Agenda

• Today
 - Return test
 - Continue Section 7.1
Announcement

• No quiz next week
Machine-dependent complexity

• Example, let L={w | w is a palindrome}
• How long will it take us to decide L on a standard TM?
 - Go back and forth crossing off matching symbols at beginning and end
 - O(n²)
• How long will it take us to decide L on a 2-tape TM?
 - Copy string
 - Compare symbols reading forward on tape 1 and backward on tape 2
 - O(n)
Complexity relationships

Theorem: Let \(t(n) \) be a function, where \(t(n) \geq n \). Then every \(t(n) \) time multitape TM has an equivalent \(O(t^2(n)) \) time single-tape TM

Proof idea: Consider structure of equivalent single-tape TM. Analyzing behavior shows each step on multi-tape machine takes \(O(t(n)) \) on single tape machine
Equivalent machines

\[M \]

\[
\begin{array}{cccccccc}
0 & 1 & ~ & ~ & ~ & ~ & ~ & ~ \\
\end{array}
\]

\[
\begin{array}{cccccccc}
a & a & a & ~ & ~ & ~ & ~ & ~ \\
\end{array}
\]

\[
\begin{array}{cccccccc}
a & b & ~ & ~ & ~ & ~ & ~ & ~ \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\# & 0 & 1 & \# & a & a & a & \# & a & b & \# & ~ & ~ \\
\end{array}
\]
Simulating k-tape behavior

• Single tape start string is
 \[#w\#_\#\ldots\#_\#\#

• Each move proceeds as follows:
 - Start at leftmost slot
 - Scan right to \((k+1)^{st}\) \# to find symbol at each virtual tape head
 - Make second pass making updates indicated by k-tape transition function
 - When a virtual head moves onto a \#, shift string to right
Proof of theorem

• Analyzing simulation of k-tape machine

• Each step on single-tape machine has two phases
 - Scan tape
 - Perform operations

• How long does first phase take?
 - Length of string on tape
 - Each portion has $O(t(n))$ length (this occurs if tape heads only move right)
Proof of theorem (cont.)

• How long does second phase take?
 - Perform k steps
 • Each step may require a right shift
 - Each step takes $O(t(n))$ time
 - Total of k steps is $O(t(n))$ because k is a constant

• What’s the total time?
 - $O(t(n))$ steps each take $O(t(n))$ time
 - Total time is $O(t^2(n))$
Determinism vs. non-determinism

Definition: Let P be a non-deterministic Turing machine. The running time of P is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that P uses on any branch of its computation in any input of length n.
Non-deterministic tree

Deterministic

Non-deterministic

f(n)
Complexity relationship

Theorem: Let $t(n)$ be a function where $t(n) \geq n$. Then every $t(n)$ time non-deterministic single-tape Turing machine has an equivalent $2^{O(t(n))}$ time deterministic single-tape Turing machine.
Complexity relationship proof

Proof: Given a non-deterministic TM, \(P \), running in \(t(n) \) time, construct a 3-tape deterministic TM that simulates \(P \). The height of the tree is at most \(t(n) \). Assume the maximum number of branches in the tree is \(b \). Therefore, the number of leaves in the tree is \(O(bt(n)) \).

Total number of nodes is less than twice the number of leaves – i.e. \(O(b^{t(n)}) \).
Complexity relationship proof (cont.)

Deterministic TM does a breadth-first search of the non-deterministic TM’s tree.

Total time to search tree is $O(t(n))$ to travel from the root to a leaf $\times O(b^{t(n)})$, the number of leaves.

$O(t(n)b^{t(n)}) = O(2^{\log_2 t(n)} 2^{(\log_2 b)t(n)}) = O(2^{O(t(n))})$
Complexity relationship proof (cont.)

Are we done?
No! We constructed a 3-tape TM with running time $O(2^{O(t(n))})$

Single-tape TM will take
$O((2^{O(t(n))})^2) = O(2^{2O(t(n))}) = O(2^{O(t(n))})$

Are we done?
Yes!
Polynomial vs. exponential time

• We distinguish between algorithms that have polynomial running time and those that have exponential running time

• Polynomial functions – even ones with large exponents – grow less quickly than exponential functions

• We can only process large data sets with polynomial running time algorithms
Polynomial equivalence

• Two algorithms A_1 and A_2 are polynomially equivalent if we can simulate A_2 using A_1 with only a polynomial increase in running time.
The class P

- P is the class of languages that are decidable in polynomial time on a single-tape Turing machine

 \[P = \bigcup_k \text{TIME}(n^k) \]

- P “roughly corresponds” to the problems that are realistically solvable on a computer
Size of input: Important consideration

• The running time is measured in terms of the size of the input
 - If we increase the input size can that make the problem seem more efficient
 - E.g., if we represent integers in unary instead of binary

• We consider only reasonable encodings
A problem in class P

- Binary tree query
- Given a binary search tree T and a key k, find the node in T with $\text{key}(\text{node}) = k$
- How do we show this problem is in class P?
 - Write an algorithm and show that the algorithm has running time $O(n^k)$ for some k
Binary search

\[M = \text{"On input } \langle G,k \rangle \]

1. Let node = root(G)
2. Do while key(node) \(\neq \) k
3. If key(node) < k
4. If right(node) == NIL
5. \hspace{1em} return NIL
6. Else
7. \hspace{1em} node = right(node)
8. Else
9. \hspace{1em} If left(node) == NIL
10. \hspace{2em} return NIL
11. \hspace{1em} Else
12. \hspace{2em} node = left(node)
13. Return node
Execution time

• Worst case running time?
 - $O(|\text{nodes}|)$
 - Occurs if tree is unbalanced
 - Is this $O(n)$?
 • Yes ... any reasonable encoding will have an entry for each node
Have a wonderful weekend