph, and then completing this to a cubic graph
G'. For the present problem we need to alter this scheme.

Let H; be the union of the two 1-factors in a double 1-factor D;, and let A; and B;
denote the edge sets of these two 1-factors. Thus H; is a subgraph of G consisting of
a set of disjoint even cycles, and A; and B; alternate along these cycles. Note that as
G is 3-regular, each vertex is incident with either 1 or 2 edges of Hy N H|2. Thus, each
vertex has degree 1 or 2 in G — (Hy; N Hy) and H; — (Hy N Hj) is a matching, j = 1,2.

We first place the intersection of H; and Hy with the edges in the cycles of Hy N Hy

assigned to either A; or By and also to A; or By. Then we similarly assign the edges in



the paths of Hi N Hy, and then complete the choice of Hy and H,. This determines D4
and Do, so the final step is to add a matching to complete the choice of G.

Since all cycles in H; are even, Hy N Hy consists of a set of disjoint paths and even
cycles. As the total number of vertices is even, we can let 27 denote the number of
even-length paths (i.e. those with an odd number of vertices), and we suppose there are
k paths in total. The edges of any cycle can be assigned in an alternating manner to
Aj or By and to Ay or Bj in four different ways. The exponential generating function
counting the number of different possibilities for Hy N Hy is thus
(%$2(1 . $2)—1)k—2i y (%:E?’(l _ $2)—1)2i y e—x2

(k — 21)! (21)! 1—z2’

where the first term counts the number of choices for £ — 27 odd paths, the second term
counts the number of choices for 27 even paths, and the final term counts the number of
choices for a set of even cycles, along with an assignment of their edges to Ay, By and

to Ay, By. Hence the number of H; N Hy is

(2n)! n—t—s\ (—1)°
m§< k ) S (2.4)

Note here that s indexes the number of cycles in Hy N Hs.

For 7 =1 and 2, it must be decided which of the remaining edges of H, N Hy are in
A; and which are in B;. These must alternate along the paths. We denote by 4; the
set of endpoints of the paths in Hy N Hy for which the path-edges they are incident with
lie in A;. We define B1, Ay, By in a similar manner. Since the completion of H1 N Hy to
H; consists of a matching, |.4;| is even, and we denote |A;| = 2a;.

For each 7 = 1,2, given a;, the number of ways to choose which edges in odd-length

paths of Hy N Hy arein A; is
k—21
( ?), (2.5)
a; —1

2%, (2.6)

and for the even-length paths it is

Completing H{N Hy to Hy consists of adding a matching to A4y, and another matching
to By. Let d denote the number of paths of H; N Hy of length 1. These represent the
only edges which are forbidden in these matchings. So again using [2], the number of
completions to H; is equal to

(2(11)'(2]6’ — 2&1)!
ar!291(k — ap)12k—m1em

(2.7)

where k1 — % provided a; ~ d ~ k/2 — oo (a condition which we will later see applies

in all relevant cases).

10



For the completion of Hy, we need to forbid some edges: the d edges as for Hy; and
also some of the edges of Hy added in the completion of H;, namely those which join
two vertices both in A or both in By. Let d’ denote the number of these edges. Then

the number of completions to Hs is equal to

(2@2)'(2]6’ — 2&2)!
az!2%2(k — ay)!2k—02er2

(2.8)

where k3 — 1 provided ag ~ d ~ d' ~ k/2 — oo, and kg > 0 always.

Finally to complete H1U Hj to the graph G we must add a matching of the remaining
2n — 2k vertices of degree 2. The edges forbidden this time are the “internal” edges of
the paths and cycles in Hy N Hy, and are 2n — 3k 4+ d in number. Hence the number of

completions is equal to
(2n — 2k)!
(n — k)12n—Fkera

(2.9)

where k3 — % provided d ~ k/2 and n — k — o0, and k3 > 0 always.

