CSCI 2670
Introduction to Theory of Computing

November 2, 2004
Agenda

• Last week
 - Decidability & undecidability

• Today
 - One more undecidability proof
 - Reductions (Section 5.3)

• This week
 - Section 5.3
 - Section 6.3 & part of 6.4
Announcements

• Quiz tomorrow
 - Decidable and undecidable languages (hints will be provided)
 - Countable sets
• Homework due next Tuesday (11/9)
 - 5.4, 5.5, 5.7, 5.20, 6.3, 6.16
• Second midterm is next week
 - Chapters 3 & 4, parts of 5 & 6
Another undecidable language

Let \(\text{REGULAR}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \)

Theorem: \(\text{REGULAR}_{\text{TM}} \) is undecidable

Proof: Assume \(R \) decides \(\text{REGULAR}_{\text{TM}} \) and use \(R \) to decide \(A_{\text{TM}} \) (reduce the \(A_{\text{TM}} \) problem to the \(\text{REGULAR}_{\text{TM}} \) problem).

As before, make a new TM, \(M_2 \), that accepts a regular language iff \(M \) accepts \(w \).
Proof (cont.)

Consider the following TM S = “On input $<M,w>$

1. Construct the following TM M_2
 M_2 = “On input x
 1. If $x = 0^n1^n$ for some n, accept
 2. Otherwise, run M on w. If M accepts w, accept”

2. Run R on M_2 (accepts iff $L(M_2)$ is a RL)

3. If R accepts, accept; if R rejects, reject”

S decides A_{TM} if R decides $REGULAR_{TM}$
Insight

- The TM M_2 is specially designed to be regular if and only if M accepts w
- Then call TM that decides REGULAR_{TM} on M_2
Rice’s theorem

• Determining whether a TM satisfies any non-trivial property is undecidable
 - A property is non-trivial if:
 1. It depends only on the language of M, and
 2. Some, but not all, Turing machines have the property
 - Examples: Is $L(M)$ regular? A CFG? Finite?
Proof of Rice’s theorem

• Assume there is some decidable non-trivial property P for Turing machines
 - Assume TM’s that accept \emptyset do not satisfy P
 • If they do, just consider $\neg P$
Proof of Rice’s theorem

• Let TM B decide P
 – On input <M>, B accepts iff TM M has property P

• Let MP be a TM that satisfies P
 – Since P is non-trivial, there is some MP satisfying P

• Use B and MP to decide A_{TM}
 – Create a new TM S that decides A_{TM} using B and MP
A_{TM} decider using MP

\[S = \text{"On input } \langle M, w \rangle \text{"} \]

1. Create the following TM \(N \)
 \[N = \text{"On input } x \text{"} \]
 1. Run \(M \) on \(w \) until it accepts
 2. If \(M \) accepts \(w \), run \(MP \) on \(x \)
 3. If \(MP \) accepts \(x \), accept; if \(MP \) rejects \(x \), reject

2. Run \(B \) on \(\langle N(\langle M, w \rangle) \rangle \)
 If \(B \) accepts, accept; if \(B \) rejects, reject

\[L(N) = L(MP) \text{ if } M \text{ accepts } w; \text{ otherwise } L(N) = \emptyset \]

\(S \) decides \(A_{TM} \) if \(B \) decides TM’s satisfying \(P \)