Agenda

• **Yesterday**
 - Two undecidability proofs
• **Today**
 - Reductions (Section 5.3)
• **Tomorrow**
 - Section 6.3 & part of 6.4
Announcements

• Remember to let me know if you plan to come to my house tomorrow evening
Reductions and decidability

• To prove a language is decidable, we have converted it to another language and used the decidability of that language
 - Example - use decidability of E_{DFA} to determine decidability of $NOINT_{DFA}$
Reductions and undecidability

• To prove a language is undecidable, we have assumed it’s decidable and found a contradiction
 - Example - assume decidability of HALT_{TM} and show A_{TM} is decidable which is a contradiction

• In each case, we have to do a computation to convert one problem to another problem
 - What kind of computations can we do?
TM’s and computation

• TM’s can do more than just accept and reject strings
 - They can perform functions

Definition: A function $f : \sum^* \rightarrow \sum^*$ is a computable function if there is some TM M that, on every input w, halts with $f(w)$ on the tape
Examples

• The copying TM discussed several weeks ago
 - Start with w on the tape, halt with ww on the tape

• Finding intersection of two DFA’s
 - Start with $<A,B>$ on the tape, where A and B are DFA’s, halt with $<C>$ on the tape, where $L(C) = L(A) \cap L(B)$
Mapping reducibility

Definition: Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \text{ iff } f(w) \in B$$