Next, combine (2.4) to (2.9), using Stirling’s formula for factorials, and assuming the
argument of each factorial, except for s, tends to infinity. This supposition is justified
later, when we analyze the values for which I achieves its maximum. We find that the
contribution to 7" from any fixed s in (2.4) is asymptotic to

I =) L™
k,i,a1,a9,d,d’

where F' = F(n,k,i,a1,az) is defined by

22ig(k —2i)g(a1)g(k — a1)g(az)g(k —az)g(n — i)g(n — k)
glar —i)g(k — a1 —i)g(az — i)g(k — az — i)g(n — i — k)g(k)g*(i)’

g(z)=2z", and

=

o 2n(k — 2i)(n — 1)
ki(ar —i)(ag —i)(k —a1 —i)(k —ag —t)(n —i — k)

Simple analysis of F' reveals that it achieves its maximum for given n at k = 2n/3,
it =n/9, and a; = a; = n/3. For example, one can apply an analysis similar to that
applied to the similar funciton in [11], or one can observe that for fixed ¢, k, F' achieves
its maximum at a1 = ay = k/2, and after making this substitution, proceed with a
straightforward analysis of the derivatives of F' with respect to ¢« and k. FExpanding

about this maximum gives

. 4n\" 15 243 3 3 3 3
F(n,k,i,a1,a3) ~ <—) exp <—§5£ - 1—66? - 5531 - 5532 + §6a16k + §6a26k)

11



where
k—2n/3 i—n/9 a; —n/3
b= S o T L
vn vn J Vn

The contribution from the neglected terms in this expansion is easily shown to be

negligible, and so the sum of F' over all relevant k, 7, ¢y and a5 is asymptotic to
An\" 7r2n229/2
(?) 39/2

In addition, for the x; we need to know the behaviour of d. The argument about d

and we can take a = 3°.

in [11] applies precisely to the present situation and allows us to conclude that d ~ n/3
in almost all of the configurations in which £ and ¢ behave asymptotically as determined
above. Hence we can assume x; — 5 and k3 — 5. To determine the usual value of d’,
we consider a random valid assignment of edges of HiN Hy to Ay and By conditioned
on the completion of Hy to D;. The conditional probability that any given edge in
this completion contributes to d’ is exactly 1/2. A simple limit argument implies that

d' ~ k/2. Thus k3 — 1, and so (2.5) is asymptotic to

n3n25n+9/2

3n€3n+2(_4)58! )

It can be seen from (2.4) that the terms with s — oo can be neglected. Summing
over s > 0 gives (2.3). This completes the proof of the second statement in the theorem.

The hypothesis (1.3) of Theorem 1 that the X; are asymptotically independent Pois-
son variables with means \; = 2°='/i (given by Theorem 2) is well known (see [12] for
references).

Finally we prove

k
E(Y[XS]E}'/ 1;[ (A + ;). (2.11)

This argument follows the derivation of (2.8) in [12]. However, here the even cycles
have a different effect.
We first show that
E(YX,)~ (An+ pm)EY, (2.12)

(m > 3) by counting cubic graphs G' with a given double 1-factor D once for every
m-cycle C' that they contain, and dividing by M. It is clear that there must be s edges
of C' which are not contained in D for some s in the range 0 < s < m/2, since these

edges must be mutually non-adjacent.

12



For the contribution from cycles C' with s > 0, the proof of Lemma 2 in [12] applies

with no change, and gives

om-1_1
—EY(1 1
LBy (14 o(1)
for m odd and .
EY (1 1
BY(1+0(1)

for m even. The contribution due to s = 0 is just the total number of m-cycles in all
double 1-factors, divided by M. Because D only contains even cycles, this is 0 when
m is odd. When m is even, it is easily calculated to be asymptotic to EY/m. This
establishes (2.12).

The proof of (2.11) follows the proof of (2.12) by using a set of 7; distinct cycles of
length 3, 79 of length 4, etc., where the cycles of the same length have been ordered.
The two cases s = 0 and s > 0 can be treated independently for each cycle, and (2.11)

follows. &

3 r-regular graphs

o

Here we show that the result in Section 2 implies contiguity between Qg , and Q3, . in

general (r > 3). In this we make use of the results in [13].

+

Theorem 3. y, . is contiguous with Q3 .
Proof. We show this by induction on r. The base case, r = 3, is implied by Theorem
and Corollary 1.

Suppose that the claim is true for arbitrary » > 3. Let M be the number of 1-factors

of G € Qg p41. In [13], the last two authors show that:

M1
p L
<€< EM e) -

as € — 0 (slowly) and n — oo (quickly).

