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Abstract

The minimum size o(n) of an identity digraph of any given order n is determined
in a way that provides for efficient calculation. Here the order is the number n of
vertices and the size is the number of arcs. An identity digraph is one for which the
identity is the only automorphism. It is shown that o(n) = n — §(n) where 6(n) is
a positive nondecreasing function with growth rate ©(n/logn). The number v(n) of
nonisomorphic identity digraphs of minimum size and order n is also studied; it takes
the value 1 infinitely often but is unbounded.

1 Introduction

The notation and terminology of the books [2,3] are followed. A digraph D = (V,E) is
specified by its sets of vertices V' and arcs (oriented edges) E. The number of vertices is the
order of D and the number of arcs is its size. If e = (u,v) € E then e is incident from u
and incident to v. An automorphism of D is a pair of permutations, of the vertices and of
the arcs, which preserve the incidence to and the incidence from relations.

A digraph for which the only automorphism consists of the identity permutations on its
vertices and arcs is called an identity digraph. We determine the minimum size o(n) for
an identity digraph of order n. It is shown that o(n) = n — é(n) where §(n) € O(n/logn)
is a positive, non-decreasing function which can be computed exactly in O(log® n) time and
O(log n) space. Here arithmetic operations on integers are assumed to take constant time,
and integers are assumed to take constant space to store.

In [4] o(n) appears as 10( K, ), the minimum number of edges which can be oriented in
the complete graph K, on n vertices in order to obtain an identity mixed graph. There it
is pointed out that o(n) is the minimum number of arcs in an identity oriented forest. This
follows from three obvious facts.

1. Any digraph is an identity digraph if and only if its weak components are different
(non-isomorphic) identity digraphs.
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2. A weakly connected identity digraph has fewer arcs than vertices if and only if it is an
identity oriented tree.

3. There are identity oriented trees of all positive orders, e.g., the directed paths.

It is now clear that o(n) = n — §(n) where §(n) is the maximum number of different
identity oriented trees which can be weak components in a digraph of order n . This depends
straightforwardly on the numbers of identity oriented trees. Let F'(n) denote the number of
different identity oriented trees of order n, and let

s(m) = > kF(k),

k<m

d(m) = > _ F(k),

k<m

r(n) = (n — S(n)) mod (p(n) + 1),
Then 6(n) = D(n)+ g(n). The idea is that p(n) is the maximum order through which all

of the different identity oriented trees can be included as weak components of a digraph of
order n. There are D(n) different identity oriented trees of order at most p(n), and together
they contain S(n) vertices. The remaining n — S(n) vertices are sufficient to accomodate
q(n) additional identity oriented trees of order p(n)+1 . This accounts for n — r(n) vertices
in all, where 0 < r(n) < p(n). If r(n) > 0 then any tree of maximum order m(n) (p(n) if
q(n) = 0, or p(n) + 1 if g(n) > 0) can be replaced by any identity oriented tree of order
m(n)+r(n) so as to arrive at an identity oriented forest of order n having D(n)+ ¢(n) weak
components. This achieves the minimum possible size for an identity digraph of order n,
although in general there will be other ways in which the minimum can be achieved.

The equations above parallel almost exactly the expression obtained in the undirected
case for the minimum size m, of an identity graph of order p by Quintas [9, Thm.1]. A
minor difference is that m, is undefined if 2 < p < 6. Quintas and others have gone on to
prove many results on the minimum size e¢(G, n) of an undirected graph of order n which
has automorphism graph isomorphic to G for a finite abstract group G drawn from various
classses of groups. A good survey of these results is contained in [8]. As will be noted in
Section 4, the asymptotic results obtained for §(n) and o(n) have a close parallel for m,,.



In Section 2 equations are derived for calculating F/(n) exactly, and in Section 3 the
asymptotic behavior of F/(n) is determined. These results allow 6(n), and hence o(n), to
be found exactly and asymptotically. The last section contains observations on the num-
ber v(n) of different identity digraphs of minimum size and order n. However a complete
determination of v(n) in the general case is deferred to a later paper.

2 Exact Counting

As is usual for tree counting, rooted trees are considered first. Then unrooted (free) trees
are counted with the help of Otter’s dissimilarity characteristic equation [10].
Let R(n) denote the number of identity rooted oriented trees of order n, and let

R(z) =" R(n)z"
n>1
be the ordinary generating function. (There will be no occasion to substitute an integer
value for the variable z, so this notation should cause no confusion.)

In R. Simion’s paper [11], R(n) appears as the number of identity rooted matched trees
of order 2n. A matched tree is one which contains a perfect matching (which is necessarily
unique). R. Simion gave a natural 1 — 1 correspondence between rooted matched trees of
order 2n and rooted oriented trees of order n [9, Theorem 2.1]. It is easy to see that this
correspondence preserves automorphisms and so applies to identity trees of the two types.
For the sake of completeness the functional equation satisfied by R(z) and the recurrence
relations for calculating R(n) are repeated here.

Theorem 1 (Theorem 1.3(a) of [9])

The ordinary generating function for identity rooted oriented trees satisfies

R(z) = zexp{2) (—1)*"R(z")/i}. (1)

i>1

Corollary 1 (Corollary 1.4 of [9])
The numbers of identity rooted oriented trees satisfy

R(n)=—— Y R(k)B(n - k) (2)

1<k<n

forn >1.



Equation (1) can be obtained by viewing an arbitrary identity rooted oriented tree as a
single root vertex (represented by the factor of x on the right side) along with a collection
of distinct identity rooted oriented trees which are branches at the root each marked “in” or
“out”. The factor of 2 on the right side of (1) represents the choice of “in” or “out”, which
corresponds to an arc from the new root to the branch’s root or the converse. A very similar
functional equation for identity rooted trees can be found in [6] or [5, Section 3.3].

Applying the formal differential operator x% to both sides of (1) gives

eR(x) = R(x) + 2R(x) Y_(—1)*"2 R (') (4)
i>1
Now (2) and (3) follow by letting B(n) denote the coefficient of " in the sum in (1). Then
n iterations of equations (2) and (3) provide R(1),..., R(r) and B(1),..., B(r) using O(n?)
arithmetic operations and storing O(n) integers.
When free (unrooted, undirected) trees are considered there is no longer a 1-1 corre-
spondence between oriented trees and matched trees of twice the order. However the usual
dissimilarity equation

(5)

. « __J 1 for an identity oriented tree
PPm9 =00 fora non-identity oriented tree

holds, where p* is the number of different ways to root an oriented tree at a vertex so that

the result is asymmetric and ¢* is the corresponding number of ways to root at an arc. The

form of (5) is simplified by the absence of symmetry arcs, due to the orientations of the arcs.
Summing (5) over all oriented trees of order n with the factor of 2™ gives

Theorem 2 The ordinary generating function F(x) for identity (free) oriented trees satisfies
F(z) = R(z) - R(z)* (6)

Equation (6) has exactly the same form as the relationship for all oriented trees found in
[5, equation (3.3.2)]. Comparing coefficients of 2 on both sides of this equation gives

Corollary 2 The number F(n) of identily (free) oriented trees satisfies

F(n)=R(n)~ Y. R(k)R(n— k) (7)

1<k<n—-1

forn >1.

In conjunction with (2) and (3), (7) provides an algorithm for computing F'(1),..., F(n)
using O(n?) arithmetic operations and storing O(n) numbers in the process.



3 Asymptotic Analysis

The asymptotic analysis of R(n) and F(n) follows closely the pattern in [7, Section 4] for
the corresponding numbers of undirected identity rooted and free trees. Here we indicate
the differences which arise for identity oriented trees.