It follows that Q, ;41 is contiguous with the space 5, .., on the same underlying
set, whose elements are generated by taking the union of a uniformly selected edge
disjoint pair (D, M), where D is an r-regular graph and M is a perfect matching, each

with vertex set [2n]. From the main result in [2], it is seen that each r-regular graph

(VE+0(1) (222) " () 2rexp (—(T it Gt 7"—)

lies in

4 2 2

such pairs. Thus O3, ., is contiguous with the space Q7, .., on the same underlying
set, whose elements are generated by first choosing D € gy, ,, and then adding a

uniformly random 1-factor of the complement of D.

13



By the inductive hypothesis, an,r-H is contiguous with the space whose elements
are generated by taking an r-tuple of edge-disjoint perfect matchings (M, ..., M,) uni-
formly at random, and then adding a perfect matching M, 1, uniformly at random from
amongst all matchings edge-disjoint from U/_, M;. Again by the main theorem in [2],

this space is contiguous with QF . 1

4 'Triple 1-factors in bicoloured regular graphs

In this section we modify the method in Sections 2 and 3 so as to apply to bicoloured

regular graphs. From Bender [1], the number M of labelled bicoloured cubic graphs on

M~ B (2") (4.1)

€262 \ n

Since bicoloured graphs contain no cycles of odd length, we alter the definition of

2n vertices is asymptotically

X; in this section.

Theorem 4. LetY =Y, denote the number of double 1-factors in a random bicoloured
cubic graph on 2n vertices, and let X; denote the number of cycles of length 2.

22n—|—1ﬂ.n

~ 3n\/§€1/27

EY? 16
— .
(EY)2  9el/2

22i—1

EY

Furthermore, if we define \; = and p; = % for i > 2, then the hypotheses (1.1) -
(1.10) of Theorem 1 all hold with the indices in X;, A; and p; all shifted down by 1.

Proof. The colouring of the vertices can be selected in (2:) ways. The number of
perfect matchings of the vertices respecting the chosen colouring is n!. By the main
theorem in [1], the number of ways to choose a second perfect matching, avoiding the
edges in the first, is asymptotic to n!/e. This gives the asymptotic number of double
1-factors. The number of ways to complete a double 1-factor to a cubic graph is again
given by the result of [1] to be asymptotic to n!/e?. We obtain the claimed value of EY
by taking the product of these numbers and dividing by M.
It will next be shown that

16

2 2
EY? ~ (BY ).

(4.2)

from which the second statement in the theorem follows. As in the proof of Theorem

2, we prove this by showing that total number T of ordered pairs of distinct double
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1-factors in all bicoloured cubic graphs on 2n vertices satisfies

(Qn)!nn—l—3/222n+11/2

T~ 3n+1/2€n+4ﬁ

(4.3)

The proof is similar to the proof of (2.3); the number of arrangements of paths and
cycles in HyN Hy is again given by (2.4), but in this case we have to consider 2-colouring
the vertices of the paths and cycles. The cycles can be 2-coloured in 2° ways, the k — 23

2k=20 ways, and the 2i even-length

paths of odd length can be coloured in any of the
paths can be coloured in (2;) ways since the total number of vertices of each colour
must be the same.

The choice of A; and B; is as before. Using the Theorem in [1], the number of
completions to H; is equal to

a1k — aq)le™™

where k1 — 1 provided a1 ~ d ~ k/2 — oo, and k1 > 0 always, with a; and d are
defined as before.

The number of completions to Hy is equal to
az!(k — ag)le™"

where k3 — 2 provided ay ~ d ~ d' ~ k/2 — oo, and kg > 0 always, where ay and d’
are defined as before.

Finally to complete H1U H; to the graph G we must add a matching of the remaining
2n— 2k vertices of degree 2 respecting the colouring. The number of completions is equal

to

(n—k)le™"

where k3 ~ % — 1 provided d ~ k/2 and n — k — o0, and k3 > 0 always.

Thus we find that the expression in place of (2.10) is

n?n22n33 3 <—2(n —k - i))s r (4.4)

3n _ lpr1+r2+K3
€ . n (3 S.€
ki,a1,a2,d,d’

where F' is defined as in (2.10). The limiting behaviour of k1, k2 and k3 can now be
determined as in Section 2. Hence (4.4) is asymptotic to
n3n25n+9/2

3n€3n+2(_2)55!7

and so the second statement in the theorem follows as before.
The hypothesis of Theorem 1 that the X; are asymptotically independent Poisson

with expectation A; is easily verified, and was used in [13].
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The rest of the proof follows that of Theorem 2, noting that the contribution from

cycles C' of length 27 is '
222 + 1
24
for s > 0 and %Eonrs:O. |

EY (1+ o(1))

We note again by Corollary 1, that the space of random r-regular bicoloured graphs
is contiguous with the space generated by a random r-tuple of edge-disjoint bicoloured 1-
factors. An r-regular bicoloured graph on 2n vertices is equivalent to a regular digraph,
perhaps containing loops, on n vertices with in- and out-degrees all equal to r (an r-
regular digraph). It follows that the space of random r-regular digraphs on n vertices
with no loops or multiple edges is contiguous with the space generated by a random
set of r edge-disjoint 1-regular digraphs, since for r-regular digraphs the probability
of a loop or multiple edge is asymptotic to a non-zero constant (by the results of [[1]]
for example). In the next section, we use this to show that a random simple r-regular

digraph is almost surely strongly r-connected for r > 2.

5 The connectivity of regular digraphs

Recall that a digraph G is strongly connected if for any u,v € V(G), there is a directed
(u,v)—path in G. For digraphs on at least r + 1 vertices, G is strongly r-connected iff
for any W C V(G) with |W| < r, G — W is strongly connected. A simple digraph is one
with no loops or multiple edges.

Recently, Cooper [4] has shown that a random simple 2-regular digraph, G, is a.s.
strongly 2-connected. To do this, he considered a directed multigraph F3, formed by
taking the union of two random permutations, where we use “permutation” to denote
the corresponding 1-regular digraph. He showed that if a property P holds for F3 with
probability 1 — o(n~'/2) then it holds for G with probability 1— o(1). This allowed him
to prove his result concerning GG by analysing F5. The results of Section 4 allow us to
use his methods to show that a.e. r-regular digraph is strongly r-connected for r > 2.

Note on the other hand that a random 1-regular digraph is a.s. disconnected.

Theorem 5. For any fixed r > 2, a random r-regular simple digraph is a.s. strongly

r-connected .

Proof. The case r = 2 was proved in [4].

For r > 3, consider a directed multigraph, F,., formed by taking the union of r
independently and uniformly chosen permutations of [n] = {1,2,...,n}: my,..., 7. It is
straightforward to verify that F) is simple with probability asymptotic to exp (—r — (3)).
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Therefore, if a property P holds a.s. for F., then it holds a.s. for the union of a random
set of r edge-disjoint permutations of [n]. Thus, by the results of Section 4, P holds
a.s. for a random simple r-regular digraph on n vertices. To complete our proof then,
it suffices to show that F). is a.s. either non-simple or strongly r-connected.

Let @ be the number of partitions S UT of [n] with |T| > r and [NT(S)NT| < r
(where N*t(9) is the outneighbourhood of S in F,). Note that for n > r 4+ 1, F, is
strongly r-connected iff = 0. Let I be the indicator variable:

0, otherwise.

1, F, is simple,
I:{ , is simple

We will show that E(/Q) = o(1), which implies a.s. 1@ = 0, completing the proof.

Note that since F, is r-regular, in any partition S U T of [n], where |T| > r,
INT(S)NT| < r,either |S]|>2and |[T|>7r+1,0r I =0.

For 2 < 7 < mn —r — 1, consider any partition [n] = S UT with |S| = j, and any
W = {wy,...,w,—1} C T. We will bound the number of permutations F; for which
every (5,7) edge terminates in W.

Suppose that there are k such edges. Note that £ < r — 1 and that there must
be exactly k edges from T to S. Upon choosing these 2k edges, the remainder of the
graph consists of two permutations, one on 5 and the other on 7. There is a one-to-one
correspondence between the permutation on S (resp. 7') and a permutation of [j — k]

(resp. [n — 7 — k]). Thus, the number of choices for F7 is at most:

(@ (T K 1)k!) (@ (n ¢ j)k!) (7 = k)n = j = k) = O(*5(n - j)1).

Therefore,
_ "\ (n= 5 (e =Y
B10) = 0% 3 (o) (o
= O<n_(7’_1)). ]
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