The power series R(x) and F(z) have the same radius of convergence a which satisfies

R(a) =1/2 and

%e_1+2 S s (C DR /i (8)
Applying (8) iteratively it is found that o = 0.1905112993053734417244295 - - - .
Considering them as functions of a complex variable, both R(z) and F(z) have branch

points of order 2 at 2 = a. From the expansion at z = a in powers of (a — z)'/? it is found
that

O =

R(n) = Can~**a=(1 + O(1)) (9)
n
where Cr = byy/a/7 /2 and

Vo= % — Y (1)’ R(a).

i>2
Computation then gives Cr = 0.1920662886452003712378791 - - - . Likewise
1
F(n) = CFn_5/2a_”(1 + O(—)) (10)
n

where Cr = 2b2a - Cr = 0.1780710391407842464386300 - - - .

Now the ordinary generating functions

m>1
d(z) = > d(m)a™
m>1
can be expressed as
T
— F!
() = —— ')
1
d(z) = F(z)
1—2
The expansion for F/(X) at © = a then gives
_ Cr -3/2 _—m 1
s(m) = T—a™ @ (1+ O(E))v (11)
_ Cr —5/2 _—m 1
d(m) = L e (1+ O(m)) (12)



Let p = ™! = 5.2490324912281705791649522 - - . For m = p(n) we have s(m) € O(n)
so that taking the logarithm on both sides of (11) leads to

p(n) =log,n 4+ O(loglogn). (13)

Since D(n) = d(p(n)) and S(n) = s(p(n)), equations (11) and (12) imply

B S(n) 1
Then o(n) = D(n) + ¢(n), and
_ (p(n) +1)q(n) 1

is immediate. In view of
n = 5(n)+ (p(n) +1)q(n) + r(n)
where 0 < r(n) < p(n) we have

~—

S(n) + (p(n) + 1)g(n) = n(1 + 022,

so (14) and (15) yield
n) = p(n) b
8(m) =~ -+ O(HE) (1 4 0=,
5(m) = (o1 + O 252 (16)

when (13) is applied.

It can now be seen that the exact computation of S(n) can be accomplished in O(log® n)
time and O(log n) space, since the numbers R(k), F'(k), s(k) and d(k) need only be calculated
for k < p(n) + 1.

As an addendum, the ratio nF'(n)/R(n) which gives the proportion of the identity rooted
oriented trees of order n which are obtained by rooting identity oriented trees of order n in
all possible ways is

nF(n) Cr 1
= —(14+0(-
R(n) o, LT OC)
where Cr/Cr = 2b%a = 0.9271332329940043425211783 - - - .
For large n, then, the probability is just under 7.3% that unrooting an identity rooted
oriented tree leaves an oriented tree with a nontrivial symmetry.




4 Related Results

As noted in the introduction, Quintas [9] determined the minimum size m,, of an identity
graph of order n. To obtain equations equivalent to his, simply replace F'(k) in our equations
for o(n) by the number (k) of identity trees of order k. The asymptotic growth rate of (k)
was determined in [7, Section 4]. The dominant feature is a radus of convergence y , for
which computation gives the reciprocal 7 as

7= pu~! = 2.5175403526320038907953546 - - - .

Then the analysis leading to (16) converted to undirected graphs gives
log log n

(1+0( ))- (17)

n—m,

- log_n log n

The number v(n) if different identity oriented trees of order n and minimum size o(n) =
n — s(n) takes the value 1 infinitely often and yet is unbounded. To see this, note that for
any m and any ¢ with 0 < ¢ < F(m + 1) the minimum size for an identity tree of order
s(m)+ (m+ 1)g can only be attained by including all identity trees of order < m along with
some ¢ of the possible F'(m + 1) identity trees of order m + 1. Thus

F(m+1))7

q

W(s(m) + (m + 1)q) = (

which as m — oo takes the value 1 when ¢ = 0 and is unbounded when ¢ > 1. The
function v(n) takes much larger values when r(n) > 1 for large n. It is planned to study this
phenomenon in more detail in a future paper.
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